

Environmental Impact Assessment St. George Groundwater Supply Exploration

> Municipality of Eastern Charlotte Registration Document

212918.00 • February 2024

02	Final Revision	1	L. Hardwick	14-Feb-2024	C. Dubreuil
01	Final		L. Hardwick	17-Oct-2023	C. Dubreuil
00	Draft		L. Hardwick	1-Aug-2023	C. Dubreuil
Rev.		lssue	Reviewed By:	Date	Issued By:
С	BCL	This document was prepared herein. The material and document reflect CBCL Limit judgment based on the infor time of preparation. Any us reliance on its content by responsibility of the third part no responsibility for any dama of third-party use of this docu	information in the ted's opinion and best mation available at the e of this document or third parties is the y. CBCL Limited accepts ages suffered as a result		

Project No. 212918.00

Solutions today | Tomorrow 🚯 mind

Maritime Centre, 1505 Barrington Street, Suite 901, Box 606, Halifax, NS, B3J 2R7 | 902-421-7241 | CBCL.ca | info@CBCL.ca

February 14, 2024

Crystale Harty, Director Environmental Impact Assessment Branch New Brunswick Department of Environment and Local Government Email: crystale.harty@gnb.ca

RE: St. George Groundwater Supply Exploration Project, Eastern Charlotte, New Brunswick

CBCL Limited is pleased to submit the following Environmental Impact Assessment Registration Document for the above-noted undertaking on behalf of the Municipality of Eastern Charlotte.

Please note, in October 2023, CBCL submitted a Registration Document to NBDELG for this project with two potential well sites described. Since that time, one of the property owners has changed their minds on the possibility of developing a municipal well on their land. As such, the following document has been updated to reflect one potential well site. Within this document, we have also addressed the TRC Comments received on November 16th, 2023.

Also, this document is intended to replace all other reports that have been previously submitted to NBDELG regarding this file. The WSSA information for the potential well site is included herein. The other sites previously reviewed are no longer being considered.

Yours very truly,

CBCL LIMITED

Any Winchester

Amy Winchester, M.A.Sc., P.Eng. Senior Chemical Engineer Phone: 506 633 6650 Email: <u>amyw@cbcl.ca</u>

Project No.: 212918.00

This document was prepared for the party indicated herein. The material and information in the document reflect CBCL Limited's opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. CBCL Limited accepts no responsibility for any damages suffered as a result of thirdparty use of this document.

Executive Summary

The Municipality of Eastern Charlotte, New Brunswick (NB), is seeking to expand its existing St. George groundwater supply system. The intent of the expansion is to use an additional aquifer that is separate in hydrogeological and hydrological terms from the current source of municipal water – Magaguadavic and Lake Utopia aquifers. The hydrogeological exploration (the Project) will require geotechnical drilling to determine the thickness and composition of granular deposits and may entail pump tests of 500 cubic metres per day (m³/d). The Project is therefore subject to a provincial Environmental Impact Assessment (EIA) pursuant to Schedule A of the EIA Regulation (87-83) of the *Clean Environment Act*, where projects involving the extraction of water at a rate of more than 50 m³/d require EIA registration.

This Registration Document has been prepared to serve as both the EIA and a Step 2 Water Supply Source Assessment (WSSA) Process review as per the NB Sector-Specific EIA Guidelines for Waterworks and Water Supply projects for the NB Department of Environment and Local Government (NBDELG). This document herein replaces all other reports previously submitted to NBDELG regarding this file.

Desktop study and an ecological field investigation were used to characterise components of the existing environment of a proposed borehole target location within a radius of 10 metres (m) (the Site). Valued components (VCs) that may be affected by the Project were identified through issues scoping and pathway analysis:

- Geology and Soils
- Surface Water
- Groundwater
- Acoustic Environment
- Vegetation
- Wildlife and Migratory Birds
- Land Use
- Archaeological and Heritage Resources

Given the Project's limited level of activity for Step 2 WSSA exploration and readily accessible drilling location, few residual environmental effects have been identified. There are no provincially mapped or field-identified watercourses nor wetlands within 30 m of the Site. Given adherence to the mitigation measures as outlined for the VCs, significant adverse environmental effects are not anticipated.

Contents

Exect	utive S	ummaryi	
1	The P	roponent1	
2	Project Description2		
2.1	Project	Overview2	
2.2	Purpos	e of the Project3	
2.3	Project	Location4	
2.4	Siting C	Considerations4	
2.5	Project	Components7	
	2.5.1	Geotechnical Exploration7	
	2.5.2	Test Well Drilling7	
	2.5.3	Step-Tests7	
	2.5.4	Constant Rate Test	
	2.5.5	Production Well	
2.6	Project	Decommissioning	
2.7	Studies	Related to the Undertaking9	
	2.7.1	Hydrogeological Feasibility Studies9	
	2.7.2	Environmental Studies10	
3	Existing Environment11		
3.1	Physica	ll Environment	
	3.1.1	Geology and Soils11	
	3.1.2	Surface Water14	
	3.1.3	Groundwater14	
3.2	Atmosp	bheric Environment	
	3.2.1	Climate	
	3.2.2	Air Quality18	
	3.2.3	Acoustic Environment	
3.3	Biologi	cal Environment19	
	3.3.1	Vegetation	

	3.3.2	Wildlife and Migratory Birds	19
3.4	Socio-E	conomic and Cultural Environment	24
	3.4.1	Land Use	24
	3.4.2	Municipal Services and Infrastructure	24
	3.4.3	Archaeological and Heritage Resources	24
4	Poter	ntial Environmental Impacts and Mitigation	
4.1	Metho	d of Assessment	26
	4.1.1	Identifying Issues and Selecting Valued Components	26
	4.1.2	Establishing Boundaries	26
	4.1.3	Existing Environment	27
	4.1.4	Evaluation of Environmental Effects	27
	4.1.5	Identification of Mitigation Strategies	27
4.2	Identifi	cation of Potential Project-Environment Impacts and Mitigation	27
4.3	Potenti	ial Effects, Mitigation, and Residual Environmental Effects	28
	4.3.1	Geology and Soils	28
	4.3.2	Surface Water	29
	4.3.3	Groundwater	29
	4.3.4	Acoustic Environment	30
	4.3.5	Vegetation	30
	4.3.6	Wildlife and Migratory Birds	31
	4.3.7	Land Use	31
	4.3.8	Archaeological and Heritage Resources	32
4.4	Accider	nts and Malfunctions	32
4.5	Effects	of the Environment on the Project	32
	4.5.1	Flooding	32
	4.5.2	Extreme Weather	33
5	Public	c and First Nations Involvement	
5.1	Public l	Engagement	35
5.2	Indiger	nous Engagement	35
6	Concl	usion	
7	Refer	ences	

Appendices

- A Wetland Delineation Data Sheet and Photolog
- B Online Well Log System Results, 1.0 km Radius
- C 2023 AC CDC Data Report
- D Maritime Breeding Bird Atlas Square Summary
- E Archaeological Predictive Model

List of Tables

Table 2.1	Regulatory Considerations for the Project	2
Table 3.1	AC CDC Reported SoCC Plants Within the 5 km Study Area	
Table 3.2	AC CDC Report SoCC Fauna Within the 5 km Study Area	
Table 4.1	Potential Interactions Between Project Activities and the Environment	
Table 4.2	Production and Exploratory Well Elevations	33

List of Figures

Figure 2.1	General Project Location	5
Figure 2.2	Project Properties	
Figure 3.1	Exploratory Well Site 1	
Figure 3.2	Geology Mapping	13
Figure 3.3	Aquatic and Terrestrial Habitat	15
Figure 3.4	Provincial Flood Map	
Figure 3.5	Species At Risk & Significant Habitats	17
Figure 3.6	Municipal Infrastructure	
Figure 4.1	Vulnerability of Groundwater Wells to Flooding	

List of Acronyms

°C	degrees Celsius
AC CDC	Atlantic Canada Conservation Data Centre
AO	Aesthetic objective
CBCL	CBCL Limited
CCNB	Conservation Council of New Brunswick
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
CWS	Canadian Wildlife Service
ECCC	Environment and Climate Change Canada
E. coli	Escherichia coli
ECW	Eastern Charlotte Waterways
EIA	Environmental Impact Assessment
ESA	Environmentally Significant Area
GIS	Geographic information system
igpm	Imperial gallons per minute
km	Kilometre
km ²	Square kilometre
L/m	Litres per minute
m	Metre
m³/d	Cubic metres per day
MAC	Maximum acceptable concentration
MBBA	Maritimes Breeding Bird Atlas
MBCA	Migratory Birds Convention Act, 1994
NB	New Brunswick
NBDELG	NB Department of Environment and Local Government
NBDNRED	NB Department of Natural Resources and Energy Development
OG	Operational guideline
OWLS	Online Well Log System
PID	Property identification
POL	Petroleum, oil, and lubricant
SAR	Species at risk
SARA	Species at Risk Act
SNB	Service New Brunswick
SoCC	Species of Conservation Concern
TSS	Total suspended solids
VC	Valued component
VOC	Volatile organic compound
WSSA	Water Supply Source Assessment
WWTP	Wastewater treatment plant

1 The Proponent

This Registration Document has been prepared by CBCL Limited (CBCL), on behalf of the Municipality of Eastern Charlotte, to serve as both the Environmental Impact Assessment (EIA) and Water Supply Source Assessment (WSSA) review processes as per the New Brunswick (NB) Sector-Specific EIA Guidelines for Waterworks and Water Supply projects. Details on the proponent and property ownership are provided below. The property containing the exploratory well is privately owned. Municipal staff have been in contact with the landowner and are in the process of getting written consent. Written consent will be obtained from landowner prior to initiating activities.

Destant Marsa			
Project Name:	St. George Groundwater Supply Exploration		
Project Location:	Eastern Charlotte, NB		
Proponent:	Municipality of Eastern Charlotte 1 School Street St. George, NB E5C 3N2		
Principal Proponent Contact:	Jason Gaudet Chief Administrative Officer Eastern Charlotte Email: jason.gaudet@easterncharlotte.ca		
Principal Consultant Contact:	Amy Winchester, M.A.Sc., P.Eng. Senior Chemical Engineer, CBCL Limited CenterBeam Place 14 King Street, Suite 420 PO Box 20040 Saint John, NB E2L 1G2 Telephone: (506) 633 6650 Email: amyw@cbcl.ca		
Property Identification Number (PID):	15197007		

2 **Project Description**

2.1 Project Overview

The St. George Groundwater Supply Exploration Project (the Project) is considered Step 2 (Field Studies) of the WSSA process to verify the thickness and composition of granular deposits whose presence is indicated by NB provincial geology mapping. The Project activities will be limited to geotechnical exploration, test well construction, aquifer testing, evaluation of source water quality, and sustainable pumping rates at 500 cubic metres per day (m³/d). An area with a radius of 10 metres (m) (the Site) has been proposed for Project activities. The Site is accessible via an existing road and across open field, requiring no clearing for the mobile equipment (drill rig) to reach the target borehole location.

The Project is subject to a provincial EIA pursuant to Schedule A of the EIA Regulation (87-83) of the *Clean Environment Act*, where projects involving the extraction of water at a rate of more than 50 m³/d require EIA registration for review by the NB Department of Environment and Local Government (NBDELG). The primary regulators relevant to the scope of this Project are outlined in Table 2.1.

Legislation	Responsible Authority	Relevance to EIA
Provincial		
Clean Environment Act		
EIA Regulation	NBDELG	Process for submission and review of the EIA
Clean Water Act		
 Potable Water Regulation 	NBDELG	Provides guidelines for health-based water quality parameters adopted from those of Health Canada
Water Well Regulation	NBDELG	Specifies minimum set-back distances from infrastructure, mandatory well water testing, and decommissioning

Table 2.1 Regulatory Considerations for the Project

Legislation	Responsible Authority	Relevance to EIA
 Watershed Protected Area Designation Order 	NBDELG	Watersheds currently used as sources of public water supply systems listed under Schedule A have been designated as protected
Species at Risk Act (NB SARA)	NBDNRED	Lists provincially-protected species and those for whom it is illegal to "wilfully or knowingly" harm or disturb their critical habitat
Federal		
<i>Migratory Birds Convention Act, 1994</i> (MBCA)	Environment and Climate Change Canada (ECCC) – Canadian Wildlife Service (CWS)	Section 5 of the Migratory Birds Regulations, 2022, prohibits harming or harassing migratory birds, taking or harming their eggs, and damaging or disturbing a migratory bird's nest without a permit unless the nest is vacant. There are 18 migratory bird species for which a notification to ECCC is required before a nest can be removed; this notification is required 24 to 36 months prior to removal (the length of time for notification is dependent on the species)
Species at Risk Act (SARA)	ECCC	It is an offence to kill, harm, harass, capture, take, possess, collect, buy, sell, or trade an individual of a species listed as Endangered, Threatened or Extirpated in Schedule 1 of the SARA on federal lands without a SARA permit. Outside of federal lands, these prohibitions apply only to aquatic and migratory bird SAR

2.2 Purpose of the Project

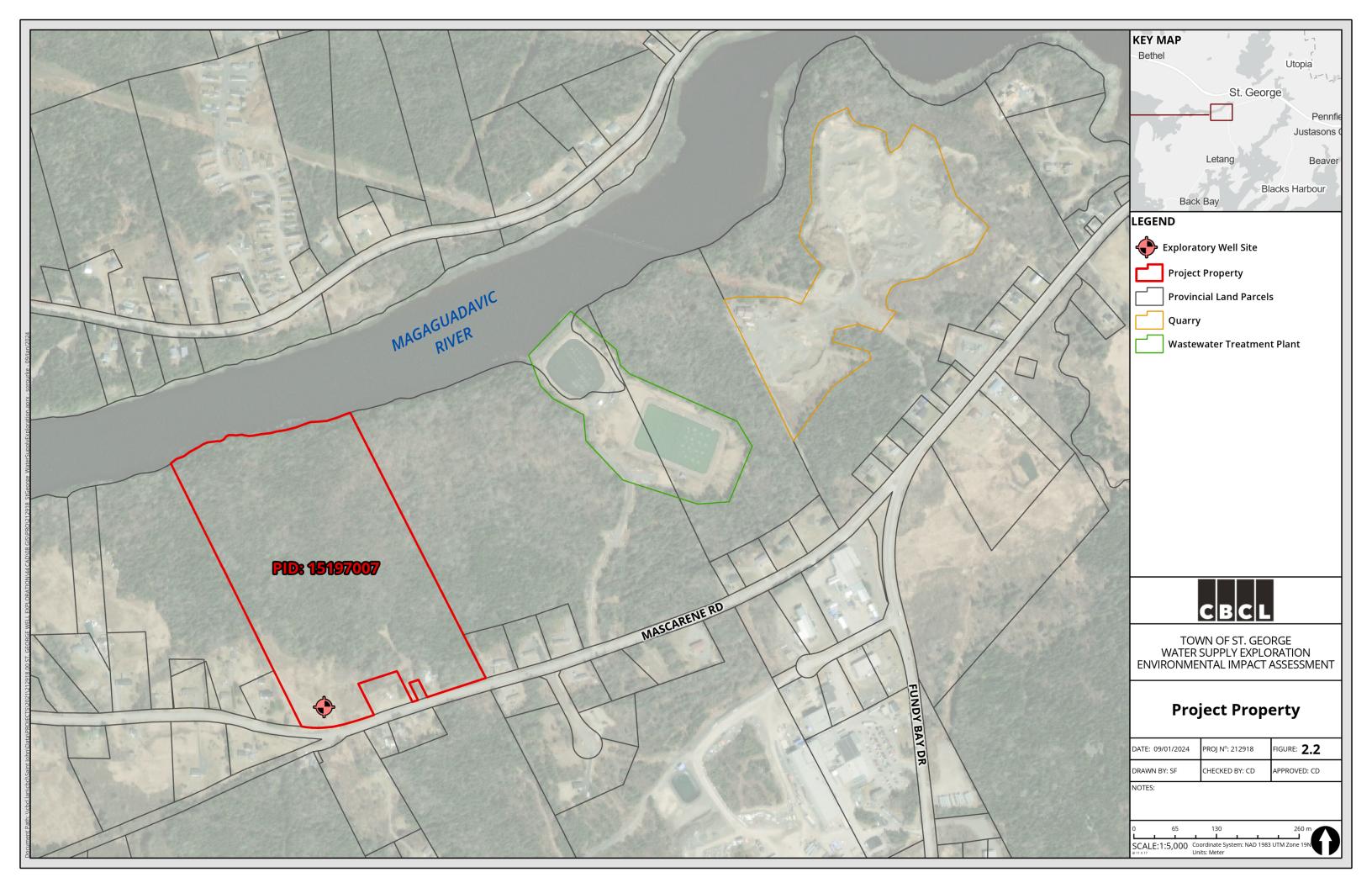
The Project proposed is part of an adaptive measure to mitigate the effects of climate change on municipal infrastructure. An additional groundwater source is needed to augment and improve the current supply system for the St. George municipal water services. The existing network of production wells is adequate to supply the existing municipal water demand, but due to limited well performance and anticipated increased demand from commercial and industrial customers, the Municipality of Eastern Charlotte is

seeking to improve redundancy and investigate the potential for improved capacity under the current Approval to Operate.

The existing wells are relatively shallow and the water table is only a few metres above the pumps in the Lake Utopia zone. The community's primary industrial client has been increasing their demand, resulting in a strain on water supply. In combination with low lake levels, the water level in the existing wells and recharge rates have been low. Should there be no exploration and development of an additional aquifer, the municipality will need to limit future expansion of local infrastructure.

2.3 Project Location

The Project is located in Caithness, opposite the Magaguadavic River from the urban centre of St. George (Figure 2.1). A 10 m radius Site has been assessed that will contain the target location for exploratory drilling. The Site is located on a privately-owned property (PID 15197007) directly accessible from Mascarene Road (Figure 2.2), set-back approximately 30 m from the road's right-of-way.


2.4 Siting Considerations

Site selection for the test well was based on conceptual modeling, which incorporates information from the area geology, hydrography, topography, well water records, aquifer thicknesses, and hydraulic conductivity data as well as Site reconnaissance. Geospatial mapping techniques were used to delineate sub-watersheds, which were further evaluated in the context of the underlying geologic material. The urban centre of St. George is located approximately 800 m north of the Magaguadavic Basin; an area that is hydrologically separated from the proposed Project.

The conceptual model indicated zones that would maximize the depth of the target aquifer, minimize interference with existing wells, maximize potentially favourable groundwater gradients, and optimize well yield while seeking to minimize the costs of new transmission infrastructure.

As part of preliminary Project design, a desktop review of the Site identified no land uses of concern or direct threats to groundwater quality in areas within 500 m of the subject property. Potential constraints to well development include the local wastewater treatment plant (WWTP), approximately 600 m northeast of the Site. The proposed exploratory activity will aid risk assessment associated with this land use should a significant aquifer be confirmed.

2.5 Project Components

The Project is scheduled to occur in the spring of 2024 with analysis and reporting to be completed in summer 2024. The Site comprises a 10 m radius around the target drilling location. Three events for onsite activities are involved.

2.5.1 Geotechnical Exploration

Initial field activities will focus on identifying aquifer material, including accessible data on the thickness and extent of the deposit, and the collection of a preliminary water quality sample. A compact, track-mounted geotechnical drill rig (example shown on cover) will drill a borehole with a diameter of 51 millimetres (mm) and a maximum depth of approximately 24 m. This activity will be completed within one day. The sample collected will be delivered to a certified laboratory for the analysis of general chemistry and trace metals in potable water, and possibly volatile organic compounds (VOCs). Pending the results of this initial exploration work, a broader program will be implemented to provide the information required for a WSSA, including test well construction, aquifer testing, evaluation of source water quality, and sustainable pumping rates.

2.5.2 Test Well Drilling

Should a viable aquifer be located through geotechnical drilling, CBCL will subcontract a licensed well driller to complete a test well with a diameter of 152 mm. The test well will be drilled using a truck-mounted water well rotary drilling rig. Typical drill rigs incorporate two large diesel compressors and a drilling mast 6 m in height. A second large support truck will be equipped with a small boom, steel casing, and extra 6 m length drilling rods. CBCL will document the borehole lithology and the airlift yield encountered as drilling proceeds. Where conditions permit, the test well will be completed as a fully cased well, slotted with a down-hole perforator over the productive zone of the aquifer. If the slotted well is not viable, work may proceed directly to installation of a screened well. This activity entails approximately 2 to 3 days.

2.5.3 Step-Tests

A step-drawdown test will be completed following adequate development (minimum two hours) and recovery of the test well. Pumping will be accomplished using a temporary pump installed with a small mast, powered by a temporary diesel generator stored approximately 6 m from the well head. Other vehicles on site during the test will include a

small support truck and camp trailer. Initial test rates will be based on the results of airlift testing. It is anticipated that the test will consist of four 1-hour steps with the following approximate pumping rates, subject to the capacity of the well and pump: 90 litres per minute (L/min) (20 imperial gallons per minute (igpm)), 182 L/min (40 igpm), 273 L/min (60 igpm), and 364 L/min (80 igpm). Physical parameters of the discharged water will be monitored in situ using a handheld probe, and a water quality sample will be collected at the end of the final step and submitted to a certified laboratory for general chemistry and trace metals analysis. The pump installer / driller will be required to keep a record of the pumping rate, measured at regular intervals using a totalizing flow meter. Water will either be discharged to a nearby ditch / drainage feature or dispersed evenly over the surrounding ground. The well will be allowed to recover overnight before the initiation of a 72-hour test.

2.5.4 Constant Rate Test

Should step testing results be favourable, a 24-hour constant-rate test will then be completed. CBCL will provide onsite observation of the beginning and end of the constant rate test and it will be coordinated with the pumping contractor to ensure that adequate data is collected throughout the remainder of the test. Pumping will be accomplished using a temporary pump installed with a small mast, powered by a temporary diesel generator stored approximately 6 m from the well head. Other vehicles on site during the test will include a small support truck and camp trailer. Water levels will be measured at 5-minute intervals using automated sensors installed in the test well and in two monitoring wells. It is anticipated that the monitoring wells will be installed as a part of geotechnical work.

Manually-measured water levels will supplement automated data collection. The pump installer / driller will be required to maintain a record of the pumping rate, measured at regular intervals using an inline totalizing flow meter. Water quality samples will be collected after 1-hour, 12-hour, and 24-hour periods for the laboratory analysis of general chemistry and trace metals as well as total coliform and *Escherichia coli* (*E. coli*.). CBCL will monitor the quality of discharged water using an in situ probe. All data will be collected in accordance with NBDELG requirements for WSSA.

2.5.5 Production Well

If the test well results are favourable, a stainless-steel wire-wrapped screen will be manufactured according to the conditions encountered, and a 203 mm diameter production well will be installed near the test well. The production well will be drilled using a truck-mounted water well rotary drilling rig. Typical drill rigs incorporate two large diesel compressors and a drilling mast 6 m in height. A second large support truck will be equipped with a small boom, steel casing, and extra 6 m length drilling rods. CBCL will observe and log the well installation to ensure that well construction meets with the NB Well Regulations and the requirements of a municipal system. Step-drawdown and constant rate tests will be completed on the production well using the same method as described in Sections 2.5.3 and 2.5.4. The constant-rate test of the production well will be

conducted for 72 hours, with sample collection at 1-hour, 48-hour, and 72-hour periods. The sample collected after 72 hours will be analyzed for VOCs in addition to general chemistry and trace metals.

CBCL will analyze all pumping, water level, and water quality data to provide an assessment of the well yield, safe pumping rate, well interference, and considerations for commissioning and treatment.

2.6 Project Decommissioning

The decommissioning of boreholes and wells will be completed as per the NB Guidelines for the Decommissioning (abandonment) of Groundwater Wells and Boreholes (NBDELG, 2021) by a licensed water well contractor who holds a valid NB Water Well Contractors Permit.

2.7 Studies Related to the Undertaking

2.7.1 Hydrogeological Feasibility Studies

CBCL concluded a program for wellfield development for the St. George municipal services system in April 2020 following feasibility study work from 2013 to 2017. Two new production wells were installed in the confined sand and gravel aquifer adjacent to the Magaguadavic River. The system now has capacity to draw potable water from five locations within two wellfields:

- Two new wells and one existing well in the Magaguadavic aquifer (a buried outwash aquifer); a confined valley deposit of sand and gravel associated with the Magaguadavic River, running from north to south.
- Two existing wells in the Lake Utopia aquifer; an unconfined valley deposit of sand and gravel, running westerly from Lake Utopia to the outlet of the Magaguadavic River.

Borehole logs and those of private wells in the St. George area have indicated that the thickness of both aquifers currently being sourced may reach up to 30 m in places. The Lake Utopia aquifer is bounded to the south by a bedrock ridge that is overlain in places by significant thicknesses of sandy kame or till material. The depositional environment suggests that each aquifer is thickest in the centre and thins toward its margins. The underlying bedrock is primarily crystalline fractured rock generally associated with low permeabilities.

The results of the evaluation of withdrawal limits for the Lake Utopia and Magaguadavic aquifers supports the need for further exploration. A new aquifer resource is needed to

supplement water to the St. George municipal water system in order to support community growth.

2.7.2 Environmental Studies

Ecological field studies were performed by Boreal Environmental on June 16, 2023. The Site visit was completed to identify features associated with biodiversity, such as unmapped wetlands / watercourses, birds, and rare plants at the Site or its access. Boreal indicated that no rare plants or fauna were identified. A small unmapped wetland was delineated. Results are discussed in Chapter 3.

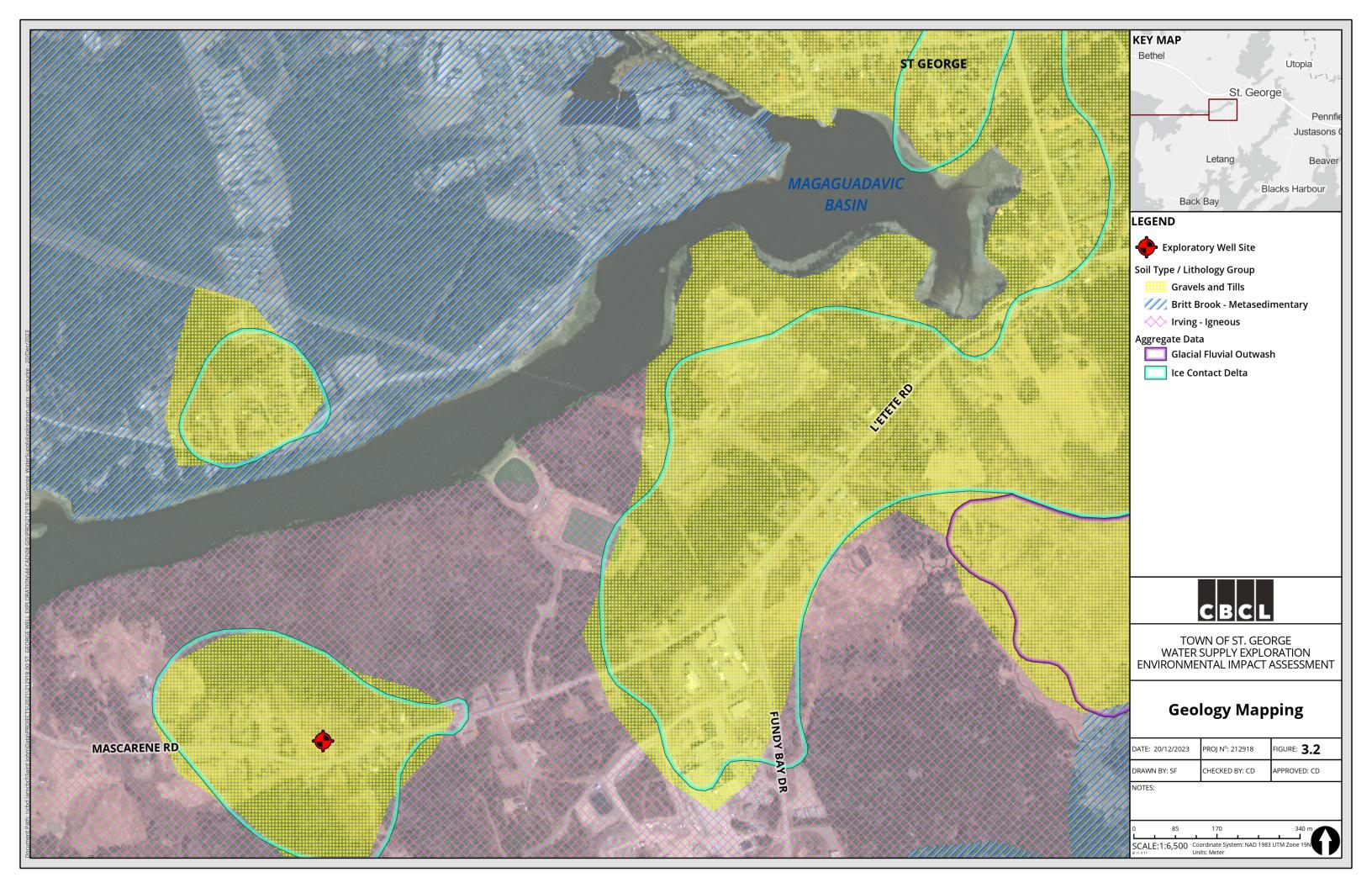
3 Existing Environment

3.1 Physical Environment

The Project property, PID 15197007, is located in a rural area on the opposite side of the Magaguadavic Basin from the urban centre of St. George. The Site is located in an open field on an empty lot with herbaceous vegetation (Figure 3.1). The property is accessed by Mascarene Road, which is predominantly lined by residential lots, approximately 600 m southwest of the St. George WWTP.

3.1.1 Geology and Soils

The Project is located in the Valley Lowlands Ecoregion within the Magaguadavic Ecodistrict. This district is characterized by undulating plateau at an intermediate elevation between the higher elevations to the northwest and low-lying Fundy Coastal area to the south (NB Department of Natural Resources and Energy Development (NBDNRED), 2007). The bedrock consists mainly of Ordovician to Devonian sedimentary strata and Silurian to Devonian granitic rocks. Ice contact delta deposits composed of sand and gravel are highly permeable to water, making the area suitable for groundwater sourcing (Figure 3.2). Elevations in the district range from 150 m in the north to sea level in the south; the elevation of the Site being approximately 32 m.


The Soils of Canada map classifies the soils of the area as being 90% podzilic and 10% gleysolic, and by the Canada Land Inventory as having severe limitations for agriculture due to stoniness for arable culture or permanent pasture (Agriculture and Agri-Food Canada, 2023).

A review of the mineral mapping in the GeoNB online Geographic Information System (GIS) tool managed by Service New Brunswick (SNB) indicates that there are no documented mineral deposits nearby; the nearest mineral records being on the opposite side of the Magaguadavic River (SNB, 2023). There are no mineral claims nor oil and natural gas licenses near the Project and it is not located within the boundaries of an existing protected wellfield.

	KEY MAP	6-1
and a set of the set	Bethel	
AT THE REAL		Utopia
A BE LAND THE	St. Geo	rge
部としているという		Pennfie
And the second second		
	I I I I I I I I I I I I I I I I I I I	Justasons (
一 個 准正	Letang	Beaver
Are I		
		Blacks Harbour
A 19 - 19 - 19 - 19	Back Bay	
Section 1	LEGEND	
and the second s	Exploratory Well Site	
A CON	•	
~~~~		
1195		
State north 2		
the second second		
State State State		
1 2		
1 Hotelle		
1 day with		
1 Miles W		
A MARKE YOU		
The second		
11		
1. 有理		
Ellina Lillian		
55 Jan 200		
1184		
1	CDCI	
the stand and and the	СВСІ	
	TOWN OF ST. GE	
Martin Mart	WATER SUPPLY EXPL	
A CONTRACTOR	ENVIRONMENTAL IMPACT	ASSESSMENT
The second second second		
C. Sell Ant.		
AT THE DE D	Sita Satti	<b>η</b> σ
ALL ALL THE REAL	Site Settir	יא
- COL		
and the state of the	DATE: 20/12/2023 PROJ Nº: 212918	FIGURE: <b>3.1</b>
A PARTICIPAL PROPERTY	DRAWN BY: SF CHECKED BY: CD	APPROVED: CD
The Transfer	NOTES:	·
Contraction of the second		
	0 5 10 20 m	
Ten and and	SCALE:1:640 Coordinate System: NAD 19	83 UTM Zone 19N
	e 11 X 17 Units: Meter	



#### 3.1.2 Surface Water

The Project is located south of the Magaguadavic River, whose watershed covers 1,806 square kilometres (km²) (NBDELG, 2007). The river flows 129 kilometres (km) in total, meeting the head of tide at the Magaguadavic Basin dam. The area is located on the tidal stretch of the river below the dam, which is hydrologically separate from the majority of the watershed.

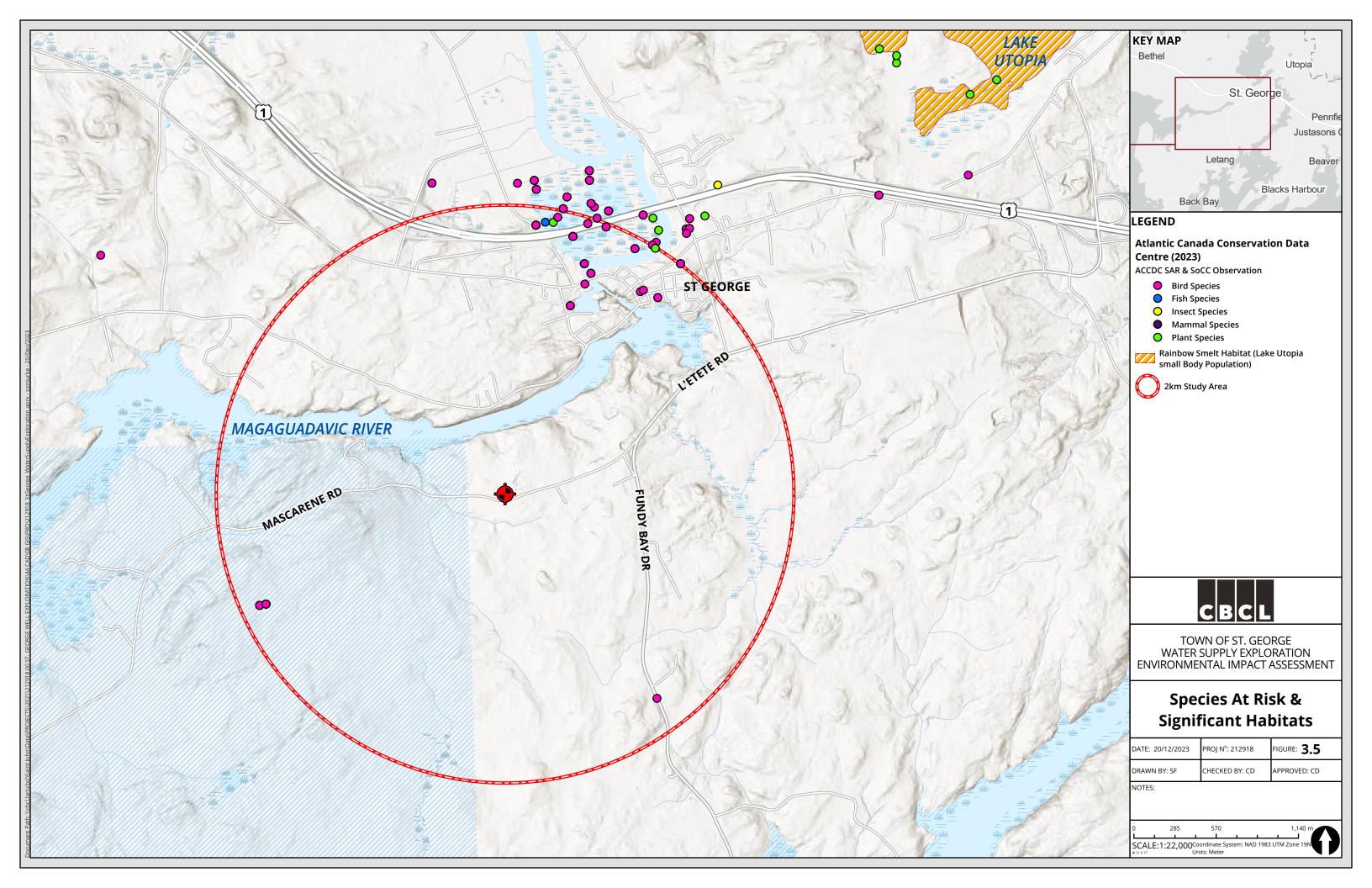
The Site is located more than 30 m from provincially mapped and field-identified waterbodies. While there are no mapped wetlands in the vicinity, a small wetland (0.12 ha) was delineated approximately 44 m east of the Site (Figure 3.3). The Wetland Delineation Data Form for this wetland (identified as WL 4) and a photolog is attached as Appendix A.

Another unmapped wetland was identified approximately 300 m northeast on the adjacent PID. A drainage channel connects the wetland to a provincially mapped tributary that flows to the Magaguadavic River.

The Site is upland of the Magaguadavic River, approximately 435 m south of flood zone extent (Figure 3.4). Flood zone mapping is based on that available by the province for 1:100 year events, based on data collected in 2010.

#### 3.1.3 Groundwater

Mandatory reporting for water quality in newly drilled or redrilled domestic water wells in NB was introduced under the Potable Water Regulation of the *Clean Water Act* in 1994. NBDELG maintains a database of the results of these analyses that may be viewed using the Online Well Log System (OWLS). CBCL completed a search for a 1.0 km radius of the Project property (PID 15197007), which contained 27 drilled well records (Appendix B). Of these, four are exploratory wells and one is used for industrial purposes; the remainder being domestic water wells. Depths for the water-bearing fraction zone ranged from 6.71 to 250.25 m with estimated safe yields of 0 to 250.25 litres per minute (55 igpm). Drilling logs reported matrices of gravel, granite, till, slate, clay, stone, sandstone, and mud.


Of the 27 drill records in the OWLs data, only four had registered water quality analysis reports. Water quality assessment using the NB Drinking Water Guidelines (NB Department of Health, 2023) indicates that three of the four samples analysed reported at least one parameter in exceedance of a maximum acceptable concentration (MAC) value: one for arsenic, one for lead, and one for manganese. One sample exceeded the aesthetic objective (AO) for iron as well as the operational guideline (OG) for turbidity. The water hardness reported in the four samples ranged from 81.7 milligrams per litre (mg/L) to 159.4 mg/L, which is considered hard water (Health Canada, 1995).







Contraction of the local distance	KEY MAP		L-1
	Bethel		
	Dethei		Utopia
A SARAN B			عراسما م
L LE CENTRA		St. Geor	ge
the second second			
and the state of the state			Pennfie
a the Weber			Justasons (
A CARLENCE	E .		2
Mar All		Letang	Beaver
		T 1 2 2 4	
La la Talans			acks Harbour
the state	Back	Bay	
The Real Property of the	LEGEND		
A	•		
STATE STATE	Exploration	tory Well Site	
all and a second	T		
General Barriel	2010 Flood Ext	tent	
1 is the line	1 in 100	yr Flood Exten	t 🛛
ALL STREET			
ARTA BRAKEN			
and the second			
AND AND AND			
0.0192			
2.44			
1992			
A DE LA DE L			
1021 E. 38 P.			
And And			
Add The Party			
De Charles and the second second			
Martin Barrow			
SEASING ALLONG			
and the second second			
A MARCONAL ST			
AN SHELL			
The second second			
Set the set of the set			
A 12 10 10 10 10 10		CBCL	
La state as the	<b>'</b>		•
2000	TOV	VN OF ST. GEO	RGE
10.100.75.75	WATER	SUPPLY EXPLC	RATION
Car Sala and	ENVIRONME	NTAL IMPACT	ASSESSMENT
A CONTRACTOR			
Cal in a state	Pro	vincial Fl	boo
AND			
Martin State		Мар	
and the second		-	I
and the second	DATE: 20/12/2023	PROJ Nº: 212918	FIGURE: <b>3.4</b>
A REAL PROPERTY AND	DRAWN BY: SF	CHECKED BY: CD	APPROVED: CD
E SA CARA			
	NOTES:		
the state of the			
State State 1 as			
States States Bank	0 85	170	340 m
E. Martine	SCALE:1:6,500 Cod	ordinate System: NAD 1983 its: Meter	UTM Zone 19N
	011		4 F



### 3.2 Atmospheric Environment

### 3.2.1 Climate

According to the Conservation Council of NB (CCNB), the province, as well as Canada as a whole, has warmed at more than double the global rate over the last 70 years: by nearly 2°C compared to approximately 1°C globally (CCNB, 2023). Warmer air, holding more moisture, has resulted in an increased incidence of precipitation events greater than 50 mm. NB experienced record-breaking floods in 2018 and 2019 due to above average snowpack and rain.

Flood events have become an issue in Eastern Charlotte, namely in the lower Magaguadavic watershed where the current St. George municipal water production wells are located. In December 2010, precipitation was recorded at 185 mm in some areas, causing severe flooding throughout the lower Magaguadavic watershed (Eastern Charlotte Waterways (ECW), 2014). The stormwater covered nearly 100 roads, resulting in dozens of people needing rescue from their homes. The 2010 flood event compromised St. George municipal Wells 2 and 3. In response, the ECW developed Action 1.8 in their Magaguadavic River Watershed Management Plan—Flood-proof vulnerable water wells (ECW, 2014). The Action calls for changes to infrastructure to assure safe drinking water in future flood events.

### 3.2.2 Air Quality

According to the latest New Brunswick Air Quality Monitoring Results report for the year 2021 (NBDELG, 2022), there were very few exceedances of either provincial or federal guidelines recorded from monitoring stations in NB operated by the Air Quality Branch of the NBDELG—none of which were recorded at the nearest monitoring station (St. Andrews), located approximately 18 km southwest of the Project, on the opposite side of Passamaquoddy Bay.

### 3.2.3 Acoustic Environment

The Project property has an acoustic environment typical to that of other rural areas in NB. The Site is proximate to the Mascarene Road which, serving as a primary route to the L'Etete Road and urban centre of St. George, is a relatively busy rural road. Field technicians noted that traffic from the road, as well as vessel traffic on the Magaguadavic River, contributed to noise heard at the Site. Trucking activity was also heard from the area of the WWTP and True North Salmon.



### 3.3 Biological Environment

### 3.3.1 Vegetation

The Site is in a disturbed area near residential, industrial, and community infrastructure. Land cover in the property includes mature coniferous and deciduous forests, young forest, and wetlands. Provincial forestry layer mapping (SNB, 2023) indicates that the forested area around the Site is predominantly Balsam Fir (*Abies balsamea*) (Figure 3.3).

CBCL requested a standard data report from the Atlantic Canada Conservation Data Centre (AC CDC) for the Project. The report (Appendix C) provides observations of Species at Risk (SAR) and Species of Conservation Concern (SoCC) in the surrounding area. Only one SAR was recorded, located approximately 2.4 km from the Study Area centre. In total, 14 SoCC are listed within the report. Their conservation status and likelihood of disturbance as a result of the Project, based on habitat preference, are outlined in Table 3.1. While the Site habitat supports the possibility for some of these rare plant species, there were no vegetation SAR or SoCC identified at during field studies completed by Boreal on June 16, 2023.

### 3.3.2 Wildlife and Migratory Birds

The AC CDC report lists observations for 42 faunal SoCC within its 5 km Study Area. Those with federal and/or provincial designations, including those listed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), are presented with habitat preferences in Table 3.2. Bat species or hibernacula are not known to occur within the Study Area, although there have been reports of Snapping Turtle (*Chelydra serpentina*). There are no known protected, managed, or environmentally significant areas (ESAs) in or near the Project. The results of the AC CDC search, focussed to a 2 km radius for clarity, are illustrated in Figure 3.5, where there have been no reported sightings of a SAR; most SoCC having been reported in the urban centre of St. George.

The Second Atlas of Breeding Birds of the Maritime Provinces (MBBA) was consulted to identify migratory birds that may use the Project Area for nesting (Stewart et al., 2015). The Project Area lies within the Letang Estuary Region of the Atlas, Square 19FK79, where 96 avian species were recorded (Appendix D). With the exception of the Least Bittern (*Ixobrychus exilis*), the MBBA classifies all SoCC listed in Table 3.2 as being possible breeders within the Letang Estuary region. Given the surrounding habitat, the SAR bird having the highest likelihood for presence in proximity to Project activities is the Bobolink (*Dolichonyx oryzivorus*). No SAR or SoCC were identified near the Site during field studies completed by Boreal on June 16, 2023. A Bald Eagle (*Haliaeetus leucocephalus*) was observed flying overhead but nests were not observed.



Common Name / Scientific Name Butternut Juglans cinerea	Conservation Status COSEWIC: Endangered SARA: Endangered NB SARA: Endangered	Habitat Preference* Open areas, edges of floodplains, stream shores, rich upland (NatureTrust NB, 2023)	Likelihood of Onsite Occurrence Possible
Cardinal Flower <i>Lobelia cardinalis</i>	AC CDC: S1 AC CDC: S3S4	Wet ditches, ravines, depressions, woodland edges, stream banks, roadsides, meadows, swamps, near lakes and ponds, bogs (Moore et al., 2021)	Possible
Clinton's Clubrush Trichophorum clintonii	AC CDC: S3S4	Ledges, gravel, open woods, shores of wetlands (Maine Department of Agriculture Conservation & Forestry, 2021)	Possible
Eastern Skunk Cabbage Symplocarpus foetidus	AC CDC: S3	Moist habitats, including marshy deciduous woods, wet thickets, swamps, near springs, stream edges and wetlands and bogs (University of Wisconsin, 2023)	Unlikely
Large Purple Fringed Orchid Platanthera grandiflora	AC CDC: S3	Alder thickets, swamp woods, wet meadows, shrub border of bogs (Ohio Department of Natural Resources, 2020)	Unlikely
Long-root Smartweed Persicaria amphibia var. emersa	AC CDC: S2	Wet shorelines, ditches (University of British Columbia, 2020)	Unlikely
Marsh Mermaidweed Proserpinaca palustris	AC CDC: S3	Bogs, marshes, swamps, stream edges, lakeshores (Mersey Tobeatic Research Institute, 2011)	Unlikely

#### Table 3.1 AC CDC Reported SoCC Plants Within the 5 km Study Area

Common Name / Scientific Name	Conservation Status	Habitat Preference*	Likelihood of Onsite Occurrence
New England Violet <i>Viola novae-angliae</i>	AC CDC: S2S3	Gravels, wet rocks, shores of rivers or lakes, meadows (Maine Department of Agriculture, Conservation & Forestry, 2021)	Possible
Northern Arrow-Wood <i>Viburnum recognitum</i> var. <i>lucidum</i>	AC CDC: S2	Open woods, forest edges, streambanks (United States Department of Agriculture, 2017)	Possible
Roseroot <i>Rhodiola rosea</i>	AC CDC: S3	Cliffs, ridges or ledges, slopes, seaside cliffs, imperfectly drained moist areas (Aiken et al., 2007)	Unlikely
Small-spike False-nettle Boehmeria cylindrica	AC CDC: S3S4	Alluvial or moist, deciduous woods, swamps, bogs, marshes, wet meadows, ditches (eFloras, 2023)	Unlikely
Spotted Coralroot Corallorhiza maculata	AC CDC: S3S4	Forests where there is little other herbaceous cover (United States Department of Agriculture, 2023)	Unlikely
Toothed Flatsedge <i>Cyperus dentatus</i>	AC CDC: S3S4	Sandy and gravelly lakeshores (Mersey Tobeatic Research Institute, 2011)	Unlikely
Vasey Rush Juncus vaseyi	AC CDC: S3	Damp shores, thickets (Maine Department of Agriculture, Conservation & Forestry, 2021)	Unlikely

Common Name	Conservation Status	Habitat Preference*	Likelihood of Occurrence at Sites
Atlantic Salmon – Outer Bay of Fundy population <i>Salmo salar</i> pop. 7	COSEWIC: Endangered NB SARA: Endangered AC CDC: SNR	Breeds in rivers or streams that are generally clear, cool, and well-oxygenated with bottom substrates of gravel, cobble, and boulder.	Nil
Bald Eagle** <i>Haliaeetus leucocephalus</i>	COSEWIC: Not at Risk NB SARA: Endangered AC CDC: S4	Nests in forested areas located along large lakes and rivers, generally using tall conifers that extend above the canopy (Buehler, 2022).	Unlikely
Bank Swallow <i>Riparia riparia</i>	COSEWIC: Threatened SARA: Threatened AC CDC: S2B	Nests in burrows in natural and human-made sites with vertical banks such as riverbanks, lake and ocean bluffs, aggregate pits, road cuts, and soil stockpiles. Often nests close to aerial foraging habitat, such as grasslands, meadows, pastures, and agricultural cropland.	Unlikely
Barn Swallow <i>Hirundo rustica</i>	COSEWIC: Special Concern SARA: Threatened NB SARA: Threatened AC CDC: S2B	Nests in open areas with human-made structures such as barns, stables, houses, sheds, and bridges. Often nests near aerial foraging habitat such as grasslands, agricultural fields, shorelines, woodland clearings, wetlands, sand dunes, tundra, and roads.	Unlikely
Bobolink <i>Dolichonyx oryzivorus</i>	COSEWIC: Special Concern SARA: Threatened NB SARA: Threatened AC CDC: S3B	Nests in hayfields and pastures; sometimes wet prairie, grassy peatlands, alvars, abandoned fields dominated by tall grasses, and remnants of native prairie as well as sedge and grass meadows of marshes and bogs.	Possible
Canada Warbler <i>Cardellina canadensis</i>	COSEWIC: Special Concern SARA: Threatened NB SARA: Threatened AC CDC: S3S4B	Breeds in wet, mixed deciduous-coniferous forests with a well-developed shrub layer; sometimes riparian shrub forest on slopes and ravines as well as disturbed areas.	Unlikely

#### Table 3.2 AC CDC Report SoCC Fauna Within the 5 km Study Area

Common Name	Conservation Status	Habitat Preference*	Likelihood of Occurrence at Sites
Chimney Swift <i>Chaetura pelagica</i>	COSEWIC: Threatened SARA: Threatened NB SARA: Threatened AC CDC: S2S3B, S2M	Nests and roosts where chimneys and similar human-made structures are available. Have historically used large hollow trees for nesting and roosting.	Unlikely
Common Nighthawk <i>Chaetura pelagica</i>	COSEWIC: Special Concern SARA: Special Concern (change in 2023) NB SARA: Threatened AC CDC: S3B, S4M	Breeds in open / partially open habitats including forest openings and post-fire habitats, prairies, and bogs as well as rocky or sandy natural habitats or disturbed areas.	Unlikely
Eastern Cougar <i>Puma concolor pop. 1</i>	COSEWIC: Data Deficient NB SARA: Endangered AC CDC: SU***	Large forests with minimal human disturbance (NBDNRED, n.d.).	Nil
Eastern Wood-Pewee <i>Contopus virens</i>	COSEWIC: Special Concern SARA: Special Concern NB SARA: Special Concern AC CDC: S3B	Breeds in forest clearings and edges of deciduous and mixed forests; most abundant in intermediate- aged and mature stands with little understory vegetation.	Unlikely
Least Bittern <i>Ixobrychus exilis</i>	COSEWIC: Threatened SARA: Threatened NB SARA: Threatened AC CDC: S1S2B	Breeds in marshes dominated by emergent vegetation and surrounded by areas of clear open water for foraging.	Unlikely
Snapping Turtle** Chelydra serpentina	COSEWIC: Special Concern SARA: Special Concern NB SARA: Special Concern AC CDC: S3	Shallow freshwater habitats, nesting on sand or gravel banks.	Nil

*Species at Risk Public Registry, 2023, unless otherwise specified

**A location-sensitive species due to the concern of exploitation. This species was recorded within the 5 km Study Area, but the exact location is not provided

***Species is unrankable due to insufficient data

### 3.4 Socio-Economic and Cultural Environment 3.4.1 Land Use

The Project property is privately owned land in a rural area of Eastern Charlotte. Infrastructure in the immediate area includes residences, small businesses, the True North Salmon facility, and the WWTP. The proposed Site is in an unused field area near the road and some residences. There are no known reports of groundwater contamination on the properties directly adjacent to the Site.

### 3.4.2 Municipal Services and Infrastructure

On January 1, 2023, the Town of St. George was amalgamated with the Village of Blacks Harbour and other unincorporated contiguous areas to form the Municipality of Eastern Charlotte (Government of NB, 2022). The communities of Blacks Harbour and St. George each manage their own municipal services infrastructure, including water and sanitary sewer utilities (Municipality of Eastern Charlotte, 2023).

St. George municipal water is currently sourced from five production wells: Well 2, Well 3, Well 4, Well 5, and Well 6. The former Well 1 has been decommissioned. A section of the St. George municipal watermain follows L'Etete Road outward from the urban centre, along its transition to Mascarene Road and ending just 300 m east of the Site (Figure 3.6).

### 3.4.3 Archaeological and Heritage Resources

Archaeological predictive modeling was requested for the Project through the NB Department of Tourism, Heritage, and Culture (June 2023); the results are presented in Appendix E. The property is not rated as having archaeological potential and there are no significant features identified in the area.





# 4 Potential Environmental Impacts and Mitigation

### 4.1 Method of Assessment

The EIA is based on the requirements of the EIA Regulation (87-83) of the NB *Clean Environment Act*. The scope of the Project includes the Project components and associated activities outlined in Chapter 2 that define the Project as an Undertaking under Schedule A of the Regulation. This EIA Registration document for the Project has been designed to follow the general report layout as outlined in the *Guide to Environmental Impact Assessment in New Brunswick* (NBDELG, 2018).

### 4.1.1 Identifying Issues and Selecting Valued Components

A valued component (VC) refers to a biophysical, socio-economic, or cultural component of the environment that is considered important to regulators or community. Based on the scope and location of the Project, the following information was considered to identify issues and select VCs that could be affected by the Project:

- Understanding of the characteristics of the Project and anticipated work methods
- Consultation with regulatory authorities
- Community and stakeholder concerns about the Project
- Indigenous rights and resource use
- Knowledge of the environment
- A Guide to Environmental Impact Assessment in New Brunswick (NBDELG, 2018)
- Characteristics of potential impacts and environmental effects of the Project
- Professional judgement and lessons learned from similar projects

### 4.1.2 Establishing Boundaries

Temporal and spatial boundaries refer to the time periods and geographic extent in which a project may interact with (or affect) a VC. Boundaries selected for each VC vary based on several considerations:

- Geographic range of the VC
- Zone of influence of the Project on the VC



- Timing and schedule of Project stages
- Known ranges and natural variations of each VC
- Availability and quality of data and information

### 4.1.3 Existing Environment

Existing baseline conditions and characteristics of the Project area were highlighted in Chapter 3. Descriptions of the physical and natural features as well as the socio-economic environment provide context for the assessment of effects by providing an understanding of the receiving environment. The approach to describing the existing (baseline) environment used desktop studies and reporting from field activities completed in June 2023.

### 4.1.4 Evaluation of Environmental Effects

A pathways-of-effects approach is used to describe the mechanisms by which project activities or components may lead to environmental effects on a VC. Potential interactions are identified as positive or negative, depending on whether the interaction will be beneficial or adverse for the respective VC. In some cases, there is potential for both positive and negative interactions to occur. A more detailed assessment of the potential adverse environmental effects has been presented herein.

### 4.1.5 Identification of Mitigation Strategies

The identification of potential environmental effects is used to develop mitigation measures to avoid or reduce adverse project effects on the VCs. Mitigation measures must be technically and economically feasible and are considered where there is a reasonable expectation that they will be effective.

### 4.2 Identification of Potential Project-Environment Impacts and Mitigation

The potential interactions between the Project components and VCs are presented in Table 4.1. Potential interactions that could lead to measurable adverse environmental effects have been identified for the following VCs:

- Geology and Soils
- Surface Water
- Groundwater
- Acoustic Environment
- Vegetation
- Wildlife and Migratory Birds
- Land Use
- Archaeological and Heritage Resources



		Environmental Components						
	Physical and Natural Features					Socio- Economic Environment		
Project Activities		Surface Water	Groundwater	Acoustic Environment	Vegetation	Wildlife and Migratory Birds	Land Use	Archaeological and Heritage Resources
Site Access and Drilling								
Use of existing access roads and travel over ground vegetation	Ν			Ν	Ν	N	Ν	Ν
Hydrogeological Drilling	Ν		Ν	Ν	Ν	N	Ν	N
Well Testing and Installation								
Pump tests	Ν	Ν	Ν	Ν	Ν	Ν	Ν	
Installation of well(s)	Ν		Ν	Ν	Ν	Ν	Ν	Ν
Well Decommissioning								
Backfill and Plugging		Ν	Ν	Ν	Ν	Ν	Ν	Ν
Accidents and Malfunctions								
Spills	Ν	Ν	Ν		Ν	Ν	Ν	Ν

#### Table 4.1 Potential Interactions Between Project Activities and the Environment

Legend: [Blank] = No Effect, [N]= Potential Negative Environmental Effect

# 4.3 Potential Effects, Mitigation, and Residual Environmental Effects

Potential environmental effects associated with Project activities and mitigation are outlined in the subsections that follow. Mitigation considers temporal or spatial procedures or changes that can be incorporated into the Project or means by which Project activities can limit or correct project-related effects on a particular VC.

### 4.3.1 Geology and Soils

#### 4.3.1.1 Pathway

Well drilling and decommissioning activities can disrupt soils and geological integrity through compaction and fracture. It can also create the potential for future ground subsidence. Water discharged during step tests could cause erosion.



### 4.3.1.2 Impact

The footprint for use of mobile equipment and drilling diameter on Site will be isolated to the immediate area, but subsidence at the borehole location can occur long-term.

### 4.3.1.3 Mitigation

- Vehicles will move slowly onsite, using wide wheel bases or tracks.
- Repairs to access roads or groundcover will be completed if necessary.
- Boreholes and decommissioned wells will be back-filled and plugged using appropriate soil materials in accordance with provincial legislation.
- Should groundwater be discharged directly over surrounding land surfaces, a diffuser will be used to disperse water as a spray over groundcover to prevent ponding or creation of drainage channels.

# 4.3.2 Surface Water

### 4.3.2.1 Pathway

Discharged water during pump tests may disturb surface soils, possibly leading to erosion, suspended solids, and drainage channels. Water discharged directly to existing drainage channels / ditches may be sediment laden, resulting in a change in water quality and sediment deposition.

### 4.3.2.2 Impact

Pumped discharges will be temporary, isolated to step-test events.

### 4.3.2.3 Mitigation

- Total suspended solids (TSS) will be monitored during step tests if the discharge is directed toward a surface water feature or drainage ditch.
- Should groundwater be discharged directly over surrounding land surfaces, a diffuser will be used to disperse water as a spray over groundcover to prevent ponding or creation of drainage channels.

# 4.3.3 Groundwater

### 4.3.3.1 Pathway

In rare cases, drilling to the water table and/or well development can introduce contaminants. In addition, water withdrawal may affect groundwater quantity in nearby domestic wells. If the well is not properly sealed, surface water intrusion may occur.

### 4.3.3.2 Impact

Contamination at an isolated point will not impact the larger body of aquifer around it. Effects would be mild and temporary.



### 4.3.3.3 Mitigation

- The borehole location will meet provincially-required setback distances.
- Pumped water will be collected during step tests and after well development to assess drinking water quality.
- Step tests will be monitored to ensure withdrawal rates stay within safe yields.
- The subcontracted driller will adhere to the measures outlined in the NB Potable Water Regulation and Guidelines for the Decommissioning (Abandonment) of Groundwater Wells and Boreholes (Government of NB, 2021).

# 4.3.4 Acoustic Environment

### 4.3.4.1 Pathway

Equipment movement to and from the target drill location, and drilling, will produce noise at the Site. Drill rigs emit a noise level similar to that of an excavator.

### 4.3.4.2 Impact

Noise will be temporary, isolated to drilling events (geotechnical and well development).

### 4.3.4.3 Mitigation

- Idling of machinery and vehicles will be avoided, whenever possible.
- Heavy machinery and vehicles will be properly muffled and regularly checked to target the lowest possible operational noise emission levels.
- Drilling will be limited to 7 am to 9 pm daily.

# 4.3.5 Vegetation

### 4.3.5.1 Pathway

Project construction activities can disrupt groundcover vegetation (including rare plants, if present) through compaction and tearing, as well as smothering from ejected soils during borehole drilling. Water discharged during step tests could cause erosion.

### 4.3.5.2 Impact

Noise will be temporary, isolated to drilling events (geotechnical and well development).

### 4.3.5.3 Mitigation

- Use existing access roads to the extent possible.
- Vehicles will move slowly on site, using wide wheelbases or tracks.
- Should groundwater be discharged directly over surrounding land surfaces, a diffuser will be used to disperse water as a spray over groundcover to prevent ponding or creation of drainage channels.



# 4.3.6 Wildlife and Migratory Birds

### 4.3.6.1 Pathway

Project activities can disrupt wildlife, migratory birds, and nests within the immediate area through equipment movement, human presence, and noise. Water discharged during step tests could cause water drainage that disrupts ground nests.

### 4.3.6.2 Impact

Disruption will be temporary and isolated to the immediate area of the property.

### 4.3.6.3 Mitigation

- Conduct activities outside the migratory bird regional nesting period of mid-April to late August (ECCC, 2023).
- If conducting Project activities outside the regional nesting period is unavoidable, implement the following to identify the presence of migratory and SAR birds:
  - Pre-construction point counts and nest surveys by a qualified and skilled biologist or technician, using appropriate methodology.
  - If there is a period that occurs between the pre-clearing survey and the clearing activities, an additional pre-clearing survey would be required to determine if other birds moved into the area and initiated nesting.
  - If nesting birds are present, develop a management plan with measures to mitigate effects to birds. These measures should include avoiding or minimizing disturbances to birds, their nests, and eggs.
- Limit excessive noise and dust.
- Limit vehicle speed on site.
- Properly store and dispose of waste materials.
- Keep Sites clean of food scraps.
- Do not harass wildlife.
- Should groundwater be discharged directly over surrounding land surfaces, a diffuser will be used to disperse water as a spray over groundcover to prevent ponding or creation of drainage channels.

# 4.3.7 Land Use

### 4.3.7.1 Pathway

Presence of a water well exerts limits on the types of land use for a property, such as agricultural use, and requires that set-backs be established prior to construction of new sewage fields, roads, and other infrastructure.

### 4.3.7.2 Impact

The set-back area will be limited to those stipulated by the province and will be removed after decommissioning.



### 4.3.7.3 Mitigation

- Ensure that the well is constructed outside the set-backs of current infrastructure as stipulated by provincial regulation.
- Ensure that the property owner is aware of implications to having a well present at that location on their property and agrees to the installation.
- Restore property to full potential as best possible during well decommissioning.

# 4.3.8 Archaeological and Heritage Resources

### 4.3.8.1 Pathway

Borehole drilling may uncover, damage, or destroy archaeological or heritage artifacts.

### 4.3.8.2 Impact

Adverse effects will be isolated to the immediate location of the boreholes, or possibly in vegetated areas that are traversed to reach the borehole.

### 4.3.8.3 Mitigation

- Results of Indigenous engagement will be considered.
- Should the presence of artifacts be observed during construction activities, the provincial Archaeological Services division will be contacted.

# 4.4 Accidents and Malfunctions

Accidental events and malfunctions are unplanned events with a low probability for occurrence. A hazardous materials spill has the potential to cause significant adverse environmental effects depending on the size and location of the spill. A certified driller with established safety standards will be subcontracted. Transportation of the drill rig will occur via flatbed; only the drill rig itself entering the property. The drill rig is a small vehicle equipped with either tracks or broad tires for traversing rough terrain. There is therefore a low probability for occurrence of accidental release and the magnitude will be limited to the volume of petroleum, oil, and lubricant (POL) used in the onsite equipment.

# 4.5 Effects of the Environment on the Project4.5.1 Flooding

As discussed in Section 3.2, flooding within the lower Magaguadavic watershed has become more frequent as a result of climate change and has already threatened the viability of two production wells, #2 and #3, sourced for the St. George municipal water supply.



The proposed Site for the hydrogeological exploratory well is located at a higher elevation than that of the five current production wells (Table 4.2) and a significantly farther set-back from the provincial flood zone (Figure 4.1). The Site is located 435 m from the 1:100 year Flood Hazard Mapping.

Well ID	Elevation (m)					
2	22.8					
3	21.2					
4	24.2					
5	24.3					
6	23.2					
Exploratory Well Site	32.2					

### Table 4.2 Production and Exploratory Well Elevations

Note: former production Well 1 has been decommissioned

# 4.5.2 Extreme Weather

Extreme summer and autumn weather in NB typically occurs in the form of severe thunderstorms, high winds, and tropical storms. Intense rain and winds during such events could result in the dispersion of soils removed from boreholes and additive effects of groundwater discharged during step tests. To protect the immediate environment, equipment, and onsite personnel, Project activities should be paused or rescheduled to avoid working under such conditions. Should the well be developed and commissioned, proper sealing and maintenance will be required to prevent surface water intrusion during operations.





ALL ALL	KEY MAP Bethel		
			Utopia
		St. Geor	ge
DAKENIZODIA			Pennfie
LAKE UTOPIA			Justasons (
		Letang	
		Letang	Beaver
	Deal		acks Harbour
	Back	Бау	
At A	<u> </u>		
	Product	ion Well	
and all	🔶 Explora	tory Well Site	
and the second s	2010 Flood Ex	tent	
Tell Comments	1 in 100	yr Flood Exten	t
All water a			
The state of			
11-15			
in the second second			
CAT Y NO			
and the second		CBCL	
1.		CDCL	
The second second		VN OF ST. GEO	RGE
	ENVIRONME	SUPPLY EXPLC	ASSESSMENT
	Vul	nerabilit	v of
		ndwater	
		o Floodin	
	DATE: 20/12/2023	PROJ Nº: 212918	FIGURE: 4.1
	DRAWN BY: SF	CHECKED BY: CD	APPROVED: CD
	NOTES:	I	<u> </u>
Allow States			
18 Street	0 165	330	660 m
and the second of	SCALE:1:12,500 ^{Co}	ordinate System: NAD 1983 its: Meter	B UTM Zone 19N

# 5 Public and First Nations Involvement

# 5.1 Public Engagement

This EIA document will be available online for review by the general public on the NBDELG website Projects Under Determination Review:

https://www2.gnb.ca/content/gnb/en/departments/elg/environment/content/environment al_impactassessment/registrations.html

Through consultation with NBDELG, a best approach for providing notice to landowners and stakeholders will be determined. Hard copies of the Registration document will be provided to individuals upon request.

# 5.2 Indigenous Engagement

First Nations organisations will be notified of the Project as per the New Brunswick Duty to Consult Policy. Prior to Registration, Public Notices will be distributed to contacts provided by the NB Aboriginal Affairs Department.



# 6 Conclusion

This EIA has been prepared on behalf of the Municipality of Eastern Charlotte to complete exploratory hydrogeological drilling. The assessment presented in this report has considered potential effects on the environment resulting from the Project activities described in Chapter 2. Desktop study and field work was used to examine components of the existing environment in the Project Area, the results for which are presented in Chapter 3. The VCs identified in Chapter 4 through issues scoping and pathway analysis where potential effects may be a concern include:

- Geology and Soils
- Surface Water
- Groundwater
- Acoustic Environment
- Vegetation
- Wildlife and Migratory Birds
- Land Use
- Archaeological and Heritage Resources

Although one wetland was field identified near the targeted borehole Site, it is greater than 30 m from the Project activities and will be avoided. Hydrogeological exploration is performed to mitigate impacts to geology, surface water, and groundwater resources. There were no SAR or SoCC identified during field studies in June 2023 and there are no archaeological features identified in predictive modeling.

Given the limited scope of the Project, few residual environmental effects have been identified. Should the Project successfully identify a groundwater source that can supplement the St. George municipal water system, the community will have the resources to meet increasing demand for safe, potable water and to allow community growth. The drilling area is well beyond the provincial flood zone, allowing the community services to adapt to climate change. The assessment has indicated that no significant adverse residual environmental effects on the VCs identified are likely.



# 7 References

- Agriculture and Agri-Food Canada. 2023. Canadian Soil Information Service. Available online: https://sis.agr.gc.ca/cansis/index.html
- Aiken, S.G., M.J. Dallwitz, L.L. Consaul, C.L. McJannet, R.L. Boles, G.W. Argus, J.M. Gillett, P.J. Scott, R. Elven, M.C. LeBlanc, L.J. Gillespie, A.K. Brysting, H. Solstad, and J.G. Harris. 2007. *Flora of the Canadian Arctic Archipelago*. Descriptions, Illustrations, Identification, and Information Retrieval. NRC Research Press, National Research Council of Canada, Ottawa. Available online: https://nature.ca/aaflora/data/www/crsero.htm
- Atlantic Canada Conservation Data Centre (AC CDC). 2023. Data Request 7663: Caithness, NB. May 3, 2023.
- Buehler, D.A. 2022. Bald Eagle (*Haliaeetus leucocephalus*), version 2.0. *Birds of the World* (P.G. Rodewald and S.G. Mlodinow, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. Available online: https://doi.org/10.2173/bow.baleag.02
- Conservation Council of New Brunswick (CCNB). 2023. How and Why Climate Change is Affecting NB. Available online: https://www.conservationcouncil.ca/how-and-whyclimate-change-is-affecting-new-brunswick/
- Environment and Climate Change Canada (ECCC). 2023. General Nesting Periods of Migratory Birds: Nesting Zone C3 and C4. Available online: https://www.canada.ca/en/environment-climate-change/services/avoiding-harmmigratory-birds/general-nesting-periods/nesting-periods.html#ZoneC
- Eastern Charlotte Waterways Inc. (ECW). 2014. *Magaguadavic River Watershed Management Plan*. Available online: https://static1.squarespace.com/static/58d16e7b6b8f5bad3a9b65ad/t/5d3b3b8f7ee 7d00001f2bf96/1564163788123/Magaguadavic-River-Watershed-
  - Management.compressed.pdf
- eFloras. *Flora of North America*. 2023. *Boehmeria cylindrica*. FNA Volume 3. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=233500268



- Government of NB. 2022. Local Governments Establishment Regulation *Local Governance Act*, Government of New Brunswick, O.C. 2022-228. Available online: https://laws.gnb.ca/en/showfulldoc/cr/2022-50
- Government of NB. 2021. *Guidelines for the Decommissioning (Abandonment) of Groundwater Wells and Boreholes*. Version 2.1, May 2021. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Water-Eau/DecommissioningWaterWells.pdf
- Health Canada. 1995. *Guidelines for Canadian Drinking Water Quality Technical Document: Hardness*. February 1979. Reprinted 1995. Available online: https://www.canada.ca/content/dam/canada/health-canada/migration/healthycanadians/publications/healthy-living-vie-saine/water-hardness-dureteeau/alt/water-hardness-durete-eau-eng.pdf
- Maine Department of Agriculture, Conservation & Forestry. 2021. Maine Rare Plant List and Rare Plant Fact Sheets. Maine Natural Areas Program. Available online: https://www.maine.gov/dacf/mnap/features/rare_plants/plantlist.htm
- Mersey Tobeatic Research Institute. 2011. *Atlantic Coastal Plain Flora in Nova Scotia: Identification & Information Guide*. ISBN: 978-0-9811861-1-5. Available online: https://www.speciesatrisk.ca/coastalplainflora/guide/download/ACPF%20Guide.pdf
- Moore, Kimberly A., Luci E. Fisher, Carl J. Della Torre III, and Lyn A. Gettys. *Native Aquatic and Wetlands Plants: Cardinal Flower, Lobelia cardinalis*. University of Florida. September 12, 2021. Available online: https://edis.ifas.ufl.edu/publication/AG402
- Municipality of Eastern Charlotte. 2023. St. George Municipal Infrastructure. Water & Sewer Maps, ArcGIS. Available online: https://easterncharlotte.ca/residents/water-utility/
- New Brunswick Department of Environment and Local Government (NBDELG). 2023. Online Well Log System. Available online: https://www.elgegl.gnb.ca/0375-0001/
- NBDELG. 2022. *Air Quality Monitoring Results—2021*. Environmental Reporting Series 2022. ISBN 978-1-4605-3339-0. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Air-Lair/AirQuality-QualiteDeLair/air-quality-monitoring-results-2021.pdf
- NBDELG. 2021. Guidelines for the Decommissioning (abandonment) of Groundwater Wells and Boreholes. Version 2.1, May 2021. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Water-Eau/DecommissioningWaterWells.pdf



- NBDELG. 2018. A Guide to Environmental Impact Assessment in New Brunswick. January 2018. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/EIA-EIE/GuideEnvironmentalImpactAssessment.pdf
- NBDELG. 2007. New Brunswick Watersheds: Magaguadavic River. Environmental Reporting Series 2007. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/Water-Eau/Watershed-BassinsHydrographiques/Magaguadavic.pdf

NB Department of Health. 2023. *Drinking Water Guidelines*. Office of the Chief Medical Officer of Health (Public Health). Available online: https://www2.gnb.ca/content/dam/gnb/Departments/hs/pdf/en/HealthyEnvironments/DrinkingWaterGuidelines.pdf

- New Brunswick Department of Natural Resources and Energy Development (NBDNRED). Undated. *Species at Risk in New Brunswick: Cougar*. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/nrrn/pdf/en/Publications/SAR/Cougar.pdf
- NBDNRED. 2007. *Our Landscape Heritage: The Story of Ecological Land Classification in New Brunswick* (2nd ed.). Editor: Vincent F. Zelazny (Ed). ISBN 978-1-55396-203-8. Available online: https://www2.gnb.ca/content/dam/gnb/Departments/nrrn/pdf/en/ForestsCrownLands/ProtectedNaturalAreas/our-landscape-heritage.pdf
- Ohio Department of Natural Resources. 2020. Large Purple Fringed Orchid (*Platanthera grandiflora*). Division of Natural Areas and Preserves. Available online: https://ohiodnr.gov/discover-and-learn/plants-trees/flowering-plants/large-purple-fringed-orchid
- Service New Brunswick (SNB). 2023. GeoNB GIS Service Tool. Available online: http://www.snb.ca/geonb1
- Stewart, R.L.M., K.A. Bredin, A.R. Couturier, A.G. Horn, D. Lepage, S. Markpeace, P.D. Taylor, M.A. Villard, and R.M. Whittam (eds). 2015. Second Atlas of Breeding Birds of the Maritime Provinces. Bird Studies Canada, Environment Canada, Natural History Society of Prince Edward Island, Nature New Brunswick, New Brunswick Department of Natural Resources, Nova Scotia Bird Society, Nova Scotia Department of Natural Resources, and Prince Edward Island Department of Agriculture and Forestry, Sackville, 528 + 29 pp.

United States Department of Agriculture. 2023. *Corallorhiza maculate* – Spotted Coralroot. Available online: https://www.fs.usda.gov/wildflowers/beauty/corallorhiza/corallorhizamaculata.shtml



United States Department of Agriculture. 2017. Plant Guide. Natural Resources Conservation Service. January 1, 2017. Available online: https://plants.usda.gov/DocumentLibrary/plantguide/pdf/pg_videv.pdf

University of British Columbia. 2020. E-Flora BC: Electronic Atlas of the Plants of British Columbia. Lab for Advanced Spatial Analysis, Department of Geography, University of British Columbia, Vancouver.

University of Wisconsin. 2023. Skunk Cabbage, *Symplocarpus foetidus*. Wisconsin Horticulture Division of Extension. Available online: https://hort.extension.wisc.edu/articles/skunk-cabbage-symplocarpusfoetidus/#:~:text=It%20is%20found%20in%20moist,is%20snow%20on%20the%20gr ound.



# APPENDIX A

# Wetland Delineation Data Sheet and Photolog





Photo 1: Project Site



Photo 3: Representative herbaceous vegetation within WL 4 wetland data point.



Photo 2: WL 4 vegetation viewed north east from within wetland.



Photo 4: Standing water at the WL 4 data point.



Photo 5: Upland shrub and herbaceous stratum at WL 4 upland data point.



Photo 7: Upland soil profile for WL 4 upland data point.

Photo 6: Herbaceous stratum in old field for WL 4 upland data point.

### WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

valuation	Municipality	//County: C	harlotte Co	untySampling Date: <u>July 5, 202</u>
eorge		Samplin	g Point: <u>N</u>	/L 4 up
Mitchell Affiliati	ion: <u>Boreal Env</u>	ironmental	Landform	n (hillslope, terrace, etc.): <u>NA</u>
Slope (%):	<u>2</u> La	ıt <u>45.1168</u> 4	13	Long <u>-66.838115</u>
Soil Map Unit	Name/Type:	W	etland Type	e: Are climatic /
Attach site ma	p showing s	sampling	g point lo	ocations, transects, important features, etc
Vec X	No	ls th	e Sampled	l Area
			•	nd? Yes <u>No X</u>
		lf ve	s, optional V	Wetland Site ID:
		.) Rained th	ne day prior	and old field is still saturated.
names of plan	its.			
· · ·		Dominant	Indicator	Dominance Test worksheet:
)	<u>% Cover</u>	Species?	<u>Status</u>	Number of Dominant Species
	,			That Are OBL, FACW, or FAC: <u>3</u> (A)
				Total Number of Dominant
				Species Across All Strata: <u>3</u> (B)
				Percent of Dominant Species
				That Are OBL, FACW, or FAC: 100 (A/B)
)		= Total Co	ver	Prevalence Index worksheet:
		YES	FACW	Total % Cover of: Multiply by:
				OBL species            x 1 =
		·		FACW species_7 x 2 = _14
				FAC species 70 x 3 = <u>210</u>
				FACU species 20 x 4 = 80
				UPL species x 5 =
	2	- Total Co	(OT	Column Totals: <u>97</u> (A) <u>304</u> (B)
)	2		Vel	Prevalence Index = $B/A = 3.13$
,	40	YES	FAC	
	20	YES	FAC	
	10		FAC	Hydrophytic Vegetation Indicators:
	10		FACU	Rapid Test for Hydrophytic Vegetation
	F		FACW	X Dominance Test is >50%
				Drawala a sa la dava la 70.01
			FACU	Prevalence Index is ≤3.0 ¹
	5			Morphological Adaptations ¹ (Provide supporting
	<u>5</u> 5		FACU	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
	<u>5</u> 5		FACU	Morphological Adaptations ¹ (Provide supporting
	5		FACU	<ul> <li>Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)</li> <li>Problematic Hydrophytic Vegetation¹ (Explain)</li> </ul>
	<u>5</u> <u>5</u>		FACU	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
	<u>5</u> <u>5</u>		FACU	<ul> <li>Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)</li> <li>Problematic Hydrophytic Vegetation¹ (Explain)</li> <li>¹Indicators of hydric soil and wetland hydrology must</li> </ul>
)	<u>5</u> <u>5</u> <u>95</u>	= Total Co	FACU	<ul> <li>Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)</li> <li>Problematic Hydrophytic Vegetation¹ (Explain)</li> <li>¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.</li> </ul>
	<u>5</u> <u>5</u> <u>95</u>	= Total Co	FACU	<ul> <li>Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)</li> <li>Problematic Hydrophytic Vegetation¹ (Explain)</li> <li>¹Indicators of hydric soil and wetland hydrology must</li> </ul>
	eorge <u>Mitchell</u> AffiliatiSlope (%):Soil Map Unit for this time of yea r Hydrologyr r Hydrologyr  ttach site ma Yes X Yes Yes dures here or in a s names of plan)	eorge         imitchell       Affiliation: Boreal Env        Slope (%):_2       La        Soil Map Unit Name/Type:       for this time of year? Yes       X         in Hydrology       significantly         r Hydrology       naturally produce         Attach site map showing significantly       significantly         Yes XNo       X         Yes No       X         Yes No       X         dures here or in a separate report         Marcine       % Cover	eorge         Samplin           Mitchell         Affiliation: Boreal Environmental          Slope (%): 2         Lat 45.11684          Soil Map Unit Name/Type: W           for this time of year? Yes            r Hydrology significantly disturbed?           r Hydrology naturally problematic?           Attach site map showing sampling           Yes         No           Solures here or in a separate report.) Rained the with if ye           names of plants.	eorge       Sampling Point: _V         Mitchell       Affiliation: Boreal Environmental       Landform        Slope (%): 2       Lat 45.116843

Adapted from U.S. Army Corps of Engineers form for North Central and North East Region (Version 2.0), and Field Indicators for Identifying Hydric Soils in New England (Version 4.0) Supplement for use in New Brunswick (2019)

#### SOIL

Depth	Matrix		Redox Features					
(cm)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
40 7.5YR/5/3							silty clay	
		·						
¹ Type: C=	Concentration, D=Dep	letion, RM:	Reduced Matrix, C	S=Cover	ed or Coate	ed Sand G	rains. ² Lo	ocation: PL=Pore Lining, M=Matrix.
	il Indicators: ol (A1)							s for Problematic Hydric Soils ³ :
	Epipedon (A2)		Stripped Ma	· · ·				st Prairie Redox (A16)
	Histic (A3)		Dark Surfac	``'	(			Mucky Peat or Peat (S3)
	gen Sulfide (A4)		Polyvalue E		. ,			Manganese Masses (F12)
	ied Layers (A5)		Thin Dark S	•	,			Imont Floodplain Soils (F19)
	ted Below Dark Surface	- (Δ11)	Loamy Gley		. ,			Parent Material (F21)
·	Dark Surface (A12)	5 (711)	Redox Dark	( )				v Shallow Dark Surface (F22)
	Mucky Mineral (S1)		Depleted D		· · ·		Othe	er (Explain in Remarks)
	Gleyed Matrix (S4)		Redox Dep		. ,			
	r Redox (S5)			163310113	(10)			
³ Indicators	of hydrophytic vegetat	ion and we	etland hydrology m	ust be pre	sent, unles	s disturbed	d or problemat	ic.
maioatoro	e Layer (if observed):							
	, , ,							
	,							
Restrictiv Type: I	,						Hydric So	il Present? Yes <u>No</u>

### HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required; of	check all that apply)	Secondary Indicators (minimum of two required)
		Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roo	ts (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (	C6) Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes No	X Depth (cm):	
Water Table Present? Yes <u>No X</u>	Depth (cm):	
Saturation Present? Yes XNo capillary fringe)	Depth (cm): <u>0</u> (includes W	Vetland Hydrology Present? Yes No X
1 3 07		
Describe Recorded Data (stream gauge, monitorir	ng well, aerial photos, previous inspections	), if available:
Remarks: The field is saturated from recent precip	pitation.	

#### WETLAND DELINEATION DATA FORM - NEW BRUNSWICK

Project/Site: <u>St. Geroge Water Supply Evalua</u>	tionMunicipality/Co	unty: Charlotte Co	untySampling Date: July 5, 2023
Applicant/Owner: CBCL / Town of St. George		Sampling Point: <u>W</u>	/L 4 wet
nvestigator(s): Ryan Power and Derrick Mitche			
Local relief (concave, convex, none):			
Datum: <u>WGS 84</u>			
			(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydro	logy significantly dist	urbed? Are "	Normal Circumstances" present? Yes X No
Are Vegetation, Soil, or Hydro	logy naturally problem	matic? (If ne	eded, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach	site map showing sar	npling point lo	cations, transects, important features, etc.
Hydric Soil Present? Ye	es XNo es XNo es XNo		Area           nd?         Yes         XNo            Wetland Site ID:
Remarks: (Explain alternative procedures he	ere or in a separate report.)		
VEGETATION – Use scientific name	•		
Tree Stratum ( Plot size: 15		minant Indicator ecies? Status	Dominance Test worksheet:
1	-/		Number of Dominant Species That Are OBL, FACW, or FAC: <u>2</u> (A)
2			
3.			Total Number of Dominant Species Across All Strata: <u>2</u> (B)
4.			
5			Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)
	= T(	otal Cover	
Sapling/Shrub Stratum (Plot size: 5	)		Prevalence Index worksheet:
1			Total % Cover of: Multiply by:
2	20		OBL species $50$ $x 1 = 50$
3			FACW species 22 x 2 =44
4			FAC species $10$ $x 3 = 30$
5			FACU species         x 4 =           UPL species         x 5 =
6			
Herb Stratum ( Plot size: 1	<u>90</u> = T	otal Cover	Column Totals: <u>82</u> (A) <u>124</u> (B) Prevalence Index = $B/A = 1.5$
1. Veronica scutellata	_/ <u>_15YE</u>	ES OBL	
2. Carex scoparia	<u>101</u>	FAC	
3. Juncus filiformis	<u></u>		Hydrophytic Vegetation Indicators:
4. Scirpus cyperinus	<u></u>	FACW	Rapid Test for Hydrophytic Vegetation
5. Symphyotrichum puniceum		FACW	X Dominance Test is >50%
6. Hypericum mutilum	10	FACW	X Prevalence Index is ≤3.0 ¹
	5	FACW	Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
7. <u>Viola macloskeyi</u>			
8. <u>Eleocharis obtusa</u>	5	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)

Adapted from U.S. Army Corps of Engineers form for North Central and North East Region (Version 2.0), and Field Indicators for Identifying Hydric Soils in New England (Version 4.0) Supplement for use in New Brunswick (2019)

____= Total Cover

82 = Total Cover

¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.

Yes X___ No _____

Hydrophytic

Vegetation

Present?

9. _____

Remarks: (Include photo numbers here or on a separate sheet.)

10.

1. No woody vines

2. ____

Woody Vine Stratum ( Plot size:_____)

SOIL	
------	--

Depth	Matrix		Redox Features					
cm)	<u>Color (moist)</u>	<u>%</u>	Color (moist)	<u>%</u>	<u>Type</u> 1	_Loc ²	Texture	Remarks
Type: C=	Concentration, D=Dep	letion, RM	=Reduced Matrix, (	CS=Cover	ed or Coate	ed Sand G	rains. ² L	ocation: PL=Pore Lining, M=Matrix.
Histos Histic   Black   Hydrog Stratifi Deplet Thick   Sandy Sandy	il Indicators: ol (A1) Epipedon (A2) Histic (A3) gen Sulfide (A4) ied Layers (A5) ted Below Dark Surface Dark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5)	e (A11)	Stripped M     Dark Surfa     Polyvalue B     Thin Dark S     Loamy Gle     Depleted M     Redox Dar     Depleted D     Redox Dep	ces (S7) Below Sur Surface (S yed Matrix latrix (F3) k Surface vark Surface	9) (F2) (F6) ce (F7)		Coa 5 c Iron Pieo Rec Ver	rs for Problematic Hydric Soils ³ : ast Prairie Redox (A16) Mucky Peat or Peat (S3) I-Manganese Masses (F12) dmont Floodplain Soils (F19) d Parent Material (F21) y Shallow Dark Surface (F22) er (Explain in Remarks)
Indicators	of hydrophytic vegetat	ion and w	etland hydrology m	ust be pre	sent, unles	s disturbed	d or problema	tic.
	e Layer (if observed):							
Restrictive								
Туре: <u>М</u>	NA cm): <u>NA</u>							oil Present? Yes X No

### HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required; che	eck all that apply)	Secondary Indicators (minimum of two required)
		Surface Soil Cracks (B6)
X Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C	C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)		FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes X No	Depth (cm): <u>5</u>	
Water Table Present? Yes X No	Depth (cm):	
Saturation Present? Yes X No Compilary fringe)	Depth (cm): (includes Wetla	IND Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspections), if a	available:
Remarks:		

Adapted from U.S. Army Corps of Engineers form for North Central and North East Region (Version 2.0), and Field Indicators for Identifying Hydric Soils in New England (Version 4.0) Supplement for use in New Brunswick (2019)

# APPENDIX B

Online Well Log System (OWLS), 1.0 km Radius





### Well Driller's Report

12/19/2023 Date printed

Drilled b	•											
Well Us	-			Work			Method					Completed
Drinkin	g Water,	Domesti	С	New	Well	Rota	iry				08/1	4/2003
	Casing	Informati	on		Casing a	above grou	nd		Driv	ve Shoe	Used?	
	Well Log	Casing Ty	ре	D	iameter	Fro	m	End	SI	otted?		
	1190	Steel		15	5.24cm	0m		12.19r	n			
Aquifer	· Test/Yi	eld						Est	imated			
Method		Initial Wa Level (B		Pumping Rate	l Duratio		Water (BTC)		e Yield		owing /ell?	Rate
Air		18.29 <i>(втс - в</i>		0 lpm of casina)	1hr	121	.92m	227	'.5 lpm	1	No	0 lpm
Well Gr	outing			D	rilling Fluids	s Used		Disinfe	ectant	Pu	ump Insta	alled
Т	here is no	Grout info	rmatior		one			N/A		N/. Inta	'A ake Setting	(BTC)
								Qty	0L	0m		(_ · · · )
Driller's	Log									Overall	Well Der	oth
Well Log	From	End	Colou	ır		Rock Typ	e			121.92r	•	
1190	0m	9.45m	Brown			Mud and G	ravel			Bedrocl	k Level	
1190	9.45m	121.92m	Red			Granite				9.45m		
Water B	Bearing F	racture Z	Zone		Setbacks							
Well Loa	Depth	R	Rate		Well Log	Distance	Se	etback	From			

Well Log	Depth	Rate	
1190	22.86m	13.65 lpm	
1190	30.48m	45.5 lpm	
1190	60.96m	45.5 lpm	
1190	85.34m	91 lpm	
1190	106.68m	31.85 lpm	

1190	60.96m	Right of any Public Way Road
Well Log	Distance	Setback From
Setbacks		



Date prin	nted	12/19/20	)23									
Drilled by	y											
Well Use	<del>)</del>			Wor	k Type		Drill Metho	d			Work Co	mpleted
Drinking	g Water,	Domesti	с	New	/ Well		Rotary				08/15/	/2003
C	Casing	Informati	on		Casi	ng abov	ve ground		Driv	ve Shoe U	sed?	
١	Well Log	Casing Ty	pe		Diameter		From	End	Sl	otted?		
1	1191	Steel			15.24cm		0m	10.67	m			
Aquifer	Test/Yie	eld						Fs	timated			
		Initial W	ater	Pumpin	ng		Final Water	Sa	fe Yield	Flow		
Method		Level (B	TC)	Rate	Du	ration	Level (BTC)			We	ell?	Rate
Air		9.14	m	0 lpm		1hr	30.48m	15.	92 lpm	N	0	0 lpm
		(BTC - B	elow top	of casina)								
Well Gro	uting				Drilling F	luids Us	ed	Disinf	ectant		np Installe	ed
Th	nere is no	Grout info	ormation		None			N/A		N/A		
		0.041		·				0.	0		ke Setting (E	BTC)
								Qty	0L	0m		
Driller's L	_og									Overall V	Vell Depti	h
Well Log	From	End	Colou	r		R	ock Type			121.92m	•	
1191 (	Dm	5.79m	Brown			м	ud and Gravel			Bedrock		
	5.79m	121.92m	Red				ranite			5.79m	LGVGI	
										5.7 311		
Water Be	earing F	racture Z	Zone		Setba	cks						
Well Log	Depth	F	Rate		Well Lo	g Dis	stance S	Setback	From			
1191	30.48m		.55 lpm		1191	21.	34m F	Right of a	ny Public	Way Road		
1191	67.06m	4	.55 lpm									



Date pri	inted	12/19/2	023								
Drilled b	су										
Well Us	e			Worl	к Туре		Drill Method	t		Work C	ompleted
Drinkin	g Water	, Domest	ic		Well		Rotary			08/25	5/2009
	Casing	Informat	ion		Casin	g above	e ground		Driv	e Shoe Used?	
	Well Log	Casing T	уре	[	Diameter		From	End	Slo	otted?	
	25236	Steel		-	15.24cm		0m	6.10m			
Aquifer Method	r Test/Yi	eld Initial W Level (E		Pumpin Rate	g Dura	ation	Final Water Level (BTC)	Safe	nated Yield	Flowing Well?	Rate
Air		5.49 (BTC - 1		31.85 lp o of casina)	m 1h	٦r	5.49m	31.8	5 lpm	No	0 lpm
Well Gr	outing			[	Drilling Flu	ids Use	ed	Disinfeo	ctant	Pump Instal	lled
Т	There is no	o Grout inf	ormatio		None			Bleach	(Javex)	) Submersib	-
								Qty (	OL	39.62m	(2.0)
Driller's	Log									Overall Well Dep	th
Well Log	From	End	Colo	ur		Ro	ock Type			19.81m	
25236 25236	0m 5.18m	5.18m 19.81m	Other Black			Till Sla				Bedrock Level	
20200	5.1011	19.0111	DIACK			316	216			5.18m	
Water B	Bearing F	racture	Zone		Setback	(S					
Well Log	Depth		Rate		Well Log	Dist	tance S	etback Fr	om		
25236 25236	8.53m 42.67m		13.65 lpr 18.2 lpm	n	25236	76.2	20m R	ight of any	Public	Way Road	
20200	-L.0/III		ioir ihiii		no septic		property when	anneu			



# Well Driller's Report

Date pri	nted	12/19/2	023									
Drilled k Well Us Drinkin	•	Domest	ic		k Type v Well		rill Methoo otary	d				Completed
		Informat			Casing	above gr	-		Driv	ve Shoe	e Used?	
	Well Log 26462	Casing Ty Steel	ype		Diameter 15.24cm		From 0m	End 6.10m	Slo	otted?		
Aquifer Method Air	[·] Test/Yie	Initial W Level (E 5.49	BTC)	Pumpin Rate 54.6 Ipr	Durati	on Le	nal Water evel (BTC) 5.49m	Safe	mated e Yield 6 Ipm		lowing Well? No	Rate 0 Ipm
Well Gro	Outing There is no	Grout inf	ormation		Drilling Fluid None	s Used		Disinfe Bleach Qty		:) S	Pump Insta Submersib ntake Setting 38.10m	ole
Driller's Well Log 26462 26462 26462	Log From 0m 3.05m 24.38m	End 3.05m 24.38m 44.20m	Colou Brown Brown Red and			Rock Till Sandst Granite	one			44.20	ock Level	oth
Water B Well Log 26462	Bearing F		Zone Rate 31.85 lpm		Setbacks Well Log 26462	Distanc		Setback F				
26462	39.62m		22.75 lpm		26462 26462	22.86m 36.58m	L	each Field	1	Way Ro	ad	



Date pr	rinted	12/19/2	2023									
Drilled	by											
Well Us	se			Woi	rk Type		Drill Metho	d		V	Vork Com	pleted
Drinkir	ng Water,	, Domes	tic	Nev	v Well						10/22/20	014
	Casing	Informa	tion		Casin	g above	e ground		Driv	ve Shoe Us	ed?	
	Well Log	Casing 1	Гуре		Diameter		From	End	SI	otted?		
	30648	Steel			15.24cm		0m	6.10n	า			
Aquife	r Test/Yi	eld						Fo	timated			
•		Initial V	Vater	Pumpir	ng		Final Water		fe Yield		ng	
Method	t	Level (		Rate		ation	Level (BTC)			Well	?	Rate
Air		5.4	9m	79.62 lp	om 1h	٦r	5.49m	81	.9 lpm	No		0 lpm
		(BTC -	Below to	o of casina)								
Well Gr	routing				Drilling Flu	ids Use	ed	Disinf	ectant	•	o Installed	
-	There is no	o Grout in	formatio	n.	None			Bleac	h (Jave>			
								Qty	0L	39.62	Setting (BTC 2m	(م
Driller's	Loa									Overall M	all Danth	
Well Log	<u> </u>	End	Colc	our		Ro	ock Type			Overall We 44.20m	ell Depth	
30648	0m	5.18m	Brown			Sa	nd			Bedrock L	مريما	
30648	5.18m	44.20m	Black			Sla				Om	6461	
										0.11		
Water E	Bearing F	racture	Zone		Setback	(S						
Well Log	Depth		Rate		Well Log	Dist	tance S	Setback	From			
30648	14.33m		6.82 lpm		30648	27.4		Septic Ta	nk			
30648	18.29m		4.55 lpm		30648	24.3		each Fie				_
30648	35.05m		68.25 lpr	n	30648	274	.32m F	Right of a	ny Public	Way Road		



## Well Driller's Report

Date pri	nted	12/19/20	023								
Drilled b	у										
Well Us	е			Work	Туре		Drill Method	b		Work C	Completed
Drinkin	g Water,	Domesti	С	New	Well		Rotary			10/2	24/2017
	Casing	Informati	on		Casing	abov	e ground		Driv	e Shoe Used?	
		Casing Ty		D	liameter		From	End	Slo	otted?	
	35762	Steel		1	5.24cm		0m	6.10m			
Aquifer	Test/Yie	eld						E . C .			
riquitor	1000110	Initial W	ator	Pumping	n		Final Water		nated Yield	Flowing	
Method		Level (B		Rate	, Durati	on	Level (BTC)	ouic	rieid	Well?	Rate
Air		121.9		15.92 lpn			6.40m		2 lpm	No	0 lpm
				of casing)	11 3113 03		0.4011	10.9	2 ipin	INU	0 ipin
Well Gro	outing						• d	Disinfe	rtant	Pump Insta	
	Juling				Prilling Fluid Ione	s Use	ed			· · .	
т	here is no	Grout info	ormatior					Bleach	(Javex)	Intake Setting	
								Qty (	OL	-	J(DIC)
								Qty (		118.87m	
Driller's	Log									Overall Well De	nth
Well Log	From	End	Colou	ır		Ro	ock Type			121.92m	pui
	0m	0.61m	Brown				avel				
	0.61m	121.92m	Grey				anite			Bedrock Level	
			•							0.61m	
Water B	earing F	racture 2	Zone		Setbacks						
Well Log	Depth	F	Rate		Well Log	Dis	tance S	etback Fi	rom		
35762	14.63m	2	2.28 lpm		35762	79.2		light of any		Way Road	
35762	42.37m		.55 lpm		35762	80.2		enter of ro			

 35762
 42.37m
 4.55 lpm

 35762
 91.44m
 4.55 lpm

 35762
 109.73m
 4.55 lpm



# Well Driller's Report

Date pri	nted	12/19/20	)23								
Drilled b Well Us	•			Wor	k Type		Drill Metho	Ч		Mork	Completed
	-	Domesti	с		v Well		Rotary	u			26/2017
	Casing	Informati	on		Casing	abov	e ground		Driv	ve Shoe Used?	
	Well Log	Casing Ty	pe		Diameter		From	End	Slo	otted?	
	35763	Steel			15.24cm		0m	6.10m			
Aquifer	Test/Yie	eld Initial W	ater	Pumpir	Ig		Final Wate		mated e Yield	Flowing	
Method		Level (B		Rate	Durat	tion	Level (BTC			Well?	Rate
Air		129.54 (BTC - B		227.5 lp of casina)	om 3hrs 0 ⁻	1min	7.62m	227	.5 lpm	No	0 lpn
Well Gro	outing				Drilling Flui	ds Us	ed	Disinfe	ectant	Pump Inst	talled
Well Log	Grout Typ	e Fr	om	End	None			Bleach	(Javex	) Submersi Intake Settin	
35763	Bentonite	On	n	6.10m				Qty	0L	121.92m	
Driller's	Log									Overall Well De	anth
Well Log	From	End	Colo	ur		Ro	ock Type			129.54m	spin
35763 35763	0m 2.13m	2.13m 129.54m	Brown Grey				ay and Stone anite			Bedrock Level 2.13m	
Water B	earing F	racture 2	Zone		Setbacks	5					
Well Log	Depth	F	Rate		Well Log	Dis	tance S	Setback F	rom		
35763	27.43m		2.28 lpm		35763	91.4		-	-	Way Road	
35763 35763	51.51m 59.44m		3.7 lpm 82 lpm		35763	101	.50m (	Center of r	oad		
35763 35763	118.87m		o∠ iprii  3.65 lprr								



Date pri	inted	12/19/2	023									
Drilled b	ру											
Well Us	se			Wor	к Туре		Drill Method	b			Work Com	pleted
Drinkin	g Water,	Domest	ic	New	/ Well		Rotary				10/01/2	017
	Casing	Informat	ion		Casing	above	eground		Driv	ve Shoe	Used?	
	Well Log	Casing T	ype		Diameter		From	End	SI	otted?		
	35764	Steel			15.24cm		0m	7.92m	า			
Aquifer	r Test/Yi	eld						Га	timated			
		Initial W	/ater	Pumpir	ng		Final Water		fe Yield		owing	
Method		Level (E		Rate	Durat	tion	Level (BTC)				Vell?	Rate
Air		137.1	,	63.7 lp	m 1hr 54	1min	6.40m	61	.42 lpm		No	0 lpm
		(BTC - E	Below top	of casina)								-
Well Gr	outing				Drilling Flui	ds Use	ed	Disinf	ectant	Р	ump Installed	ļ
Т	There is no	Grout inf	ormatior	۱.	None			Bleac	h (Jave)	•)	ubmersible take Setting (BT	C)
								Qty	0L		32.59m	,
Driller's	Log									Overal	I Well Depth	
Well Log	From	End	Colou	ır		Ro	ck Type			137.16	•	
35764	0m	6.40m	Brown			Cla	y and Stone			Bedroo	ck Level	
35764	6.40m	137.16m	Grey				anite			6.40m		
Water E	Bearing F	racture	Zone		Setback	S						
Well Log	Depth		Rate		Well Log	Dist	ance S	etback	From			
35764	47.24m		27.3 lpm		35764	45.7	2m R	ight of a	ny Public	Way Roa	d	1
35764	83.82m		27.3 lpm		35764	55.7	8m C	enter of	road			
35764	118.57n	n s	9.1 lpm									



Date pri	inted	12/19/20	)23									
Drilled b	ру											
Well Us	se			Wor	к Тур	e	Drill Method	k			Work	Completed
Drinkin	g Water,	Domesti	С	New	/ Well		Rotary				10/	/31/2017
	Casing	Informati	on		С	asing abov	/e ground		Driv	e Sho	e Used?	
	Well Log	Casing Ty	ре		Diame	ter	From	End	Slo	otted?		
	35765	Steel			15.24cı	n	0m	6.10r	n			
Aquifer Method	r Test/Yi	eld Initial W Level (B		Pumpin Rate	ng	Duration	Final Water Level (BTC)	Sa	timated fe Yield	F	-lowing Well?	Rate
Air		129.54	,	218.4 lp of casina)	om 2	hrs 02min	3.35m	21	8.4 lpm		No	0 lpm
Well Gr	outing				Drillin	g Fluids Us	sed	Disin	fectant		Pump Inst	talled
Well Log	Grout Typ	be Fr	om	End	None	-		Bleac	h (Javex	/	Submersi Intake Settin	
35765	Bentonite	On	n	6.10m				Qty	0L		121.92m	
Driller's	Log									Over	all Well De	opth
Well Log	From	End	Colour	r		R	ock Type			129.5		эрит
35765	0m	3.96m	Grey				lay			Bedro	ock Level	
35765 35765	3.96m 67.06m	67.06m 78.64m	Grey Black				iranite iranite			3.96r	n	
35765	78.64m	129.54m	Grey				iranite					

Water Be	earing Fract	ure Zone	
Well Log	Depth	Rate	
35765	19.81m	22.75 lpm	
35765	23.16m	22.75 lpm	
35765	32.00m	27.3 lpm	
35765	53.34m	45.5 lpm	
35765	68.58m	22.75 lpm	
35765	92.96m	13.65 lpm	
35765	114.30m	31.85 lpm	
35765	121.92m	31.85 lpm	

Setbacks	5	
Well Log	Distance	Setback From
35765	304.80m	Right of any Public Way Road
35765	314.55m	Center of road



# Well Driller's Report

35766

91.44m

2.28 lpm

Date pr	inted	12/19/20	)23									
Drilled	by											
Well Us	se			Work	кТуре		Drill Method				Work C	Completed
Drinkir	ng Water,	Domesti	с	New	• •		Rotary					1/2017
	-											
	Casing	Informati	on		Casing at	ove	ground		Driv	ve Sh	oe Used?	
	Well Log	Casing Ty	ре	[	Diameter		From	End	SI	otted?		
	35766	Steel		1	5.24cm		0m	6.10n	า			
Aquife	r Test/Yi	əld						Fe	timated			
Method		Initial W Level (B		Pumping Rate	g Duratior		Final Water Level (BTC)		fe Yield		Flowing Well?	Rate
Air	1	121.9	,	20.48 lpr			3.35m	20	.48 lpm		No	0 lpm
AII		-		of casina)	11 3115 0111		5.5511	20	.40 ipin		NO	Ulpin
Well Gr	outing				Drilling Fluids	Use	d	Disinf	ectant		Pump Insta	lled
	There is no	Grout info	ormatio	N	None		-	Bleac	h (Jave>	()	Submersit	-
								Qty	0L		118.57m	. ,
Driller's	Log										rall Well Dep	oth
Well Log		End	Colo	ur		Ro	ck Type				92m	501
35766	0m	1.83m	Brown			Muo	d and Gravel				rock Level	
35766	1.83m	102.41m	Grey			Gra	nite			1.83		
35766	102.41m	121.92m	Brown			Gra	nite			1.00		
Water E	Bearing F	racture 2	Zone		Setbacks							
Well Log	Depth	F	Rate				There is no S	Setback	c informa	ation.		
35766	12.19m		.1 lpm									
35766	47.85m	9	.1 lpm									



Date pr	inted	12/19/20	023									
Drilled	by											
Well Us	se			Wor	rk Ty	/pe	Drill Method	b		Wo	rk Comple	eted
Drinkir	ng Water,	Domesti	С	New	v We	ell	Rotary			1	11/02/2017	7
	Casing	Informati	on			Casing abov	e ground		Driv	ve Shoe Used	?	
	Well Log	Casing Ty	pe		Diar	neter	From	End	Sl	otted?		
	35767	Steel			15.2	4cm	0m	6.10n	<u> </u>			
Aquife	r Test/Yi	eld						Fe	timated			
•		Initial W	ater	Pumpir	ng		Final Water		fe Yield	Flowing		
Method	l	Level (B	STC)	Rate	-	Duration	Level (BTC)			Well?	Ra	ate
Air		121.9	2m	182 lpr	m	1hr 01min	2.13m	18	32 lpm	No	01	lpm
		(BTC - E	Below top	of casina)					•			•
Well Gr	outing				Drill	ling Fluids Us	ed	Disinf	ectant	Pump li	nstalled	
	0				Non			Bleac	h (Javex			
	Grout Typ		om	End						Intake Se	etting (BTC)	
35767	Bentonite	On	n	6.10m	J			Qty	0L	118.87r	m	
Driller's	Log									Overall Well	Dopth	
Well Log	From	End	Colou	ır		R	ock Type			121.92m	Deptil	
35767	0m	1.83m	Brown				ud and Stones			-	ial i	
35767	1.83m	47.55m	Brown				anite			Bedrock Lev	ei	
35767	47.55m	67.06m	Black			Gr	anite			1.83m		
35767	67.06m	74.68m	Grey			Gr	anite					
35767	74.68m	91.44m	Black				anite					
35767	91.44m	121.92m	Grey			Gr	anite					
Water F	Bearing F	racture 2	Zone		ิเร	etbacks						
	- Janing I					2.00010						

Well Log	Depth	Rate
35767	47.55m	68.25 lpm
35767	56.69m	40.95 lpm
35767	67.06m	22.75 lpm
35767	74.68m	13.65 lpm
35767	94.49m	20.48 lpm
35767	121.92m	15.92 lpm

backs	
	There is no Setback information.



Date prii	nted	12/19/20	023									
Drilled b	у											
Well Use	е			Woi	rk Type		Drill Method	ł			Work Con	npleted
Drinking	g Water,	Domesti	ic	Nev	v Well		Rotary				11/06/2	2017
	Casing	Informat	ion		Casing	above	ground		Driv	ve Shoe L	Jsed?	
	Well Log	Casing Ty	/pe		Diameter		From	End	SI	otted?		
	35768	Steel			15.24cm		0m	6.10m				
Aquifer	Test/Yie	eld Initial W	/ater	Pumpir	ng		Final Water		imated e Yield	Flov	ving	
Method		Level (E	BTC)	Rate	Durati	on	Level (BTC)	• • •		We	ell?	Rate
Air		121.9 <i>(втс - е</i>		15.92 lp of casina)		min	0m	15.	92 lpm	Ν	0	0 lpm
Well Gro	outing				Drilling Fluid	s Use	d	Disinfe	ectant		mp Installe	d
Well Log	Grout Typ	e Fi	rom	End	None			Bleach	n (Javex	•)	bmersible ke Setting (B1	TC)
35768	Bentonite	1.	83m	6.10m				Qty	0L		3.87m	- /
Driller's	Log									Overall \	Nell Depth	
Well Log	From	End	Colo	ur		Ro	ck Type			121.92m	•	
	0m 1.83m	1.83m 121.92m	Brown Grey a	nd black		d and Stones		Bedrock 1.83m				
										1.0311		
Water B	earing F	racture	Zone		Setbacks							
Well Log	Depth	F	Rate		Well Log	Dista	ance Se	etback	From			
35768	16.76m		2.28 lpm		35768	152.4		-		Way Road		
35768	88.39m		9.1 lpm 4.55 lpm		35768	161.8	85m Co	enter of	road			



		*									
Date pr	inted	12/19/202	23								
Drilled	by										
Well Us	se			Work	кТуре	D	rill Method	Ł		Work	Completed
Drinkir	ng Water	, Domestic			Well	R	otary			11	/07/2017
	Casing	Informatio	n		Casing a	above gi	ound		Driv	e Shoe Used?	
	Well Log	Casing Typ	е	C	Diameter		From	End	Slo	otted?	
	35769	Steel		1	5.24cm		0m	6.10m			
Aquife	r Test/Yi	eld						Fsti	mated		
		Initial Wa	ter	Pumping	g	Fi	nal Water		e Yield	Flowing	
Method	l	Level (BT	C)	Rate	Duratio	on Le	evel (BTC)			Well?	Rate
Air		83.82r		3.65 lpr	m 4hrs 01	min	3.35m	13.6	5 lpm	No	0 lpm
		(BTC - Be	low top o	f casina)					· .		
Well Gr	outing				Drilling Fluid	s Used		Disinfe	ctant	Pump Ins	
Well Loa	Grout Ty	pe Fro	m	End	lone			Bleach	(Javex		
35769	Bentonite	4.88		6.10m				Ot v	0	Intake Setti	ng (BTC)
00700	Demonite	4.00	<u>, , , , , , , , , , , , , , , , , , , </u>	0.1011				Qty	0L	76.20m	
Driller's	Log									Overall Well D	enth
Well Log	From	End	Colour			Rock	Туре			83.82m	opui
35769	0m	4.57m	Brown			Mud ar	nd Gravel			Bedrock Level	
35769	4.57m		Black			Granite					
										4.57m	
	Pooring	Fracture Zo	one		Setbacks						
Water E	реанну г										
	Depth	Ra	ate		Well Loa	Distanc	e S	etback F	rom		
Water E Well Log 35769	5		ate 55 lpm		Well Log 35769	Distanc 152.40n		etback F		Way Road	



Date pri	nted	12/19/20	023									
Drilled b	у											
Well Us	е			Wor	к Туре	Di	rill Method	ł		Work Co	mpleted	
Drinkin	g Water	Domesti	с	New	Well	R	otary			11/08	/2017	
	Casing	Informati	on		Casing a	above gro	ound		Driv	ve Shoe Used?		
	Well Log	Casing Ty	/pe		Diameter		From	End	SI	otted?		
	35770	Steel			15.24cm		0m	12.19m				
Aquifer	Test/Yi	eld Initial W	ater	Pumpin	g	Fir	nal Water		mated Yield	- · ·		
Method		Level (B	STC)	Rate	Duratio	on Le	vel (BTC)			Well?	Rate	
Air		121.92 (BTC - E		27.3 lpr of casina)	m 1hr 01n	nin	2.44m	27.3	3 lpm	No	0 lpm	
Well Gro	outing				Drilling Fluid	s Used		Disinfe	ctant	Pump Install		
Well Log	Grout Ty	pe Fr	om	End	None			Bleach	(Javex	() Submersible Intake Setting (B		
35770	Bentonite	10	).97m	12.19m				Qty	0L	118.87m		
Driller's	Log									Overall Well Dept	'n	
Well Log	From	End	Colou	r		Rock T	уре			121.92m		
	0m 0.91m									Bedrock Level		
35770	11.28m	121.92m	Brown Grey			Granite				11.28m		
			700-	]	Catherate							
vvater B	earing F	Fracture 2	Lone		Setbacks							
Well Log	Depth	F	Rate		Well Log	Distance	e S	etback F	rom			
35770	22.86m		.55 lpm		35770	182.88m		-		Way Road		
35770	95.10m	2	2.75 lpm		35770	192.94m	C	enter of ro	bad			



Date prii	nted	12/19/20	023									
Drilled b	у											
Well Us	е			Wor	'k Type		Drill Method	ł		W	ork Compl	eted
Drinking	g Water,	Domesti	ic	New	v Well		Rotary				11/09/201	7
	Casing	Informati	ion		Casing	above	ground		Driv	ve Shoe Use	ed?	
	Well Log	Casing Ty	/pe		Diameter		From	End	Sl	otted?		
	35771	Steel			15.24cm		0m	6.10m	า			
Aquifer Method	Test/Yie	eld Initial W Level (E		Pumpir Rate		on	Final Water Level (BTC)	Sa	timated fe Yield	Flowin Well?	•	Rate
Air		121.9	2m	91 lpn of casina)	n 2hrs 30		4.27m		1 lpm	No		lpm
Well Gro	outing				Drilling Fluid	s Use	ed	Disinf	ectant	•	Installed	
Well Log	Grout Typ	e Fi	rom	End	None			Bleac	h (Javex	·)	ersible Setting (BTC)	
35771	Bentonite	3.	96m	6.10m				Qty	0L	118.8		
Driller's	Log									Overall We	ll Depth	
Well Log	From	End	Colou	r		Ro	ck Type			121.92m		
	0m 3.96m	3.96m 121.92m	Brown Black				d and Stones anite		Bedrock Level 3.96m			
Water B	earing F	racture	Zone		Setbacks							
Well Log	Depth	F	Rate		Well Log	Dist	ance S	etback	From			
35771	47.55m		18.2 lpm		35771	152.		-	-	ny Public Way Road		
35771 35771	64.01m 94.49m		59.15 lpm 13.65 lpm		35771	162.	46m C	enter of	road			



# Well Driller's Report

Date prii	nted	12/19/2	023									
Drilled b Well Use Drinking	e	Domest	ic		k Type / Well		Drill Metho Rotary	bd			Complet (10/2017	
	y water,	Domest		new	v vven		Rotary			11/	10/2017	
	Casing	Informat	ion		Ca	asing abo	ve ground		Driv	ve Shoe Used?		
		Casing T	уре		Diamete		From	End		otted?		
	35772	Steel			15.24cm		0m	6.10m	<u> </u>			
Aquifer Method	Test/Yi	eld Initial W Level (E		Pumpir Rate	-	Duration	Final Wate Level (BTC	r Sa	timated fe Yield	Flowing Well?	Ra	ate
Air		121.9 (BTC - E		250.25    o of casina)	pm 1I	nr 01min	7.32m	250	).25 lpm	n No	0 lp	)m
Well Gro	outing				Drilling	Fluids U	sed	Disinf	ectant	Pump Inst	talled	
Well Log	Grout Typ	e F	rom	End	None			Bleac	h (Javex	() Submers Intake Settin		
	Bentonite		.96m	6.10m				Qty	0L	119.18m	ig (BTC)	
Driller's										0		
Well Log	From	End	Colo	our		F	Rock Type		Overall Well De 121.92m	eptn		
	0m	3.96m	Brown	<u>า</u>			lud and Stones		Bedrock Level			
	3.96m	121.92m					Granite		3.96m			
											]	
Water B	earing F	racture	∠one		Setb	acks						
Well Log	Depth		Rate		Well	Lo <u>g</u> Di	stance	Setback	From			
35772	6.71m		2.28 lpm		35772			-	-	Way Road		
35772 35772	124.97m 83.52m	-	18.2 lpm 109.2 lp		35772	. 16	2.46m	Center of	road			
35772 35772	9.14m		116.02 l									
35772	100.58m		4.55 lpm									



Date pri	nted	12/19/2	023											
Drilled b	у													
Well Us	е			Wor	k Тур	e	D	rill Method	ł			Work	Comple	eted
Drinkin	g Water	, Domest	ic	New	/ Wel		R	otary				11/	/08/2018	3
	Casing	Informat	ion		(	Casing ab	ove gi	ound		Dr	ive Sh	oe Used?		
	Well Log	Casing Ty	ype		Diame	eter		From	End	S	Slotted?			
	37197	Steel			15.240	m		0m	21.3	4m				
Aquifer Method	Test/Yi	Initial W		Pumpin Rate	ng	Duration		nal Water vel (BTC)		stimate afe Yiel		Flowing Well?	D	ate
Air		Level (E 12.19 <i>(BTC - E</i>	,	136.5 lp	m	1hr		12.19m	13	36.5 lpn	n	No		pm
Well Gro	outing				Drillir	ng Fluids l	Used		Disir	fectant		Pump Inst	talled	
Т	here is no	o Grout inf	ormation		None				Chlo	rine pel	lets	Submers		
									Qty	0L		24.38m		
Driller's	Log										Ove	rall Well De	epth	
Well Log	From	End	Colou	r			Rock	Гуре			42.6		-1	
	0m	5.49m	Grey				Sandst	one			Bed	rock Level		
	5.49m	19.81m	Brown				Clay				0m			
	19.81m 36.58m	36.58m 42.67m	Grey				Sands	one			_			
37197	30.3011	42.0/11	Brown				Clay				-			
Water R	earing F	- racture	Zone	]	Se	tbacks								
	currig I	iaotaio												

37197	36.58m	136.5 lpm
Well Log	Depth	Rate
Water De	anny racium	

Setbacks	5	
Well Log	Distance	Setback From
37197	18.29m	Septic Tank
37197	24.38m	Leach Field
37197	22.86m	Right of any Public Way Road
37197	24.38m	Center of road

Drilled b	ру										
Well Us	e			Work T	уре	Drill Method	l			Work	Completed
Drinkin	g Water	, Domesti	ic	New W	ell	Rotary				11/	08/2018
	Casing	Informat	ion		Casing abo	ove ground		Driv	Drive Shoe Used?		
	Well Log	Casing Ty	/pe	Dia	meter	From	End	Slo	otted?		
	37197	Steel		15.2	4cm	0m	21.34m				
Aquifer	· Test/Y	ield					Estir	nated			
Method		Initial W Level (E		Pumping Rate	Duration	Final Water Level (BTC)	Safe	Yield		lowing Well?	Rate
Air		12.19 (BTC - E		136.5 lpm of casina)	1hr	12.19m	136.	5 lpm		No	0 lpm
Well Gro	outing			Dril	ling Fluids U	sed	Disinfe	ctant	I	Pump Inst	talled
Т	here is n	o Grout inf	ormatior	Nor	ne		Chlorin	e pelle	.0	Submersi ntake Settin	
							Qty	0L		24.38m	
Driller's	Log								Overa	all Well De	epth
Well Log	From	End	Colou	ır		Rock Type			42.67		
37197	0m	5.49m	Grey		:	Sandstone			Bedro	ock Level	
37197	5.49m	19.81m	Brown			Clay			0m		
37197	19.81m	36.58m	Grey			Sandstone					
37197	36.58m	42.67m	Brown			Clay					

37197	36.58m	136.5 lpm	
Well Log	Depth	Rate	
Water Be	earing Fract	ture Zone	

Setbacks	5		
Well Log	Distance	Setback From	
37197	18.29m	Septic Tank	
37197	24.38m	Leach Field	
37197	22.86m	Right of any Public Way Road	
37197	24.38m	Center of road	

Drilled b	ру										
Well Us	e			Work T	уре	Drill Method	l			Work	Completed
Drinkin	g Water	, Domesti	ic	New W	ell	Rotary				11/	08/2018
	Casing	Informat	ion		Casing abo	ove ground		Driv	Drive Shoe Used?		
	Well Log	Casing Ty	/pe	Dia	meter	From	End	Slo	otted?		
	37197	Steel		15.2	4cm	0m	21.34m				
Aquifer	· Test/Y	ield					Estir	nated			
Method		Initial W Level (E		Pumping Rate	Duration	Final Water Level (BTC)	Safe	Yield		lowing Well?	Rate
Air		12.19 (BTC - E		136.5 lpm of casina)	1hr	12.19m	136.	5 lpm		No	0 lpm
Well Gro	outing			Dril	ling Fluids U	sed	Disinfe	ctant	I	Pump Inst	talled
Т	here is n	o Grout inf	ormatior	Nor	ne		Chlorin	e pelle	.0	Submersi ntake Settin	
							Qty	0L		24.38m	
Driller's	Log								Overa	all Well De	epth
Well Log	From	End	Colou	ır		Rock Type			42.67		
37197	0m	5.49m	Grey		:	Sandstone			Bedro	ock Level	
37197	5.49m	19.81m	Brown			Clay			0m		
37197	19.81m	36.58m	Grey			Sandstone					
37197	36.58m	42.67m	Brown			Clay					

37197	36.58m	136.5 lpm	
Well Log	Depth	Rate	
Water Be	earing Fract	ture Zone	

Setbacks	5		
Well Log	Distance	Setback From	
37197	18.29m	Septic Tank	
37197	24.38m	Leach Field	
37197	22.86m	Right of any Public Way Road	
37197	24.38m	Center of road	



Date pri	inted	12/19/20	)23									
Drilled b	by											
Well Us	se			Wor	к Туре	Dr	II Method	t			Work C	completed
Drinkin	ng Water,	Domesti	С	New	/ Well	Ro	tary				11/2	7/2015
	Casing	Informati	on		Casing a	above gro	und		Driv	ve Sho	e Used?	
	Well Log	Casing Ty	pe		Diameter		rom	End	SI	otted?		
	38653	Steel			15.24cm		)m	6.10m				
Aquife	r Test/Yi	eld						Fst	imated			
Method	I	Initial W Level (B		Pumpin Rate	ng Duratio		al Water el (BTC)	Saf	e Yield	F	lowing Well?	Rate
Air		5.49	m	18.2 lpi of casina)			5.49m		2 lpm		No	0 lpm
Well Gr	outina				Drilling Fluid	s Used		Disinfe	ectant		Pump Insta	lled
	5	o Grout info	ormatior		None	0000		Bleach	(Jave)	()	Submersib	le
								Qty	0L		39.62m	
Driller's	Log									Over	all Well Dep	oth
Well Log	From	End	Colou	r		Rock T	/pe			44.20	•	
38653 38653	0m 0.91m	0.91m 44.20m	Brown Black			Till Granite				Bedro 0.91n	ock Level	
										0.011		
Water B	Bearing F	racture 2	Zone		Setbacks							
Well Log	Depth	F	Rate		Well Log	Distance	S	etback I	From			
38653	35.97m	1	8.2 lpm		38653	18.29m	S	eptic Tan	k			
					38653	24.38m		each Fiel				
					38653	27.43m	R	ight of ar	y Public	Way Ro	bad	



Date printed	12/19/2023
Date printed	12/13/2023

Non-Drinking Water, Industrial       New Well       Rotary       04/06/201         Casing Information       Casing above ground       Drive Shoe Used?         Well Log Casing Type       Diameter       From       End       Slotted?         40191       Steel       15.24cm       Om       6.10m         Aquifer Test/Yield       Estimated       Safe Yield       Flowing         Method       Level (BTC)       Rate       Duration       Level (BTC)       Flowing         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0         Well Grouting       Drilling Fluids Used       Disinfectant       Pump Installed       Submersible       Intake Setting (BTC)       67.06m         Driller's Log       Well Log       From       End       Colour       Rock Type       Overall Well Depth         40191       0m       2.44m       Brown       Till       State       Overall Well Depth													
Casing Information       Casing above ground       Drive Shoe Used?         Well Log Casing Type       Diameter       From       End       Slotted?         40191       Steel       15.24cm       Om       6.10m         Aquifer Test/Yield       Estimated       Safe Yield       Flowing         Method       Level (BTC)       Rate       Duration       Level (BTC)         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm         Method       Level (BTC)       Rate       Duration       Level (BTC)       Pump Installed         Mir       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0         //BTC - Below top of casing)       Drilling Fluids Used       Disinfectant       Pump Installed       Submersible         Intake Setting (BTC)       Overall Well Depth       Submersible       Intake Setting (BTC)       67.06m         Driller's Log       Vell Log From       End       Colour       Rock Type       Overall Well Depth         40191       Om       2.44m       Brown       Till       Blact       Blact							_		d			•	
Well Log Casing Type       Diameter       From       End       Slotted?         40191       Steel       15.24cm       0m       6.10m         Aquifer Test/Yield       Initial Water       Pumping       Final Water       Safe Yield       Flowing         Method       Level (BTC)       Rate       Duration       Level (BTC)       Well?       F         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0         Method       Level (BTC)       Rate       Duration       Level (BTC)       Well?       F         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0         (BTC - Below top of casina)       Drilling Fluids Used       Disinfectant Bleach (Javex)       Pump Installed Submersible Intake Setting (BTC)         Well Grouting       Driller's Log       Overall Well Depth 82.30m       Overall Well Depth 82.30m         Well Log       From       End       Colour       Rock Type       Overall Well Depth 82.30m         40191       0m       2.44m       Brown       Till       Bedrock Level	Non-Dr	inking V	Vater, Inc	lustrial	New Well Rotary						04/0	06/2015	
40191Steel15.24cmOm6.10mAquifer Test/Yield MethodInitial Water Level (BTC)Pumping RateFinal Water Level (BTC)Estimated Safe YieldFlowing Well?Air5.49m13.65 lpm1hr5.49m13.65 lpmNo0MethodLevel (BTC)RateDurationEvel (BTC)No0MethodLevel (BTC)RateDuration13.65 lpmNo0MethodSubmersionDrilling Fluids UsedDisinfectant Bleach (Javex)Pump Installed Submersible Intake Setting (BTC)MethodOutColourRock TypeOverall Well Depth 82.30mMethod2.44mBrownTillBedrock Level		Casing	Informat	tion		Casing a	above gr	ound	Drive Shoe Used?				
Aquifer Test/Yield       Estimated         Method       Level (BTC)       Rate       Duration       Level (BTC)       Safe Yield       Flowing         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0         Well Grouting       Drilling Fluids Used       Disinfectant       Pump Installed         There is no Grout information.       Drilling Fluids Used       Disinfectant       Pump Installed         Driller's Log       Qty       0L       67.06m         Well Log       From       End       Colour       Rock Type         Woll 1       0m       2.44m       Brown       Till       Bedrock Level		Well Log	Casing T	уре		Diameter		From		SI	otted?		
Initial Water       Pumping Rate       Final Water Duration       Example Safe Yield       Flowing Well?         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0         Method       (BTC - Below top of casina)       Drilling Fluids Used       Disinfectant Bleach (Javex)       Pump Installed Submersible Intake Setting (BTC)         Well Grouting       Drilling Fluids Used       Disinfectant Bleach (Javex)       Pump Installed Submersible Intake Setting (BTC)         Driller's Log       Oty 0L       67.06m       0         Well Log From       End       Colour       Rock Type       0         40191       0m       2.44m       Brown       Till       Bedrock Level		40191	Steel		•	15.24cm		0m	6.10m				
Initial Water       Pumping Rate       Final Water       Safe Yield       Flowing Well?         Air       5.49m       13.65 lpm       1hr       5.49m       13.65 lpm       No       0 <i>Method Below top of casinal Drilling Fluids Used</i> Disinfectant       Pump Installed         Well Grouting       Drilling Fluids Used       Disinfectant       Pump Installed         Mone       None       Bleach (Javex)       Submersible         Intake Setting (BTC)       Qty       0L       67.06m         Driller's Log       Well Log From       End       Colour       Rock Type         40191       0m       2.44m       Brown       Till       Bedrock Level	Aquifer	r Test/Yi	ield						Est	imated			
(BTC - Below top of casina)         Well Grouting       Drilling Fluids Used       Disinfectant Bleach (Javex)       Pump Installed Submersible Intake Setting (BTC)         There is no Grout information.       Overall Well Depth         Driller's Log       Overall Well Depth         Well Log From       End       Colour         A0191       Om       2.44m         Brown       Till       Bedrock Level	Method				•	•			Saf			Rate	
Image: Second	Air				•	m 1hr		5.49m	13.	65 lpm	No	0 lpn	
There is no Grout information.       None       Bleach (Javex)       Submersible Intake Setting (BTC)         Qty       0L       67.06m         Driller's Log       Overall Well Depth         Well Log       From       End       Colour         40191       0m       2.44m       Brown       Till         Bedrock Level       Bedrock Level	Vell Gr	outing				Drillina Fluid	s Used		Disinf	ectant	Pump Insta	alled	
Driller's Log     Overall Well Depth       Well Log     From     End     Colour     Rock Type     82.30m       40191     Om     2.44m     Brown     Till     Bedrock Level	Т	There is n	o Grout inf	formatio					Bleach	n (Javex	•) ••••		
Well Log     From     End     Colour     Rock Type     82.30m       40191     0m     2.44m     Brown     Till     Bedrock Level									Qty	0L	67.06m		
Well Log       From       End       Colour       Rock Type       82.30m         40191       0m       2.44m       Brown       Till       Bedrock Level         40191       2.44m       82.30m       Bedrock Level       Bedrock Level	Driller's	Log									Overall Well De	pth	
10101 2.44m 92.20m Block Clote	Vell Log	From	End	Colo	ur		Rock 1	уре				1	
2.770													
											2.77111		
Water Bearing Fracture Zone Setbacks	Vater B	Bearing I	Fracture	Zone		Setbacks							
Well Log Depth Rate Well Log Distance Setback From	Vell Log	Depth		Rate		Well Log	Distanc	e S	Setback	From			
40191 56.39m 13.65 lpm 40191 24.38m Septic Tank	0191	56.39m		13.65 lpm	1	40191 24.38m Se			Septic Tank				
4019127.43mLeach Field40191182.88mRight of any Public Way Road													



Date pri	inted 12/19/2023						
Drilled I Well Us Drinkin	•	Work ⊺ New V		Drill Methoo Rotary	ł		ompleted 5/2021
	Casing Information		Casing abov	e ground	Driv	ve Shoe Used?	
			There is no casi	ng information.			
Aquifer Method Air	r Test/Yield Initial Water Level (BTC) Om (BTC - Below top	Pumping Rate 0 Ipm of casina)	Duration 0hr	Final Water Level (BTC) 0m	Estimated Safe Yield 159.25 Ipn	Flowing Well?	Rate 0 Ipm
Well Gr	outing There is no Grout information	No	illing Fluids Us ne	ed	Disinfectant Bleach (Jave)		е
					Qty 0L	Intake Setting ( 0m	BIC)
Driller's	Log					Overall Well Dept	h
	There is	no rock lay	ver information.			0m	
						Bedrock Level 0m	
Water E	Bearing Fracture Zone		Setbacks				
There	is no water bearing fracture information.	zone		There is no S	Setback informa	ation.	



Date printed	12/19/2023						
Drilled by Well Use Drinking Wat	er, Domestic		k Type Well	Drill Method			ompleted 1/1999
Casir	ng Information		Casing abov	e ground	Driv	ve Shoe Used?	
			There is no casi	ng information.			
Aquifer Test/ Method	/Yield Initial Water Level (BTC) 0m	Pumpin Rate 0 Ipm	g Duration 0hr	Final Water Level (BTC) 0m	Estimated Safe Yield 0 Ipm	<b>—</b> , ,	Rate 0 Ipm
	(BTC - Below to	•	UII	UII	0 ipin	INU	Ulphi
Well Grouting			Drilling Fluids Us	ed	Disinfectant	Pump Instal	led
There is	s no Grout informatio		None		N/A Qty 0L	N/A Intake Setting ( Om	BTC)
Driller's Log						Overall Well Dep	th
	There	is no rock	layer information.			0m	
						Bedrock Level 0m	
Water Bearing	g Fracture Zone		Setbacks				
There is no w	vater bearing fracture information.	e zone		There is no S	etback informa	ation.	



Date pri	nted	12/19/2	023									
Drilled b	у											
Well Us	е			Wor	k Type	9	Drill Method	b		Wo	rk Complet	ted
Drinkin	g Water,	Domesti	ic	New	/ Well	(NEW	Rotary (RC	TARY	.)	C	6/07/1996	
	-			WEL	_L)							
	Casing	Informat	ion		C	asing abo	ve ground		Driv	ve Shoe Used	?	
	Well Log	Casing Ty	/pe		Diamet	er	From	End	Slo	otted?		
	90482100	Steel			15.24cn	n	0m	6.71m	1			
Aquifer	Test/Yi	eld						Fe	timated			
Method		Initial W Level (E		Pumpin Rate	-	Duration	Final Water Level (BTC)	Sa	fe Yield	Flowing Well?	Ra	ate
		0m	1	0 lpm		0hr	0m	4.	55 lpm	No	0 lp	om
		(BTC - E	Below top	-					•		•	
Well Gro	outing				Drilling	g Fluids U	sed	Disinf	ectant	Pump Ir	nstalled	
т	here is no	o Grout inf	ormation		Water			N/A		N/A	(570)	
				]				Qty	4.55L	Om	tting (BTC)	
Driller's										o	<b>D</b> (1	
Well Log		End	Colou	r		F	Rock Type			Overall Well 91.44m	Depth	
90482100		4.57m	Brown				Sand and Gravel M	ix		Bedrock Leve	ല	
90482100		60.96m	Grey				Granite			4.57m		
90482100	60.96m	74.68m	Black			5	Shale			<del>т.</del> Ј/Ш		
90482100	74.68m	91.44m	Grey			(	Granite					
Water B	earing F	Fracture 2	Zone		Sett	oacks						
Well Log	Depth		Rate				There is no \$	Setback	informa	ition.		
90482100	88.39m	4	4.55 lpm									



Date printed 12/19/2023					
Non-Drinking Water, Exploratory Dee	k Type pened <del>EPENED)</del>	Drill Method	1	Work Co 07/25/	-
Casing Information	Casing above	e ground	Driv	ve Shoe Used?	
	There is no casir	ng information.			
Aquifer Test/Yield         Initial Water       Pumpir         Method       Level (BTC)       Rate         Air       Om       0 lpm         (BTC - Below top of casing)       (BTC - Below top of casing)	Duration 0hr	Final Water Level (BTC) 0m	Estimated Safe Yield 204.75 lpm	Flowing Well? No	Rate 0 Ipm
	Drilling Fluids Use None	ed	Disinfectant N/A	Pump Installe N/A Intake Setting (E	
			Qty 0L	0m	
Driller's Log				Overall Well Dept	h
I nere is no rock	layer information.			0m Bedrock Level 0m	
Water Bearing Fracture Zone	Setbacks				
Well Log         Depth         Rate           91161900         121.92m         204.75 lpm		There is no S	Setback informa	tion.	



Date pri	inted 12/19/2023							
Drilled b Well Us Non-Dr	•	Work Type New Well (f WELL)	NEW	Drill Method	1		Work Com 07/29/2	•
	Casing Information	,	sing abov	e ground		Driv	ve Shoe Used?	
	Well Log Casing Type	Diameter	r	From	End	Slo	otted?	
	91162000 Steel	20.32cm		0m	6.71m			
Aquifer Method Air	Level (BTC)	0 lpm	uration 0hr	Final Water Level (BTC) 0m	Saf	imated e Yield 6 Ipm	Flowing Well? No	Rate 0 lpm
Well Gr	outing	Drilling	Fluids Us	ed	Disinfe	ectant	Pump Installec	1
1	There is no Grout information.	None			N/A Qty	0L	N/A Intake Setting (BT 0m	C)
Driller's	Log						Overall Well Depth	
		o rock layer inf	ormation.				Om	
							Bedrock Level 0m	
Water B	Bearing Fracture Zone	Setba	acks					
Well Log	Depth Rate			There is no S	Setback	informa	ation.	
91162000	73.15m 1.36 lpm							



Date prir	nted 12/19/2023					
Drilled b Well Use Non-Dri	•	Work Type New Well (NEW WELL)	Drill Method	I	Work Con 07/28/2	•
	Casing Information	Casing	above ground	Driv	ve Shoe Used?	
E	Well Log Casing Type 91162100 Steel	Diameter 15.24cm	From <b>0m</b>	End Sl 6.10m	otted?	_
Aquifer Method Air	Level (BTC)	umping Rate Durati 0 lpm Ohr casing)		Estimated Safe Yield 27.3 lpm	Flowing Well? No	Rate 0 Ipm
Well Gro	buting here is no Grout information.	Drilling Fluid		Disinfectant N/A Qty 0L	Pump Installer N/A Intake Setting (B1 Om	
Driller's I		o rock layer informa	ation.		Overall Well Depth 0m	
					Bedrock Level 0m	
Water Be	earing Fracture Zone	Setbacks				
Well Log 91162100	Depth         Rate           32.00m         27.3 lpm		There is no S	Setback informa	ation.	



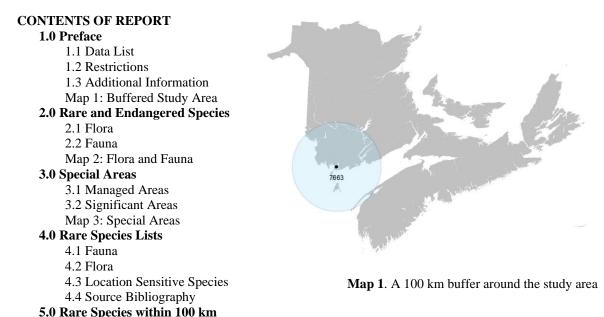
Date pri	inted 12/19/2023					
Drilled t Well Us Non-Dr		Work Type New Well (NEW <del>WELL)</del>	Drill Method		Work Com 07/31/2	•
	Casing Information	, Casing abov	/e ground	Driv	ve Shoe Used?	7
	Well Log Casing Type	Diameter	From	End Sl	otted?	
	91162200 Steel	15.24cm	0m	6.10m		
Aquifer Method Air	Level (BTC)	Pumping Rate Duration 0 lpm 0hr casing)	Final Water Level (BTC) 0m	Estimated Safe Yield 63.7 lpm	— · ·	Rate 0 lpm
Well Gr	outing	Drilling Fluids Us	sed	Disinfectant	Pump Installed	
Т	There is no Grout information.	None		N/A Qty 0L	N/A Intake Setting (BT Om	C)
Driller's	Log				Overall Well Depth	
	There is n	o rock layer information.			0m	
					Bedrock Level 0m	
Water B	Bearing Fracture Zone	Setbacks				
Well Log	Depth Rate		There is no S	etback informa	ation.	
91162200 91162200	30.48m         27.3 lpm           85.34m         36.4 lpm					



Date pri	nted	12/19/20	)23								
Drilled b	у										
Well Us	е			Work	Туре		Drill Method	ł		Work C	ompleted
Drinkin	g Water,	Domesti	С	New V WELI	Well (NEW _)		Rotary (RC	TARY	<b>'</b> )	06/1	6/1999
	Casing I	Informati	on		Casing a	above	ground		Driv	ve Shoe Used?	
	Well Log	Casing Ty	pe	D	iameter		From	End	SI	otted?	
	91594600	Steel		15	5.24cm		0m	6.10m	า		
Aquifer Method	Test/Yie	eld Initial W Level (B		oumping Rate	Duratio	on	Final Water Level (BTC)	Sa	timated fe Yield	Flowing Well?	Rate
Air		0m		91 lpm casina)	Ohr		3.05m	9	1 lpm	No	0 lpm
Well Gro	outing			D	rilling Fluids	s Use	d	Disinf	ectant	Pump Insta	lled
т	here is no	Grout info	ormation.	N	one			N/A		Submersib	-
								Qty	0L	19.81m	. ,
Driller's	Log									Overall Well Dep	oth
Well Log	From	End	Colour			Ro	ck Type			25.91m	
91594600		4.27m	Brown				/ and Gravel			Bedrock Level	
91594600	4.27m	25.91m	Black			Slat	e			4.27m	
Water B	earing F	racture 2	Zone		Setbacks						
Well Log	Depth		Rate				There is no S	Setback	(informa	ation.	
91594600	23.77m	9	1 lpm								

_rmation																																																		
_ng/L) /	As(µg/L)	B(mg/L)	Ba(mg/L)	Br(mg/L)	COND(\u0767	uµSIE/cm) Ca(mg/ ^J	د) Cd(µr	.(µg/L) CI(rr	.(mg/L)	Cr(µg/L)	Cu(µg/L)	E.coli P/A/F	A(P/A) F(mg/L)	J/L) Fe(m	ng/L) H^	HARD(mg/L)	K(mg/L)	Mg(mg/L)	Mn(mg/L)	_) NO2(m	,ng/L) NC	4O3(mg/L)	NOX(mg/L)	Na(mg/L)	Pb(µg/L)	SO4(mg/L)	Sb(µg/L)	Se(µg/L)	TC-P/A(P/A)	TURB(NTU)	TI(μg/L)	U(µg/L)	Zn(µg/L)	pH(pH)	Þ=COND(µSI	برالالحال المعالم معالم معالم معالم معالم معالم	∠L) Þ@B(no י	aits) Þ@C(no r	nits) ÞAN(Epr	.ı) ÞCAT(Er	m) Þ CO3/*	.(mg/L) Þ	۲ DIFB(%)	Þ DIFC(%)	Þ HCO3(mg/L)	ÞOH(mg/L)	Þ SIN(no units)	Þ DIFTDS(%)	E.coli-	.0-
.J25 ×	< 1.5	0.014	< 0.01	0.229	263	44.2	< 0.5			< 10	13	Ab	< 0.1	0.081	.1 12/	124	1.3	3.28	0.042	< 0.05	J 0.1"	<i>.</i> .18	0.23	5.68	2	7.14	< 1	< 1.5	Ab	0.65	< 1	< 0.5	5	7.58	233.821	135.966	-1.27	2.131	2.579	2.765	0.4	-3	3.48 5	5.873	112.6	0	-0.017			
.J25 -	< 1.5	0.02	< 0.01	< 0.1	248	38.2	< 0.5		,o	< 10	132	Ab	< 0.1	0.01	100	108	2.4	3.12	0.014	< 0.05	J 0.P ^r		0.87	7.28	* 12	8.95	< 1	< 1.5	Ab	< 0.2	< 1	< 0.5	130	7.64	220.632	131.287	-0.5	2.1	2.48	2.553	0.4	-1	1.452 5	5.84	102.6	0	-0.056			,
.J25 *	* 23	0.024	< 0.01	< 0.1	226	28.8	< 0.5	2.5 17.5		< 10	< 10	Ab	0.133	J 0.014	.4 81	٥1.7	0.7	2.38	< 0.005	< 0.05	J 0.2"	23	0.23	14.9	< 1	10.7	1.7	< 1.5	Ab	< 0.2	< 1	0.6	< 5	8.14	214.35	120.33	-0.6791	0.9161	2.2077	2.3032	0.9393	, -2	2.1184 2	2.6458	72.39	0.069	0.1824	-99.995		
																																																	0 0	*
.025 2	2.74	< 0.2	0.02	< 0.1	415	48.7	< 0.5		 ا	11	< 10		0.193	- * 0.5P	Jo 15°	159.4	2.72	9.19	0.261	< 0.05	م> د	. 0.05	< 0.05	13.2	< 1	9.99	< 1	< 1.5		* 6.2	< 1	1.27	< 5	7.81	380.397	210.176	1.45	1.646	4.12	3.873	0	3.1	ه 09.	4.35	120	0	0.113	-100		
												Ab																	Pr																					
0.02 0.02 0.02	225 < 1 225 < 1 225 * 2	025     < 1.5	025     < 1.5	025       < 1.5	025       < 1.5       0.014       < 0.01       0.229         025       < 1.5	025       < 1.5       0.014       < 0.01       0.229       263         025       < 1.5	225       < 1.5       0.014       < 0.01       0.229       263       44.2         225       < 1.5	225       < 1.5       0.014       < 0.01       0.229       263       44.2       < 0.5         225       < 1.5	225       < 1.5       0.014       < 0.01       0.229       263       44.2       < 0.5       5.05         225       < 1.5	225       < 1.5	225       < 1.5       0.014       < 0.01       0.229       263       44.2       < 0.5       5.05       < 10         225       < 1.5	225       < 1.5       0.014       < 0.01       0.229       263       44.2       < 0.5       5.05       < 10       13         225       < 1.5	225       < 1.5       0.014       < 0.01       0.229       263       44.2       < 0.5       5.05       < 10       13       Ab         225       < 1.5	225         0.014        0.029       263       44.2       <       0.5       <10       13       Ab       <0.1         225       <1.5	225         0.014        0.029       263       44.2       <       0.55       <10       13       Ab       <       0.01       0.081         225        1.5       0.02       <	valuevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevalue	valuevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevalue	225<1.50.014<0.010.22926344.2<0.55.05<1013Ab<0.10.0811241.3125<1.5	22<1.50.014<0.010.22926344.2<0.55.05<1013Ab<0.10.0811241.33.28125<1.5	224.50.014< 0.02926344.2< 0.55.05< 1013Ab< 0.10.0811241.33.280.042125< 1.5	22<1.50.014<0.010.22926344.2<0.55.05<1013Ab<0.10.0811241.33.280.042<0.05125<1.5	224.1.50.014< 0.010.2.292.6344.2< 0.55.05< 1013Ab< 0.10.0811241.33.280.042< 0.050.018125< 1.5	x 1.50.014< 0.010.22926344.2< 0.55.05< 1013Ab< 0.10.0811241.33.280.042< 0.050.018125< 1.50.02< 0.02< 0.01< 0.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01 <td>1.50.014&lt; 0.010.292634.4.2&lt; 0.55.05&lt; 10130.011.33.280.042&lt; 0.050.180.231.25&lt; 1.50.02&lt; 0.01&lt; 0.01&lt; 0.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01</td> <td>1.50.14&lt; 0.010.292634.2&lt; 0.55.05&lt; 1013Ab&lt; 0.10.201.30.42&lt; 0.050.180.235.681.25&lt; 0.15&lt; 0.01&lt; 0.010.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.110.110.110.120.120.120.130.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.</td> <td>1.50.14&lt; 0.010.200.200.634.42&lt; 0.55.05&lt; 10130.01133.280.042&lt; 0.050.180.235.6820.25&lt; 0.15&lt; 0.01&lt; 0.15&lt; 0.01&lt; 0.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01<t< td=""><td>1.50.04&lt; 0.010.290.290.634.42&lt; 0.55.05&lt; 101.00.011.011.02&lt; 0.050.180.235.6827.141.20&lt; 0.10</td>&lt; 0.01</t<></td> < 0.01	1.50.014< 0.010.292634.4.2< 0.55.05< 10130.011.33.280.042< 0.050.180.231.25< 1.50.02< 0.01< 0.01< 0.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01	1.50.14< 0.010.292634.2< 0.55.05< 1013Ab< 0.10.201.30.42< 0.050.180.235.681.25< 0.15< 0.01< 0.010.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.110.110.110.120.120.120.130.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.110.	1.50.14< 0.010.200.200.634.42< 0.55.05< 10130.01133.280.042< 0.050.180.235.6820.25< 0.15< 0.01< 0.15< 0.01< 0.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01 <t< td=""><td>1.50.04&lt; 0.010.290.290.634.42&lt; 0.55.05&lt; 101.00.011.011.02&lt; 0.050.180.235.6827.141.20&lt; 0.10</td>&lt; 0.01</t<>	1.50.04< 0.010.290.290.634.42< 0.55.05< 101.00.011.011.02< 0.050.180.235.6827.141.20< 0.10	1.50.0140.0140.0290.290.290.420.420.500.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.10	1.50.140.290.290.290.290.290.400.400.400.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.1	 A 1. A 1. A A A A A A A A A A A A A A A	 A 10 10 10 10 10 10 10 10 10 10 10 10 10	 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 A 1 1 A A A A A A A A A A A A A A A A A	Alverrel and a strain and strain and strain and a strain and a strain and a strain and	Alver and a bear and a	Alverrel and a single and single and a single and a single and a single and a single a	Alverrel and a single and single and a single and a single and a single and a single a	Alverrel and a single and single and a single and a single and a single and a single a	Als on the series of	Altic Al	As is is is in the stand and and and and and and and and and	Al i i i i i i i i i i i i i i i i i	Al i i i i i i i i i i i i i i i i i	Al for	19 10 10 10 10 10 10 10 10 10 10 10 10 10	cli 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 2	cli 1 1 all all all all all all all all all	    	<br< td=""><td>     </td></br<>	                                                           

# APPENDIX C


# 2023 AC CDC Data Report





### DATA REPORT 7663: Caithness, NB

Prepared 3 May 2023 by J. Pender, Conservation Data Analyst



### **1.0 PREFACE**

5.1 Source Bibliography

The Atlantic Canada Conservation Data Centre (AC CDC; <u>www.accdc.com</u>) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The AC CDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the AC CDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees.

Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the AC CDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

#### 1.1 DATA LIST

Included	datasets:
----------	-----------

Filename CaithnessNB_7663ob.xls CaithnessNB_7663ob100km.xls CaithnessNB_7663msa.xls CaithnessNB_7663ff_py.xls

#### **Contents**

Rare or legally-protected Flora and Fauna in your study area A list of Rare and legally protected Flora and Fauna within 100 km of your study area Managed and Biologically Significant Areas in your study area Rare Freshwater Fish in your study area (DFO database)

#### **1.2 RESTRICTIONS**

The AC CDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting AC CDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The AC CDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) AC CDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) AC CDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an AC CDC data response.

#### **1.3 ADDITIONAL INFORMATION**

The accompanying Data Dictionary provides metadata for the data provided.

Please direct any additional questions about AC CDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries	Animals (Fauna)
Sean Blaney	John Klymko
Senior Scientist / Executive Director	Zoologist
(506) 364-2658	(506) 364-2660
sean.blaney@accdc.ca	john.klymko@accdc.ca
Data Management, GIS	Billing
James Churchill	Jean Breau
Conservation Data Analyst / Field Biologist	Financial Manager / Executive Assistant
(902) 679-6146	(506) 364-2657
james.churchill@accdc.ca	jean.breau@accdc.ca

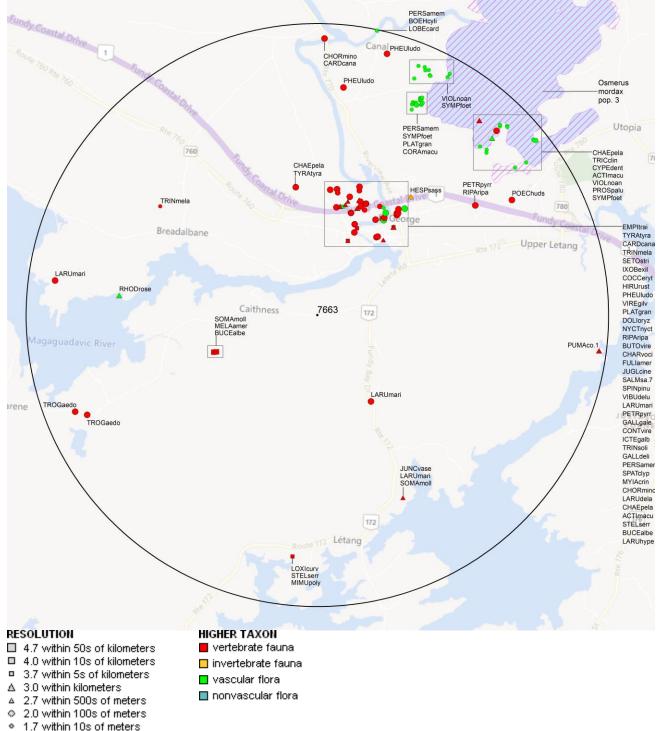
Questions on the biology of Federal Species at Risk can be directed to AC CDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Hubert Askanas, Energy and Resource Development: (506) 453-5873.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Donna Hurlburt, NS DLF: (902) 679-6886. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NS DLF Regional Biologist:

Western: Emma Vost	Western: Sarah Spencer	Central: Shavonne Meyer	Central: Kimberly George
(902) 670-8187	(902) 541-0081	(902) 893-0816	(902) 890-1046
Emma.Vost@novascotia.ca	Sarah.Spencer@novascotia.ca	Shavonne.Meyer@novascotia.ca	<u>Kimberly.George@novascotia.ca</u>
Eastern: Harrison Moore	Eastern: Maureen Cameron-MacMillan	Eastern: Elizabeth Walsh	
(902) 497-4119	(902) 295-2554	(902) 563-3370	
<u>Harrison.Moore@novascotia.ca</u>	<u>Maureen.Cameron-MacMillan@novascotia.ca</u>	<u>Elizabeth.Walsh@novascotia.ca</u>	

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Garry Gregory, PEI Dept. of Communities, Land and Environment: (902) 569-7595.


#### 2.1 FLORA

The study area contains 50 records of 14 vascular and no records of nonvascular flora (Map 2 and attached: *ob.xls), excluding 'location-sensitive' species.

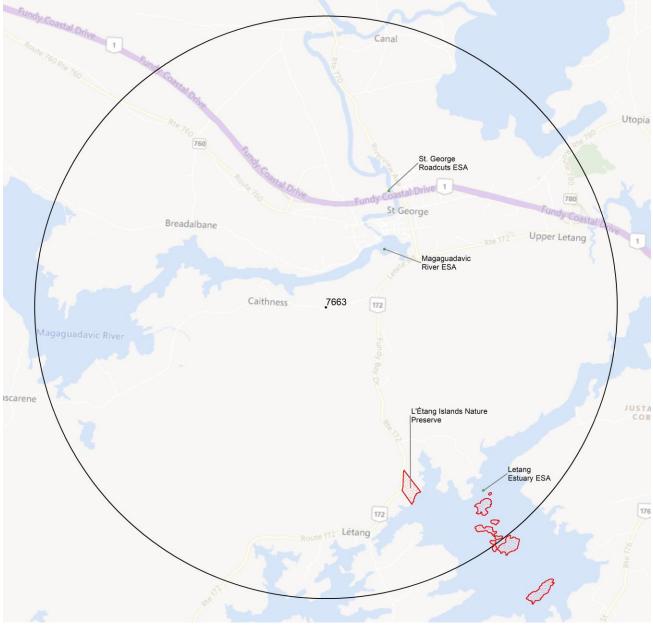
#### 2.2 FAUNA

The study area contains 178 records of 41 vertebrate and 1 record of 1 invertebrate fauna (Map 2 and attached data files - see 1.1 Data List), excluding 'location-sensitive' species. Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

Map 2: Known observations of rare and/or protected flora and fauna within the study area.



### **3.0 SPECIAL AREAS**


### **3.1 MANAGED AREAS**

The GIS scan identified 1 managed area in the vicinity of the study area (Map 3 and attached file: *msa.xls).

### **3.2 SIGNIFICANT AREAS**

The GIS scan identified 3 biologically significant sites in the vicinity of the study area (Map 3 and attached file: *msa.xls).

Map 3: Boundaries and/or locations of known Managed and Significant Areas within the study area.



🔝 Managed Area 🔝 Significant Area

### **4.0 RARE SPECIES LISTS**

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation ( $\pm$  the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

#### 4.1 FLORA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Р	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	1	$2.4 \pm 0.0$
Р	Viburnum dentatum var. lucidum	Northern Arrow-Wood				S2	2	2.1 ± 0.0
Ρ	Persicaria amphibia var. emersa	Long-root Smartweed				S2	3	$2.0 \pm 0.0$
Р	Viola novae-angliae	New England Violet				S2S3	7	$4.0 \pm 0.0$
Р	Rhodiola rosea	Roseroot				S3	1	3.4 ± 1.0
Р	Proserpinaca palustris	Marsh Mermaidweed				S3	2	4.1 ± 0.0
Р	Symplocarpus foetidus	Eastern Skunk Cabbage				S3	21	$4.0 \pm 0.0$
Р	Juncus vaseyi	Vasey Rush				S3	1	$3.5 \pm 0.0$
Ρ	Platanthera grandiflora	Large Purple Fringed Orchid				S3	5	1.9 ± 5.0
Р	Lobelia cardinalis	Cardinal Flower				S3S4	1	$5.0 \pm 0.0$
Р	Boehmeria cylindrica	Small-spike False-nettle				S3S4	1	$5.0 \pm 0.0$
Р	Cyperus dentatus	Toothed Flatsedge				S3S4	2	4.3 ± 1.0
Р	Trichophorum clintonii	Clinton's Clubrush				S3S4	2	$4.6 \pm 0.0$
Ρ	Corallorhiza maculata	Spotted Coralroot				S3S4	1	$3.9 \pm 0.0$

#### 4.2 FAUNA

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
Α	Salmo salar pop. 7	Atlantic Salmon - Outer Bay of Fundy population	Endangered		Endangered	SNR	1	1.9 ± 1.0
Α	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	5	1.6 ± 5.0
Α	Riparia riparia	Bank Swallow	Threatened	Threatened		S2B	27	1.8 ± 0.0
Α	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	21	1.4 ± 6.0
Α	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	6	1.7 ± 0.0
Α	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	1	$2.0 \pm 0.0$
Α	Dolichonyx oryzivorus	Bobolink	Special Concern	Threatened	Threatened	S3B	3	2.0 ± 2.0
Α	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	9	1.7 ± 0.0
Α	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	5	$2.0 \pm 0.0$
Α	Fulica americana	American Coot	Not At Risk			S1B	1	1.8 ± 0.0
Α	Puma concolor pop. 1	Cougar - Eastern population	Data Deficient		Endangered	SU	1	4.9 ± 1.0
Α	Tringa melanoleuca	Greater Yellowlegs				S1?B,S4S5M	2	2.2 ± 0.0
Α	Gallinula galeata	Common Gallinule				S1B	3	1.6 ± 5.0
Α	Butorides virescens	Green Heron				S1S2B	1	$2.0 \pm 0.0$
Α	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B	1	$2.0 \pm 0.0$
Α	Empidonax traillii	Willow Flycatcher				S1S2B	2	2.2 ± 0.0
Α	Stelgidopteryx serripennis	Northern Rough-winged Swallow				S1S2B	3	1.6 ± 0.0
Α	Troglodytes aedon	House Wren				S1S2B	2	$4.3 \pm 0.0$
Α	Melanitta americana	American Scoter				S1S2N,S3M	2	1.8 ± 16.0
Α	Petrochelidon pyrrhonota	Cliff Swallow				S2B	2	1.8 ± 0.0
Α	Mimus polyglottos	Northern Mockingbird				S2B	1	4.2 ± 7.0
Α	Tringa solitaria	Solitary Sandpiper				S2B,S4S5M	1	2.0 ± 2.0
Α	Larus hyperboreus	Glaucous Gull				S2N	1	1.4 ± 0.0
Α	lcterus galbula	Baltimore Oriole				S2S3B	2	1.8 ± 0.0
Α	Somateria mollissima	Common Eider				S2S3B,S2S3N,S4M	7	1.8 ± 16.0
Α	Larus delawarensis	Ring-billed Gull				S2S3B,S4N,S5M	2	1.7 ± 0.0
А	Larus marinus	Great Black-backed Gull				S3	6	1.7 ± 0.0

	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)
А	Loxia curvirostra	Red Crossbill				S3	2	4.2 ± 7.0
А	Spinus pinus	Pine Siskin				S3	2	2.2 ± 0.0
А	Spatula clypeata	Northern Shoveler				S3B	1	$2.0 \pm 4.0$
А	Charadrius vociferus	Killdeer				S3B	4	$2.0 \pm 0.0$
А	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B	1	2.1 ± 0.0
А	Myiarchus crinitus	Great Crested Flycatcher				S3B	1	1.7 ± 0.0
А	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	3	2.2 ± 0.0
А	Bucephala albeola	Bufflehead				S3N	9	1.7 ± 0.0
А	Poecile hudsonicus	Boreal Chickadee				S3S4	1	$3.9 \pm 0.0$
А	Tyrannus tyrannus	Eastern Kingbird				S3S4B	27	1.4 ± 6.0
А	Vireo gilvus	Warbling Vireo				S3S4B	3	1.9 ± 0.0
А	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	4	1.6 ± 5.0
А	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	1	2.0 ± 1.0
А	Setophaga striata	Blackpoll Warbler				S3S4B,S5M	1	$2.2 \pm 0.0$
I	Hesperia sassacus	Indian Skipper				S3	1	2.6 ± 1.0

#### **4.3 LOCATION SENSITIVE SPECIES**

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting your study area are indicated below with "YES".

#### **New Brunswick**

Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Chrysemys picta picta	Eastern Painted Turtle	Special Concern		No
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	YES
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	No
Haliaeetus leucocephalus	Bald Eagle		Endangered	YES
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.		Endangered	No
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat hibernaculum or bat spec	cies occurrence	[Endangered] ¹	[Endangered] ¹	No

1 Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

#### **4.4 SOURCE BIBLIOGRAPHY**

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

#### # recs CITATION

- 70 Berrigan, L. 2019. Maritimes Marsh Monitoring Project 2013, 2014, 2016, 2017, and 2018 data. Bird Studies Canada, Sackville, NB.
- eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
- 18 Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
- eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
- 14 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 14 Mazerolle, D.M. 2020. Atlantic Canada Conservation Data Centre botanical fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 10 Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).
- 10 iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
- 8 Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R. 2020. North American Breeding Bird Survey Dataset 1966 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9J6QUF6
- 7 Chapman, C.J. 2019. Atlantic Canada Conservation Data Centre 2019 botanical fieldwork. Atlantic Canada Conservation Data Centre, 11729 recs.
- 5 Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
- 5 Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.
- 4 Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
- 4 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 4 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.
- 3 Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
- 2 Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
- Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 1 Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- 1 Dept of Fisheries & Oceans, source unspecified.
- 1 e-Butterfly. 2016. Export of Maritimes records and photos. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 1 Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
- 1 Manthorne, A. 2019. Incidental aerial insectivore observations. Birds Canada.
- 1 Nature Trust of New Brunswick (NTNB). 2020. Nature Preserves and Conservation Easements (Received: 18 September, 2020). NTNB.
- 1 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
- 1 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.

### **5.0 RARE SPECIES WITHIN 100 KM**

A 100 km buffer around the study area contains 40585 records of 158 vertebrate and 1310 records of 72 invertebrate fauna; 7511 records of 329 vascular and 1349 records of 160 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs (including "location-sensitive" species). All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
A	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	62	35.3 ± 5.0	NB
A	Myotis septentrionalis	Northern Myotis	Endangered	Endangered	Endangered	S1	14	52.7 ± 1.0	NB
A	Perimyotis subflavus	Tricolored Bat	Endangered	Endangered	Endangered	S1	2	58.4 ± 0.0	NB
А	Eubalaena glacialis	North Atlantic Right Whale	Endangered	Endangered	Endangered	S1	7	15.1 ± 1.0	NB
	0	Rainbow Smelt - Lake	Ū	Ū	0				NB
А	Osmerus mordax pop. 2	Utopia Large-bodied population	Endangered	Threatened	Threatened	S1	2	6.3 ± 1.0	
	Charadrius melodus	Piping Plover melodus							NB
A	melodus	subspecies	Endangered	Endangered	Endangered	S1B	27	28.5 ± 0.0	ne -
А	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1B	21	$11.2 \pm 0.0$	NB
	Dermochelys coriacea pop.	Leatherback Sea Turtle -	6	0	9				NB
A	2	Atlantic population	Endangered	Endangered	Endangered	S1S2N	5	36.1 ± 0.0	
	-	Atlantic Salmon - Inner Bay							NB
A	Salmo salar pop. 1	of Fundy population	Endangered	Endangered	Endangered	S2	7	$24.3 \pm 0.0$	ne -
		Atlantic Salmon - Outer Bay							NB
A	Salmo salar pop. 7	of Fundy population	Endangered		Endangered	SNR	361	1.9 ± 1.0	ne -
		Caribou - Atlantic-							NB
A	Rangifer tarandus pop. 2	Gasp - sie population	Endangered	Endangered	Extirpated	SX	4	44.6 ± 1.0	NB
А	Lanius Iudovicianus	Loggerhead Shrike	Endangered	Endangered		SXB	1	52.0 ± 1.0	NB
A	Sturnella magna	Eastern Meadowlark	Threatened	Threatened	Threatened	S1B	20	$17.0 \pm 7.0$	NB
A	Asio flammeus	Short-eared Owl	Threatened	Special Concern	Special Concern	S1S2B	17	$43.5 \pm 7.0$	NB
A	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B	33	$1.6 \pm 5.0$	NB
A	Hylocichla mustelina	Wood Thrush	Threatened	Threatened	Threatened	S1S2B	157	8.5 ± 7.0	NB
A	Hydrobates leucorhous	Leach's Storm-Petrel	Threatened	moditionou	modified	S1S2B	146	$11.2 \pm 0.0$	NB
A	Catharus bicknelli	Bicknell's Thrush	Threatened	Threatened	Threatened	S2B	21	$5.8 \pm 7.0$	NB
A	Riparia riparia	Bank Swallow	Threatened	Threatened	modified	S2B	787	$1.8 \pm 0.0$	NB
A	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S2S3	953	$7.8 \pm 0.0$	NB
A	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	410	$1.4 \pm 6.0$	NB
A	Acipenser oxyrinchus	Atlantic Sturgeon	Threatened	medicileu	Threatened	S3B,S3N	2	$64.2 \pm 1.0$	NB
A	Tringa flavipes	Lesser Yellowlegs	Threatened		Threatened	S3M	653	$8.9 \pm 0.0$	NB
A	Limosa haemastica	Hudsonian Godwit	Threatened			S3M	95	$30.9 \pm 1.0$	NB
Â	Anguilla rostrata	American Eel	Threatened		Threatened	S4N	61	$14.1 \pm 1.0$	NB
A	Coturnicops noveboracensis	Yellow Rail	Special Concern	Special Concern	Special Concern	S1?B.SUM	3	$94.5 \pm 7.0$	NB
~	Histrionicus histrionicus pop.	Harlequin Duck - Eastern		•	•	- ,		54.5 ± 7.0	NB
A	1	population	Special Concern	Special Concern	Endangered	S1B,S1S2N,S2M	210	8.6 ± 0.0	
A	Antrostomus vociferus	Eastern Whip-Poor-Will	Special Concern	Threatened	Threatened	S2B	69	8.5 ± 7.0	NB
A	Hirundo rustica	Barn Swallow	Special Concern	Threatened	Threatened	S2B	1066	$1.7 \pm 0.0$	NB
A	Balaenoptera physalus	Fin Whale	Special Concern	Special Concern		S2S3	19	8.6 ± 0.0	NB
A	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S2S3B,S3M	122	5.8 ± 7.0	NB
A	Bucephala islandica	Barrow's Goldeneye	Special Concern	Special Concern	Special Concern	S2S3N,S3M	60	8.6 ± 0.0	NB
A	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S3	11	57.4 ± 10.0	NB
A	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	66	$2.0 \pm 0.0$	NB
A	Contopus virens	Eastern Wood-Pewee	Special Concern	Special Concern	Special Concern	S3B	460	$2.0 \pm 0.0$	NB
A	Contopus cooperi	Olive-sided Flycatcher	Special Concern	Threatened	Threatened	S3B	240	5.8 ± 7.0	NB
A	Dolichonyx oryzivorus	Bobolink	Special Concern	Threatened	Threatened	S3B	541	$2.0 \pm 4.0$	NB
A	Coccothraustes vespertinus	Evening Grosbeak	Special Concern	Special Concern		S3B,S3S4N,SUM	152	5.6 ± 0.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
A	Chordeiles minor	Common Nighthawk	Special Concern	Threatened	Threatened	S3B,S4M	267	1.7 ± 0.0	NB
4	Phalaropus lobatus	Red-necked Phalarope	Special Concern	Special Concern		S3M	229	7.1 ± 0.0	NB
4	Podiceps auritus	Horned Grebe	Special Concern	Special Concern	Special Concern	S3N	269	7.6 ± 22.0	NB
4	Cardellina canadensis	Canada Warbler	Special Concern	Threatened	Threatened	S3S4B	1057	$2.0 \pm 2.0$	NB
4	Phocoena phocoena	Harbour Porpoise	Special Concern		Spec.Concern	S4	240	5.9 ± 5.0	NB
Ą	Chrysemys picta picta	Eastern Painted Turtle	Special Concern	Special Concern		S4	70	$16.6 \pm 0.0$	NB
A	Anarhichas lupus	Atlantic Wolffish	Special Concern	Special Concern	Special Concern	SNR	1	$24.0 \pm 0.0$	NB
A	Fulica americana	American Coot	Not At Risk	opecial concern	Opecial Concern	S1B	7	$1.8 \pm 0.0$	NB
A	Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius	Not At Risk	Special Concern	Endangered	S1B,S3M	563	8.8 ± 1.0	NB
A	Falco peregrinus	Peregrine Falcon	Not At Risk	Special Concern		S1B,S3M	1	46.6 ± 0.0	NB
A	Bubo scandiacus	Snowy Owl	Not At Risk	-		S1N,S2S3M	33	$20.3 \pm 0.0$	NB
A	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B	19	16.7 ± 0.0	NB
A	Buteo lineatus	Red-shouldered Hawk	Not At Risk			S1S2B	50	15.5 ± 7.0	NB
A	Aegolius funereus	Boreal Owl	Not At Risk			S1S2B,SUM	5	43.7 ± 1.0	NB
A	Sorex dispar	Long-tailed Shrew	Not At Risk			S2	2	$43.9 \pm 1.0$	NB
A	Chlidonias niger	Black Tern	Not At Risk			S2B	347	51.0 ± 0.0	NB
A	Podiceps grisegena	Red-necked Grebe	Not At Risk			S2N,S3M	720	$7.0 \pm 0.0$	NB
A	Globicephala melas	Long-finned Pilot Whale Northern Dusky Salamander	Not At Risk			S2S3	3	24.0 ± 1.0	NB NB
A	Desmognathus fuscus pop. 2	- Quebec / New Brunswick population	Not At Risk			S3	64	23.3 ± 1.0	
A	Megaptera novaeangliae	Humpback Whale	Not At Risk			S3	35	11.1 ± 0.0	NB
A	Sterna hirundo	Common Tern	Not At Risk			S3B.SUM	380	$11.2 \pm 0.0$	NE
A	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4	2	$55.1 \pm 0.0$	NB
	0,				E a de a a a a d				NB
A	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered	S4	1599	$1.4 \pm 6.0$	
A	Lynx canadensis	Canada Lynx	Not At Risk		Endangered	S4	8	24.1 ± 50.0	NB
A	Canis lupus	Grey Wolf	Not At Risk		Extirpated	SX	3	52.6 ± 1.0	NE
A	Puma concolor pop. 1	Cougar - Eastern population	Data Deficient		Endangered	SU	36	4.9 ± 1.0	NE
A	Calidris canutus rufa	Red Knot rufa subspecies	E,SC	Endangered	Endangered	S2M	407	17.3 ± 0.0	NB
A	Morone saxatilis	Striped Bass	E,SC	-	-	S3S4B,S3S4N	12	21.0 ± 1.0	NB
A	Thryothorus ludovicianus	Carolina Wren				S1	35	$7.8 \pm 0.0$	NB
A	Vireo flavifrons	Yellow-throated Vireo				S1?B	16	39.8 ± 27.0	NB
A	Tringa melanoleuca	Greater Yellowlegs				S1?B,S4S5M	1317	$2.2 \pm 0.0$	NB
		Redhead				S1B	8		NB
A	Aythya americana							41.9 ± 0.0	
A	Gallinula galeata	Common Gallinule				S1B	28	1.6 ± 5.0	NB
A	Grus canadensis	Sandhill Crane				S1B	9	$20.3 \pm 0.0$	NE
A	Bartramia longicauda	Upland Sandpiper				S1B	49	7.5 ± 12.0	NB
A	Phalaropus tricolor	Wilson's Phalarope				S1B	61	32.1 ± 1.0	NB
A	Leucophaeus atricilla	Laughing Gull				S1B	88	$8.6 \pm 0.0$	NB
A	Rissa tridactyla	Black-legged Kittiwake				S1B	63	9.2 ± 0.0	NB
A	Uria aalge	Common Murre				S1B	154	$9.3 \pm 0.0$	NB
A	Alca torda	Razorbill				S1B	192	$9.3 \pm 0.0$	NB
A	Fratercula arctica	Atlantic Puffin				S1B S1B	192	$9.3 \pm 0.0$ 8.8 ± 1.0	NB
						S1B S1B			NE
A	Progne subis	Purple Martin					181	18.1 ± 0.0	
A	Histrionicus histrionicus	Harlequin Duck				S1B,S1S2N,S2M	1	$46.4 \pm 0.0$	NE
A	Aythya marila	Greater Scaup				S1B,S2N,S4M	40	17.6 ± 2.0	NE
A	Oxyura jamaicensis	Ruddy Duck				S1B,S2S3M	48	$20.4 \pm 0.0$	NE
A	Aythya affinis	Lesser Scaup				S1B,S4M	207	18.5 ± 0.0	NE
A	Eremophila alpestris	Horned Lark				S1B,S4N,S5M	26	9.9 ± 7.0	NE
A	Sterna paradisaea	Arctic Tern				S1B,SUM	153	8.8 ± 1.0	NE
A	Chroicocephalus ridibundus	Black-headed Gull				S1N,S2M	40	$7.5 \pm 0.0$	NE
									NE
A	Branta bernicla	Brant				S1N,S2S3M	541	7.8 ± 1.0	
A	Calidris alba	Sanderling				S1N,S3S4M	907	14.1 ± 1.0	NE
A	Butorides virescens	Green Heron				S1S2B	32	$2.0 \pm 0.0$	NE
A	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B	66	$2.0 \pm 0.0$	NE
A	Émpidonax traillii	Willow Flycatcher				S1S2B	94	$2.2 \pm 0.0$	NB
A	Stelgidopteryx serripennis	Northern Rough-winged				S1S2B	27	$1.6 \pm 0.0$	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
		Swallow							
A	Troglodytes aedon	House Wren				S1S2B	32	$4.3 \pm 0.0$	NB
A	Calidris bairdii	Baird's Sandpiper				S1S2M	139	31.7 ± 1.0	NB
4	Melanitta americana	American Scoter				S1S2N,S3M	798	1.8 ± 16.0	NB
Ą	Petrochelidon pyrrhonota	Cliff Swallow				S2B	430	1.8 ± 0.0	NB
A	Cistothorus palustris	Marsh Wren				S2B	394	$39.1 \pm 0.0$	NB
A	Mimus polyglottos	Northern Mockingbird				S2B	139	$4.2 \pm 7.0$	NB
A	Pooecetes gramineus	Vesper Sparrow				S2B	59	8.0 ± 7.0	NB
Ą	Mareca strepera	Gadwall				S2B,S3M	99	17.6 ± 3.0	NB
Ą	Tringa solitaria	Solitary Sandpiper				S2B,S4S5M	268	2.0 ± 2.0	NB
A	Pinicola enucleator	Pine Grosbeak				S2B,S4S5N,S4S5	27	$24.0 \pm 0.0$	NB
А	Phalacrocorax carbo	Great Cormorant				M S2N	321	$7.5 \pm 0.0$	NB
						S2N			NB
A	Somateria spectabilis	King Eider					56	$16.6 \pm 0.0$	
4	Larus hyperboreus	Glaucous Gull				S2N	160	$1.4 \pm 0.0$	NB
Ą	Melanitta perspicillata	Surf Scoter				S2N,S4M	113	10.6 ± 9.0	NB
Ą	Melanitta deglandi	White-winged Scoter				S2N.S4M	44	10.6 ± 9.0	NB
A	Asio otus	Long-eared Owl				S2S3	21	$8.4 \pm 7.0$	NB
		American Three-toed					2.	0.1 ± 1.0	NB
A	Picoides dorsalis	Woodpecker				S2S3	10	$24.4 \pm 7.0$	IND
4	Toxostoma rufum	Brown Thrasher				S2S3B	81	5.2 ± 6.0	NB
A	Icterus galbula	Baltimore Oriole				S2S3B	176	$1.8 \pm 0.0$	NB
	loterus guibulu	Balanore Onoie				S2S3B,S2S3N,S4	170	1.0 ± 0.0	NB
A	Somateria mollissima	Common Eider				52536,5253N,54 M	2022	1.8 ± 16.0	ND
A	Larus delawarensis	Ring-billed Gull				S2S3B,S4N,S5M	304	1.7 ± 0.0	NB
A	Pluvialis dominica	American Golden-Plover				S2S3M	289	$17.8 \pm 0.0$	NB
A		Lapland Longspur				S2S3N,SUM	36	$44.1 \pm 0.0$	NB
	Calcarius lapponicus								
A	Larus marinus	Great Black-backed Gull				S3	461	$1.7 \pm 0.0$	NB
A	Picoides arcticus	Black-backed Woodpecker				S3	41	8.4 ± 7.0	NB
A	Loxia curvirostra	Red Crossbill				S3	101	4.2 ± 7.0	NB
A	Spinus pinus	Pine Siskin				S3	188	$2.2 \pm 0.0$	NB
A	Prosopium cylindraceum	Round Whitefish				S3	2	65.3 ± 10.0	NB
A.	Salvelinus namaycush	Lake Trout				S3	6	20.1 ± 0.0	NB
A	Sorex maritimensis	Maritime Shrew				S3	1	93.4 ± 1.0	NB
Ą	Spatula clypeata	Northern Shoveler				S3B	95	2.0 ± 4.0	NB
A	Charadrius vociferus	Killdeer				S3B	744	$2.0 \pm 0.0$	NB
Ą	Tringa semipalmata	Willet				S3B	174	17.6 ± 2.0	NB
Ă.	Cepphus grylle	Black Guillemot				S3B	809	$6.0 \pm 7.0$	NB
A	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B	150	2.1 ± 0.0	NB
A	Myiarchus crinitus	Great Crested Flycatcher				S3B	291	1.7 ± 0.0	NB
Ą	Piranga olivacea	Scarlet Tanager				S3B	165	8.4 ± 7.0	NB
Ą	Pheucticus Iudovicianus	Rose-breasted Grosbeak				S3B	555	$2.2 \pm 0.0$	NB
A	Passerina cyanea	Indigo Bunting				S3B	98	$5.8 \pm 7.0$	NB
									NB
A	Molothrus ater	Brown-headed Cowbird				S3B	214	5.8 ± 7.0	
A	Setophaga tigrina	Cape May Warbler				S3B,S4S5M	106	5.8 ± 7.0	NB
A	Mergus serrator	Red-breasted Merganser				S3B,S4S5N,S5M	396	5.8 ± 7.0	NB
4	Anas acuta	Northern Pintail				S3B,S5M	48	34.7 ± 2.0	NB
A.	Anser caerulescens	Snow Goose				S3M	6	44.1 ± 0.0	NB
	Numenius phaeopus								NB
4	hudsonicus	Whimbrel				S3M	460	8.8 ± 1.0	
4	Arenaria interpres	Ruddy Turnstone				S3M	753	17.2 ± 0.0	NB
A	Calidris pusilla	Semipalmated Sandpiper				S3M	2608	$6.4 \pm 0.0$	NB
Ą	Calidris melanotos	Pectoral Sandpiper				S3M	353	$23.7 \pm 2.0$	NB
A	Limnodromus griseus	Short-billed Dowitcher				S3M	862	$8.9 \pm 0.0$	NB
A	Phalaropus fulicarius	Red Phalarope				S3M	127	$7.1 \pm 0.0$	NB
^	Bucephala albeola	Bufflehead				S3N	1133	1.7 ± 0.0	NB
A									
A	Calidris maritima	Purple Sandpiper				S3N	272	8.5 ± 10.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
1	Perisoreus canadensis	Canada Jay				S3S4	200	5.8 ± 7.0	NB
	Poecile hudsonicus	Boreal Chickadee				S3S4	179	$3.9 \pm 0.0$	NB
	Eptesicus fuscus	Big Brown Bat				S3S4	50	8.5 ± 1.0	NB
	Synaptomys cooperi	Southern Bog Lemming				S3S4	18	64.4 ± 1.0	NB
	Tyrannus tyrannus	Eastern Kingbird				S3S4B	515	$1.4 \pm 6.0$	NB
	Vireo gilvus	Warbling Vireo				S3S4B	232	$1.9 \pm 0.0$	NB
	Actitis macularius	Spotted Sandpiper				S3S4B,S4M	1057	$1.6 \pm 5.0$	NE
L .	Melospiza lincolnii	Lincoln's Sparrow				S3S4B,S4M	217	$5.8 \pm 7.0$	NB
<b>N</b>	1	•				,-			
<b>\</b>	Gallinago delicata	Wilson's Snipe				S3S4B,S5M	835	2.0 ± 1.0	NB
۱.	Setophaga striata	Blackpoll Warbler				S3S4B,S5M	95	$2.2 \pm 0.0$	NB
A	Pluvialis squatarola	Black-bellied Plover				S3S4M	1143	8.9 ± 0.0	NB
۹	Morus bassanus	Northern Gannet				SHB	851	8.8 ± 1.0	NB
	Quercus macrocarpa - Acer	Bur Oak - Red Maple /							NB
	rubrum / Onoclea sensibilis -	Sensitive Fern - Northern				S2	1	99.0 ± 0.0	
	Carex arcta Forest	Clustered Sedge Forest							
	Acer saccharinum / Onoclea	Silver Maple / Sensitive Fern							NB
2	sensibilis - Lysimachia	- Swamp Yellow Loosestrife				S3	1	65.2 ± 0.0	ND
						33	1	$05.2 \pm 0.0$	
	terrestris Forest	Forest							
	Acer saccharum - Fraxinus	Sugar Maple - White Ash /							NB
0	americana / Polystichum	Christmas Fern Forest				S3S4	2	84.2 ± 0.0	
	acrostichoides Forest	Chinstinas i entri orest							
	Bombus bohemicus	Ashton Cuckoo Bumble Bee	Endangered	Endangered		S1	8	17.2 ± 5.0	NB
	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S2S3?B	243	$5.8 \pm 7.0$	NB
	Bombus affinis	Rusty-patched Bumble Bee	Endangered	Endangered	opoolal oonoonn	SH	1	95.4 ± 5.0	NB
	Dombus annis	Suckley's Cuckoo Bumble	Lindangered	Lindangered				33.4 ± 3.0	NB
	Bombus suckleyi	Bee	Threatened			SH	1	$70.2 \pm 5.0$	ND
	Gomphurus ventricosus	Skillet Clubtail	Special Concern	Endangered	Endangered	S2	94	89.1 ± 0.0	NB
	Cicindela marginipennis	Cobblestone Tiger Beetle	Special Concern	Endangered	Endangered	S2S3	14	98.3 ± 0.0	NB
	Ophiogomphus howei	Pygmy Snaketail	Special Concern	Special Concern	Special Concern	S2S3	17	$11.0 \pm 0.0$	NB
						S3		$64.7 \pm 0.0$	NB
	Alasmidonta varicosa	Brook Floater	Special Concern	Special Concern	Special Concern		1		
	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S3	79	65.1 ± 0.0	NB
	Bombus terricola	Yellow-banded Bumble Bee	Special Concern	Special Concern		S4	82	$7.2 \pm 0.0$	NB
	Coccinella transversoguttata richardsoni	Transverse Lady Beetle	Special Concern			SH	15	55.2 ± 0.0	NB
	Appalachina sayana sayana	Spike-lip Crater Snail	Not At Risk			S3?	1	68.8 ± 1.0	NB
		Butternut Curculio	NOLALINSK			S1	3	$91.7 \pm 0.0$	NB
	Conotrachelus juglandis					-			
	Haematopota rara	Shy Cleg				S1	1	91.7 ± 1.0	NB
	Tharsalea dorcas	Dorcas Copper				S1	1	41.1 ± 0.0	NB
	Erora laeta	Early Hairstreak				S1	6	68.6 ± 7.0	NB
	Somatochlora septentrionalis	Muskeg Emerald				S1	1	89.0 ± 1.0	NB
	Polites origenes	Crossline Skipper				S1?	8	87.4 ± 0.0	NB
	Icaricia saepiolus	Greenish Blue				S1S2	4	$16.9 \pm 0.0$	NB
		Blue Dasher				S1S2	3	$15.3 \pm 1.0$	NB
	Pachydiplax longipennis					3132	3	$15.5 \pm 1.0$	NB
	Encyclops caeruleus	Cerulean Long-horned Beetle				S2	1	94.1 ± 0.0	NB
	Scaphinotus viduus	Bereft Snail-eating Beetle				S2	1	80.9 ± 0.0	NB
	Brachyleptura circumdata	Dark-shouldered Long- horned Beetle				S2	6	92.7 ± 0.0	NB
	Satyrium calanus	Banded Hairstreak				S2	24	53.3 ± 0.0	NB
	Satyrium calanus falacer	Falacer Hairstreak				S2	1	$94.5 \pm 1.0$	NB
									NB
	Strymon melinus	Gray Hairstreak				S2	4	40.3 ± 2.0	
	Hybomitra frosti	Frost's Horse Fly				S2S3	1	79.0 ± 0.0	NB
	Tabanus vivax	Vivacious Horse Fly				S2S3	1	57.7 ± 0.0	NB
	Ophiogomphus colubrinus	Boreal Snaketail				S2S3	40	29.4 ± 1.0	NB
	Sphaeroderus nitidicollis	Polished Snail-eating Beetle				S3	1	97.2 ± 0.0	NB
	•	Two-spotted Long-horned							NE
	Lepturopsis biforis	Beetle				S3	1	64.7 ± 1.0	
		Deelle							

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
	Semanotus terminatus	Light Long-horned Beetle				S3	1	83.1 ± 0.0	NB
	Desmocerus palliatus	Elderberry Borer				S3	9	64.7 ± 1.0	NB
I	Agonum excavatum	Excavated Harp Ground Beetle				S3	1	$92.8 \pm 0.0$	NB
l	Clivina americana	America Pedunculate Ground Beetle				S3	1	92.8 ± 0.0	NB
I	Olisthopus parmatus	Tawny-bordered Harp Ground Beetle				S3	1	97.2 ± 0.0	NB
I	Tachys scitulus	Handsome Riverbank Ground Beetle				S3	1	92.8 ± 0.0	NB
I	Carabus maeander	Meander Ground Beetle				S3	1	50.8 ± 0.0	NB
I	Coccinella hieroglyphica kirbyi	a Ladybird Beetle				S3	1	64.7 ± 1.0	NB
I	Hippodamia parenthesis	Parenthesis Lady Beetle				S3	4	64.7 ± 1.0	NB
I	Stenocorus vittiger	Shrub Long-horned Beetle				S3	1	92.8 ± 0.0	NB
I	Gnathacmaeops pratensis	Meadow Flower Longhorn Beetle				S3	5	64.7 ± 1.0	NB
I	Pogonocherus mixtus	Mixed-spotted Flatface Sawyer				S3	1	64.7 ± 1.0	NB
1	Badister neopulchellus	Red-black Spotted Beetle				S3	1	92.8 ± 0.0	NB
I	Gonotropis dorsalis	Birch Fungus Weevil				S3	1	83.1 ± 0.0	NB
	Naemia seriata	Seaside Lady Beetle				S3	2	$16.7 \pm 0.0$	NB
I	Saperda lateralis	Red-edged Long-horned Beetle				S3	2	52.2 ± 0.0	NB
1	Epargyreus clarus	Silver-spotted Skipper				S3	15	29.7 ± 1.0	NB
	Hesperia sassacus	Indian Skipper				S3	20	$2.6 \pm 1.0$	NB
	Euphyes bimacula	Two-spotted Skipper				S3	22	$7.1 \pm 1.0$	NB
i	Satyrium acadica	Acadian Hairstreak				S3	15	$41.7 \pm 1.0$	NB
1	Plebejus idas	Northern Blue				S3	2	$24.5 \pm 0.0$	NB
I	Plebejus idas empetri	Crowberry Blue				S3	25	13.9 ± 2.0	NB
I	Argynnis aphrodite	Aphrodite Fritillary				S3	24	$11.0 \pm 0.0$	NB
1	Boloria bellona	Meadow Fritillary				S3	55	$14.3 \pm 4.0$	NB
	Nymphalis I-album	Compton Tortoiseshell				S3	26	$35.5 \pm 0.0$	NB
I	Gomphurus vastus	Cobra Clubtail				S3	115	$82.5 \pm 0.0$	NB
I	Celithemis martha	Martha's Pennant				S3	8	$15.6 \pm 0.0$	NB
i	Ladona exusta	White Corporal				S3	10	$17.1 \pm 0.0$	NB
	Enallagma pictum	Scarlet Bluet				S3	10	$38.7 \pm 0.0$	NB
	Ischnura kellicotti	Lilypad Forktail				S3	19	$35.2 \pm 0.0$	NB
	Arigomphus furcifer	Lilypad Clubtail				S3	24	$50.5 \pm 0.0$	NB
	Alasmidonta undulata	Triangle Floater				S3	17	$24.1 \pm 1.0$	NB
I	Atlanticoncha ochracea	Tidewater Mucket				S3	128	56.8 ± 1.0	NB
	Striatura ferrea	Black Striate Snail				S3	1	$91.8 \pm 1.0$	NB
	Neohelix albolabris	Whitelip Snail				S3	2	81.2 ± 0.0	NB
	Spurwinkia salsa	Saltmarsh Hydrobe				S3	34	$38.3 \pm 0.0$	NB
	Pantala hymenaea	Spot-Winged Glider				S3B	12	$16.0 \pm 1.0$	NB
I	Bombus griseocollis	Brown-belted Bumble Bee				S3S4	2	$94.5 \pm 0.0$	NB
I	Somatochlora forcipata	Forcipate Emerald				S3S4	19	$16.0 \pm 1.0$	NB
I	Somatochlora tenebrosa	Clamp-Tipped Emerald				S3S4	7	43.4 ± 1.0	NB
N	Erioderma pedicellatum (Atlantic pop.)	Boreal Felt Lichen - Atlantic pop.	Endangered	Endangered	Endangered	SH	1	26.0 ± 1.0	NB
N	Pannaria lurida	Wrinkled Shingle Lichen	Threatened	Threatened		S1?	160	5.6 ± 0.0	NB
N	Heterodermia squamulosa	Scaly Fringe Lichen	Threatened			S1?	9	$44.1 \pm 0.0$	NB
N	Anzia colpodes	Black-foam Lichen White-rimmed Shingle	Threatened	Threatened		S1S2	2	$45.0 \pm 1.0$	NB NB
N	Fuscopannaria leucosticta	Lichen	Threatened			S2	196	$44.0 \pm 0.0$	
N	Pectenia plumbea	Blue Felt Lichen	Special Concern	Special Concern	Special Concern	S1	400	$25.5 \pm 5.0$	NB
N	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk			S2S3	20	$11.4 \pm 0.0$	NB
N	Imbribryum muehlenbeckii	Muehlenbeck's Bryum Moss				S1	1	58.0 ± 1.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Sphagnum macrophyllum	Sphagnum				S1	4	31.5 ± 0.0	NB
1	Coscinodon cribrosus	Sieve-Toothed Moss				S1	1	61.7 ± 0.0	NB
	Sticta fuliginosa	Peppered Moon Lichen				S1	3	99.6 ± 0.0	NS
	Leptogium hirsutum	Jellyskin Lichen				S1	26	48.3 ± 0.0	NB
1	Coccocarpia palmicola	Salted Shell Lichen				S1	4	$5.6 \pm 0.0$	NB
1	Peltigera collina	Tree Pelt Lichen				S1	1	46.1 ± 10.0	NB
l	Peltigera malacea	Veinless Pelt Lichen				S1	1	91.5 ± 0.0	NS
1	Cladonia krogiana	Krog's Pixie Lichen				S1	1	24.1 ± 0.0	NB
1	Pseudocalliergon trifarium	Three-ranked Spear Moss				S1?	1	52.0 ± 0.0	NB
١	Dichelyma falcatum	a Moss				S1?	2	55.2 ± 1.0	NB
١	Dicranum bonjeanii	Bonjean's Broom Moss				S1?	1	93.9 ± 1.0	NB
1	Oxyrrhynchium hians	Light Beaked Moss				S1?	1	95.7 ± 1.0	NB
1	Plagiothecium latebricola	Alder Silk Moss				S1?	1	58.1 ± 0.0	NB
1	Niphotrichum ericoides	Dense Rock Moss				S1?	1	$63.2 \pm 3.0$	NB
1	Splachnum pensylvanicum	Southern Dung Moss				S1?	1	$88.3 \pm 0.0$	NB
1	Platylomella lescurii	a Moss				S1?	1	$26.8 \pm 1.0$	NB
N	Flatylomena lescum					012		20.0 ± 1.0	NB
1	Pilophorus fibula	New England Matchstick Lichen				S1?	1	18.7 ± 0.0	IND
J	Peltigera venosa	Fan Pelt Lichen				S1?	2	49.6 ± 0.0	NB
N N	Cladonia oricola	Cladonia Lichen				S1?	2	$43.3 \pm 0.0$	NB
N N						S12 S1S2	2 1		NB
	Pallavicinia lyellii	Lyell's Ribbonwort					•	74.6 ± 1.0	
1	Reboulia hemisphaerica	Purple-margined Liverwort				S1S2	1	23.3 ± 1.0	NB
N	Solenostoma obovatum	Egg Flapwort				S1S2	1	71.5 ± 0.0	NB
١	Brachythecium acuminatum	Acuminate Ragged Moss				S1S2	2	95.7 ± 10.0	NB
1	Ptychostomum salinum	Saltmarsh Bryum				S1S2	1	25.0 ± 1.0	NB
1	Pseudocampylium radicale	Long-stalked Fine Wet Moss				S1S2	1	95.7 ± 1.0	NB
1	Ditrichum pallidum	Pale Cow-hair Moss				S1S2	1	83.0 ± 1.0	NB
١	Sphagnum platyphyllum	Flat-leaved Peat Moss				S1S2	2	52.9 ± 0.0	NB
N	Tomentypnum falcifolium	Sickle-leaved Golden Moss				S1S2	1	34.5 ± 1.0	NB
N	Pseudotaxiphyllum distichaceum	a Moss				S1S2	2	25.0 ± 1.0	NB
N	Hamatocaulis vernicosus	a Moss				S1S2	1	87.2 ± 100.0	NB
٨	Pilophorus cereolus	Powdered Matchstick Lichen				S1S2	1	18.7 ± 0.0	NB
1	Calypogeia neesiana	Nees' Pouchwort				S1S3	1	83.6 ± 1.0	NB
	Fuscocephaloziopsis								NB
N	connivens	Forcipated Pincerwort				S1S3	1	$73.3 \pm 0.0$	ND
1	Cephaloziella elachista	Spurred Threadwort				S1S3	1	51.9 ± 5.0	NB
١	Porella pinnata	Pinnate Scalewort				S1S3	2	55.1 ± 1.0	NB
1	Amphidium mouqeotii	a Moss				S2	3	24.8 ± 8.0	NB
1	Anomodon viticulosus	a Moss				S2	6	$59.5 \pm 0.0$	NB
1	Cynodontium strumiferum	Strumose Dogtooth Moss				S2	1	$24.8 \pm 8.0$	NB
1	Didymodon ferrugineus	Rusty Beard Moss				S2	1	$82.8 \pm 1.0$	NB
1	Ditrichum flexicaule	Flexible Cow-hair Moss				S2	1	$70.9 \pm 1.0$	NB
N N	Anomodon tristis	a Moss				S2 S2	1	$70.9 \pm 1.0$ 59.2 ± 1.0	NB
1						S2 S2	-		NB
	Hypnum pratense	Meadow Plait Moss					1	$55.4 \pm 0.0$	
1	Isothecium myosuroides	Slender Mouse-tail Moss				S2 S2	11	$21.3 \pm 0.0$	NB NB
N	Physcomitrium immersum Platydictya	a Moss					7	88.2 ± 1.0	NB
	jungermannioides	False Willow Moss				S2	1	$23.3 \pm 0.0$	
1	Seligeria calcarea	Chalk Brittle Moss				S2	1	70.9 ± 1.0	NB
1	Sphagnum lindbergii	Lindberg's Peat Moss				S2	8	25.0 ± 1.0	NB
1	Tayloria serrata	Serrate Trumpet Moss				S2	1	94.3 ± 1.0	NB
1	Tetraplodon mnioides	Entire-leaved Nitrogen Moss				S2	3	25.0 ± 1.0	NB
١	Thamnobryum alleghaniense	a Moss				S2	1	91.2 ± 0.0	NB
1	Tortula mucronifolia	Mucronate Screw Moss				S2	1	$61.2 \pm 0.0$	NB
1	Ulota phyllantha	a Moss				S2	4	$21.8 \pm 0.0$	NB
1	Anomobryum julaceum	Slender Silver Moss				S2	1	$95.7 \pm 1.0$	NB
•	, montobry anti jalaooanti					01		00.7 ± 1.0	110

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
I	Cladonia incrassata	Powder-foot British Soldiers Lichen				S2	1	$33.4 \pm 0.0$	NB
	Leptogium corticola	Blistered Jellyskin Lichen				S2	2	85.0 ± 1.0	NB
	Leptogium milligranum	Stretched Jellyskin Lichen				S2	3	51.6 ± 0.0	NB
	Nephroma laevigatum	Mustard Kidney Lichen				S2	5	46.1 ± 10.0	NB
	Peltigera lepidophora	Scaly Pelt Lichen				S2	3	49.5 ± 0.0	NB
	Andreaea rothii	Dusky Rock Moss				S2?	1	82.0 ± 0.0	NB
	Ptychostomum pallescens	Tall Clustered Bryum				S2?	2	46.4 ± 1.0	NB
	Dichelyma capillaceum	Hairlike Dichelyma Moss				S2?	2	$51.5 \pm 2.0$	NB
	Dicranum spurium	Spurred Broom Moss				S2?	3	$16.2 \pm 0.0$	NE
	Schistostega pennata	Luminous Moss				S2?	1	95.7 ± 1.0	NE
	Sphagnum angermanicum	a Peatmoss				S2?	2	$34.4 \pm 1.0$	NE
	Collema leptaleum	Crumpled Bat's Wing Lichen				S2?	1	98.7 ± 0.0	NE
	Physcia subtilis	Slender Rosette Lichen				S2?	1	$76.8 \pm 0.0$	NB
	Ptychostomum cernuum	Swamp Bryum				S2S3	2	$21.8 \pm 0.0$	NE
	Buxbaumia aphylla	Brown Shield Moss				S2S3	2	$24.8 \pm 8.0$	NB
	Buxbaumia apriyila							24.0 ± 0.0	NE
	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	5	16.5 ± 10.0	INC
	Drepanocladus polygamus	Polygamous Hook Moss				S2S3	1	71.8 ± 1.0	NB
	Palustriella falcata	Curled Hook Moss				S2S3	1	70.9 ± 1.0	NB
	Didymodon rigidulus	Rigid Screw Moss				S2S3	3	59.5 ± 0.0	NB
	Ephemerum serratum	a Moss				S2S3	1	98.1 ± 0.0	NB
	Fissidens bushii	Bush's Pocket Moss				S2S3	2	59.5 ± 0.0	NE
	Neckera complanata	a Moss				S2S3	4	59.5 ± 0.0	NB
	Orthotrichum elegans	Showy Bristle Moss				S2S3	3	$14.5 \pm 2.0$	NB
	Codriophorus fascicularis	Clustered Rock Moss				S2S3	1	$17.4 \pm 0.0$	NE
	Bucklandiella affinis	Lesser Rock Moss				S2S3	1	$89.5 \pm 0.0$	NS
	Scorpidium scorpioides	Hooked Scorpion Moss				S2S3	4	$52.0 \pm 0.0$	NE
	Seligeria campylopoda	a Moss				S2S3	1	87.2 ± 100.0	NE
	Sphagnum centrale	Central Peat Moss				S2S3	2	$51.4 \pm 0.0$	NE
	Sphagnum subfulvum	a Peatmoss				S2S3	5	$34.5 \pm 1.0$	NE
	Taxiphyllum deplanatum	Imbricate Yew-leaved Moss				S2S3	1	$34.3 \pm 1.0$ 25.0 ± 1.0	NE
	Zygodon viridissimus	a Moss				S2S3	3	$17.5 \pm 3.0$	NE
		Elf Bloom Moss				S2S3	2		NE
	Schistidium agassizii							$14.5 \pm 2.0$	
	Loeskeobryum brevirostre	a Moss				S2S3	4	70.9 ± 1.0	NB
	Sphaerophorus globosus	Northern Coral Lichen				S2S3	1	66.8 ± 0.0	NB
	Chaenotheca xyloxena	<b>E</b> 114 4				S2S3	2	$24.6 \pm 0.0$	NB
	Polychidium muscicola	Eyed Mossthorns Woollybear Lichen				S2S3	3	$66.8 \pm 0.0$	NE
	Cynodontium tenellum	Delicate Dogtooth Moss				S3	1	25.0 ± 1.0	NB
	Hypnum curvifolium	Curved-leaved Plait Moss				S3	1	$22.6 \pm 5.0$	NB
	Schistidium maritimum	a Moss				S3	5	$21.3 \pm 0.0$	NE
	Solorina saccata	Woodland Owl Lichen				S3	1	49.5 ± 0.0	NB
	Ahtiana aurescens	Eastern Candlewax Lichen				S3	2	$40.0 \pm 0.0$ 50.4 ± 0.0	NE
	Normandina pulchella	Rimmed Elf-ear Lichen				S3	9	91.1 ± 1.0	NS
	Cladonia strepsilis	Olive Cladonia Lichen				S3	3	$17.8 \pm 2.0$	NE
	Hypotrachyna catawbiensis	Powder-tipped Antler Lichen				S3	30	$17.8 \pm 2.0$ $17.8 \pm 2.0$	NE
		Tattered Jellyskin Lichen				S3	2	$17.8 \pm 2.0$ 49.6 ± 0.0	NB
	Scytinium lichenoides	Short-bearded Jellyskin							NE
	Leptogium laceroides	Lichen				S3	3	18.7 ± 0.0	
	Peltigera membranacea	Membranous Pelt Lichen				S3	3	52.8 ± 0.0	NE
	Cladonia botrytes	Wooden Soldiers Lichen				S3	1	51.2 ± 0.0	NB
	Cladonia deformis	Lesser Sulphur-cup Lichen				S3	2	16.9 ± 0.0	NE
	Aulacomnium androgynum	Little Groove Moss				S3?	9	17.3 ± 1.0	NB
	Dicranella rufescens	Red Forklet Moss				S3?	2	86.5 ± 4.0	NE
	Rhytidiadelphus loreus	Lanky Moss				S3?	1	59.6 ± 10.0	NE
	Sphagnum lescurii	a Peatmoss				S3?	2	50.7 ± 1.0	NB
	Sphagnum inundatum	a Sphagnum				S3?	2	82.0 ± 0.0	NE

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
N	Rostania occultata	Crusted Tarpaper Lichen				S3?	1	98.7 ± 0.0	NB
N	Scytinium subtile	Appressed Jellyskin Lichen				S3?	5	17.8 ± 2.0	NB
N	Anomodon rugelii	Rugel's Anomodon Moss				S3S4	1	51.5 ± 2.0	NB
Ν	Barbula convoluta	Lesser Bird's-claw Beard Moss				S3S4	1	78.9 ± 8.0	NB
N	Brachytheciastrum velutinum	Velvet Ragged Moss				S3S4	4	20.5 ± 0.0	NB
N	Dicranella cerviculata	a Moss				S3S4	3	16.7 ± 6.0	NB
N	Dicranum majus	Greater Broom Moss				S3S4	8	18.5 ± 0.0	NB
N	Fissidens bryoides	Lesser Pocket Moss				S3S4	3	81.3 ± 4.0	NB
N	Elodium blandowii	Blandow's Bog Moss				S3S4	1	63.1 ± 0.0	NB
N	Heterocladium dimorphum	Dimorphous Tangle Moss				S3S4	1	14.5 ± 2.0	NB
N	lsopterygiopsis muelleriana	a Moss				S3S4	7	20.5 ± 0.0	NB
N	Myurella julacea	Small Mouse-tail Moss				S3S4	2	24.8 ± 8.0	NB
N	Orthotrichum speciosum	Showy Bristle Moss				S3S4	1	95.1 ± 0.0	NB
N	Physcomitrium pyriforme	Pear-shaped Urn Moss				S3S4	5	90.7 ± 0.0	NB
N	Pogonatum dentatum	Mountain Hair Moss				S3S4	2	18.5 ± 0.0	NB
N	Sphagnum torreyanum	a Peatmoss				S3S4	4	$48.4 \pm 0.0$	NB
N	Sphagnum austinii	Austin's Peat Moss				S3S4	2	8.4 ± 1.0	NB
N	Sphagnum contortum	Twisted Peat Moss				S3S4	1	$70.7 \pm 0.0$	NB
١	Sphagnum guinguefarium	Five-ranked Peat Moss				S3S4	2	70.9 ± 1.0	NB
N	Splachnum rubrum	Red Collar Moss				S3S4	1	88.2 ± 1.0	NB
N	Tetraphis geniculata	Geniculate Four-tooth Moss				S3S4	5	$23.3 \pm 0.0$	NB
N	Tetraplodon angustatus	Toothed-leaved Nitrogen Moss				S3S4	2	25.0 ± 1.0	NB
N	Weissia controversa	Green-Cushioned Weissia				S3S4	2	71.4 ± 1.0	NB
N	Abietinella abietina	Wiry Fern Moss				S3S4	2	$18.5 \pm 0.0$	NB
N N	Trichostomum tenuirostre	Acid-Soil Moss				S3S4	4	$10.5 \pm 0.0$ 20.5 ± 0.0	NB
N	Rauiella scita	Smaller Fern Moss				S3S4	1	$53.4 \pm 1.0$	NB
N	Pannaria rubiginosa	Brown-eyed Shingle Lichen				S3S4	14	$50.4 \pm 0.0$	NB
N	Pseudocyphellaria holarctica	Yellow Specklebelly Lichen				S3S4	58	$50.2 \pm 0.0$ $5.3 \pm 0.0$	NB
N	Hypogymnia vittata	Slender Monk's Hood Lichen				S3S4 S3S4	1	$5.3 \pm 0.0$ 99.6 ± 0.0	NS
N	Cladonia terrae-novae	Newfoundland Reindeer Lichen				S3S4	5	8.4 ± 1.0	NB
N	Cladonia floerkeana	Gritty British Soldiers Lichen				S3S4	1	88.8 ± 0.0	NB
N	Cladonia parasitica	Fence-rail Lichen				S3S4	1	50.3 ± 0.0	NB
N	Nephroma parile	Powdery Kidney Lichen				S3S4	17	$5.3 \pm 0.0$	NB
N	Protopannaria pezizoides	Brown-gray Moss-shingle Lichen				S3S4	24	13.6 ± 0.0	NB
N	Parmelia fertilis	Fertile Shield Lichen				S3S4	1	82.3 ± 0.0	NB
N	Usnea strigosa	Bushy Beard Lichen				S3S4	2	$72.1 \pm 0.0$	NB
Ň	Fuscopannaria sorediata	a Lichen				S3S4	12	18.7 ± 0.0	NB
N	Stereocaulon condensatum	Granular Soil Foam Lichen				S3S4	1	24.1 ± 0.0	NB
N	Pannaria conoplea	Mealy-rimmed Shingle				S3S4	42	42.9 ± 0.0	NB
N	Physcia tenella	Fringed Rosette Lichen				S3S4	1	87.3 ± 0.0	NB
N	Anaptychia palmulata	Shaggy Fringed Lichen				S3S4	15	$51.5 \pm 0.0$	NB
N	Peltigera neopolydactyla	Undulating Pelt Lichen				S3S4 S3S4	2	$17.8 \pm 2.0$	NB
N	Grimmia anodon	Toothless Grimmia Moss				SH	2	$63.2 \pm 10.0$	NB
N	Leucodon brachypus	a Moss				SH	1	$20.2 \pm 10.0$	NB
Þ	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	135	$2.4 \pm 0.0$	NB
Þ	Polemonium vanbruntiae	Van Brunt's Jacob's-ladder	Threatened	Threatened	Threatened	S1	74	$8.8 \pm 0.0$	NB
5	Fraxinus nigra	Black Ash	Threatened	moutonou	montonou	S3S4	425	$8.5 \pm 0.0$	NB
F P	Isoetes prototypus	Prototype Quillwort	Special Concern	Special Concern	Endangered	S354 S1	425	$59.2 \pm 0.0$	NB
P	Symphyotrichum	Anticosti Aster	Special Concern	Special Concern	Endangered	S3	6	$59.2 \pm 0.0$ 55.0 ± 0.0	NB
	anticostense				0				
P	Pterospora andromedea	Woodland Pinedrops			Endangered	S1	28	94.1 ± 0.0	NB
Р	Antennaria parlinii ssp. fallax	Parlin's Pussytoes				S1	7	38.8 ± 0.0	NB
P	Antennaria howellii ssp.	Pussy-Toes				S1	4	55.6 ± 1.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
	petaloidea					•		· /	
<b>)</b>	Bidens discoidea	Swamp Beggarticks				S1	3	96.6 ± 0.0	NB
<b>b</b>	Helianthus decapetalus	Ten-rayed Sunflower				S1	14	94.3 ± 1.0	NB
5	Hieracium paniculatum	Panicled Hawkweed				S1	6	$19.4 \pm 0.0$	NB
5	Senecio pseudoarnica	Seabeach Ragwort				S1	18	$19.4 \pm 0.0$ 50.7 ± 0.0	NB
5	Barbarea orthoceras	American Yellow Rocket				S1	2	44.6 ± 10.0	NB
P	Cardamine parviflora	Small-flowered Bittercress				S1	12	14.2 ± 1.0	NB
P	Cardamine concatenata	Cut-leaved Toothwort				S1	3	35.7 ± 0.0	NB
>	Draba arabisans	Rock Whitlow-Grass				S1	7	28.7 ± 0.0	NB
P	Draba qlabella	Rock Whitlow-Grass				S1	8	53.7 ± 1.0	NB
P	Mononeuria groenlandica	Greenland Stitchwort				S1	5	45.4 ± 0.0	NB
P	Chenopodiastrum simplex	Maple-leaved Goosefoot				S1	8	55.4 ± 1.0	NB
5	Blitum capitatum	Strawberry-Blite				S1	3	64.2 ± 1.0	NB
Þ						S1	1	$52.9 \pm 0.0$	NB
5	Callitriche terrestris	Terrestrial Water-Starwort					-		
	Hypericum virginicum	Virginia St. John's-wort				S1	15	41.0 ± 0.0	NB
0	Viburnum acerifolium	Maple-leaved Viburnum				S1	11	36.8 ± 1.0	NB
2	Corema conradii	Broom Crowberry				S1	1	62.0 ± 10.0	NB
Р	Vaccinium boreale	Northern Blueberry				S1	1	26.9 ± 0.0	NB
P	Vaccinium corymbosum	Highbush Blueberry				S1	9	35.3 ± 5.0	NB
2	Euphorbia polygonifolia	Seaside Spurge				S1	8	$47.4 \pm 0.0$	NB
2	Hylodesmum glutinosum	Large Tick-trefoil				S1	1	$44.7 \pm 1.0$	NB
5	Gentiana rubricaulis	Purple-stemmed Gentian				S1	18	$23.6 \pm 0.0$	NB
Þ	Lomatogonium rotatum	Marsh Felwort				S1	3	$23.0 \pm 0.0$ 21.0 ± 0.0	NB
						-	2		NB
	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1		$23.5 \pm 0.0$	
5	Lycopus virginicus	Virginia Bugleweed				S1	2	59.7 ± 0.0	NB
2	Pycnanthemum virginianum	Virginia Mountain Mint				S1	4	86.8 ± 0.0	NB
2	Decodon verticillatus	Swamp Loosestrife				S1	2	97.3 ± 0.0	NB
Р	Lysimachia hybrida	Lowland Yellow Loosestrife				S1	17	37.9 ± 0.0	NB
Р	Lysimachia quadrifolia	Whorled Yellow Loosestrife				S1	16	47.2 ± 1.0	NB
2	Primula laurentiana	Laurentian Primrose				S1	7	90.2 ± 1.0	NS
P	Crataegus jonesiae	Jones' Hawthorn				S1	5	$16.7 \pm 0.0$	NB
Þ	Potentilla canadensis	Canada Cinquefoil				S1	1	$5.6 \pm 0.0$	NB
-	Rubus flagellaris	Northern Dewberry				S1	3	25.0 ± 0.0	NB
Ρ	Galium brevipes	Limestone Swamp Bedstraw				S1	4	45.1 ± 5.0	NB
5	Saxifraga paniculata ssp. laestadii	Laestadius' Saxifrage				S1	8	70.9 ± 1.0	NB
2	Agalinis tenuifolia	Slender Agalinis				S1	9	91.9 ± 0.0	NB
<b>D</b>	Gratiola lutea	Golden Hedge-hyssop				S1	2	$43.5 \pm 5.0$	NB
5	Pedicularis canadensis	Canada Lousewort				S1	23	$45.5 \pm 5.0$ 25.4 ± 0.0	NB
5	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	23 24	$42.5 \pm 0.0$	NB
2						-			
	Carex merritt-fernaldii	Merritt Fernald's Sedge				S1	4	$19.4 \pm 0.0$	NB
	Carex salina	Saltmarsh Sedge				S1	2	59.9 ± 1.0	NB
2	Carex waponahkikensis	Dawn-land Sedge				S1	2	28.9 ± 0.0	NB
P	Carex sterilis	Sterile Sedge				S1	1	94.1 ± 0.0	NB
5	Carex grisea	Inflated Narrow-leaved Sedge				S1	12	91.6 ± 0.0	NB
5	Carex saxatilis	Sedge Russet Sedge				S1	14	61.0 ± 10.0	NB
						-			
5	Cyperus diandrus	Low Flatsedge				S1	7	91.8 ± 1.0	NB
0	Eleocharis flavescens var. olivacea	Bright-green Spikerush				S1	4	40.4 ± 1.0	NE
<b>b</b>	olivacea Rhynchospora capillacea	Slender Beakrush				S1	3	94.2 ± 0.0	NB
Þ	Sisyrinchium angustifolium	Narrow-leaved Blue-eyed-				S1	4	55.3 ± 0.0	NB
5	, 0	grass Greene's Rush				S1	4	$33.5 \pm 0.0$ 13.5 ± 0.0	NB
	Juncus greenei						-		
P	Juncus subtilis	Creeping Rush				S1	1	85.5 ± 5.0	NE
2	Allium canadense	Canada Garlic				S1	11	86.8 ± 0.0	NE
0	Goodyera pubescens	Downy Rattlesnake-Plantain				S1	1	94.5 ± 0.0	NE
Þ	Malaxis monophyllos var.	North American White				S1	3	46.1 ± 10.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
	brachypoda	Adder's-mouth							
•	Platanthera flava var. herbiola	Pale Green Orchid				S1	13	$30.4 \pm 0.0$	NB
	Platanthera macrophylla	Large Round-Leaved Orchid				S1	2	46.2 ± 0.0	NB
	Spiranthes casei	Case's Ladies'-Tresses				S1	6	96.6 ± 0.0	NB
	Bromus pubescens	Hairy Wood Brome Grass				S1	6	98.8 ± 0.0	NB
	Cinna arundinacea	Sweet Wood Reed Grass				S1	55	36.3 ± 0.0	NB
)	Danthonia compressa	Flattened Oat Grass				S1	1	88.4 ± 0.0	NB
)	Dichanthelium dichotomum	Forked Panic Grass				S1	20	$36.7 \pm 0.0$	NB
,	Glyceria obtusa	Atlantic Manna Grass				S1	14	$17.4 \pm 5.0$	NB
, ,	Sporobolus compositus	Rough Dropseed				S1	17	93.1 ± 0.0	NB
,	Potamogeton friesii	Fries' Pondweed				S1	6	$54.7 \pm 5.0$	NB
, ,	Potamogeton nodosus	Long-leaved Pondweed				S1	7	$90.7 \pm 1.0$	NB
)						S1	2		NB
) )	Potamogeton strictifolius	Straight-leaved Pondweed						77.1 ± 0.0	
,	Xyris difformis	Bog Yellow-eyed-grass				S1	11	$41.0 \pm 0.0$	NB
<b>)</b>	Asplenium ruta-muraria var. cryptolepis	Wallrue Spleenwort				S1	4	$70.8 \pm 0.0$	NB
	Sceptridium oneidense	Blunt-lobed Moonwort				S1	4	64.3 ± 0.0	NB
<b>b</b>	Sceptridium rugulosum	Rugulose Grapefern				S1	1	44.3 ± 1.0	NB
<b>b</b>	Selaginella rupestris	Rock Spikemoss				S1	36	89.4 ± 0.0	NS
<b>b</b>	Polygonum aviculare ssp. neqlectum	Narrow-leaved Knotweed				S1?	6	34.5 ± 0.0	NB
,	Alisma subcordatum	Southern Water Plantain				S1?	6	61.0 ± 5.0	NB
<b>b</b>	Wolffia columbiana	Columbian Watermeal				S1?	5	$88.3 \pm 0.0$	NB
, )							э 1		NB
, )	Euphrasia farlowii	Farlow's Eyebright				S1S2		14.1 ± 1.0	
	Spiranthes ochroleuca	Yellow Ladies'-tresses				S1S2	10	46.7 ± 0.0	NB
	Potamogeton bicupulatus	Snailseed Pondweed				S1S2	5	27.5 ± 0.0	NB
0	Spiranthes cernua	Nodding Ladies'-Tresses				S1S3	18	10.3 ± 1.0	NB
0	Spiranthes arcisepala	Appalachian Ladies'-tresses				S1S3	6	$39.9 \pm 0.0$	NB
0	Neottia bifolia	Southern Twayblade			Endangered	S2	11	72.1 ± 0.0	NB
0	Sanicula trifoliata	Large-Fruited Sanicle				S2	1	91.5 ± 5.0	NB
2	Sanicula odorata	Clustered Sanicle				S2	1	98.7 ± 0.0	NB
<b>b</b>	Atriplex glabriuscula var. franktonii	Frankton's Saltbush				S2	3	14.1 ± 1.0	NB
•	Hypericum x dissimulatum	Disguised St. John's-wort				S2	7	7.5 ± 1.0	NB
)	Viburnum dentatum var. lucidum	Northern Arrow-Wood				S2	190	2.1 ± 0.0	NB
<b>)</b>	Astragalus eucosmus	Elegant Milk-vetch				S2	10	82.6 ± 0.0	NB
)	Quercus macrocarpa	Bur Oak				S2	47	16.6 ± 0.0	NB
0	Nuphar x rubrodisca	Red-disk Yellow Pond-lily				S2	10	$32.3 \pm 0.0$	NB
2	Polygaloides paucifolia	Fringed Milkwort				S2	13	7.1 ± 1.0	NB
þ	Persicaria amphibia var. emersa	Long-root Smartweed				S2	53	$2.0 \pm 0.0$	NB
<b>b</b>	Micranthes virginiensis	Early Saxifrage				S2	14	89.5 ± 0.0	NB
5						S2 S2	3		NB
5	Scrophularia lanceolata	Lance-leaved Figwort						82.4 ± 5.0	
-	Carex cephaloidea	Thin-leaved Sedge				S2	2	$90.2 \pm 0.0$	NB
5	Carex albicans var. emmonsii	White-tinged Sedge				S2	2	$21.3 \pm 0.0$	NB
,	Cyperus lupulinus ssp. macilentus	Hop Flatsedge				S2	11	98.4 ± 0.0	NB
	Calypso bulbosa var.								NB
)	americana	Calypso				S2	4	43.8 ± 0.0	
)						S2	F	81.5 ± 5.0	NB
-	Coeloglossum viride	Long-bracted Frog Orchid				32	5	01.5 ± 0.0	
D	Cypripedium parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	5	44.9 ± 1.0	NB
<b>)</b>	Platanthera huronensis	Fragrant Green Orchid				S2	2	48.8 ± 1.0	NB
0	Puccinellia nutkaensis	Alaska Alkaligrass				S2	10	13.4 ± 1.0	NB
)	Schizaea pusilla	Little Curlygrass Fern				S2	25	36.9 ± 0.0	NB

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
Р	Coryphopteris simulata	Bog Fern				S2	1	98.0 ± 0.0	NB
P	Toxicodendron radicans var. radicans	Eastern Poison Ivy				S2?	9	$76.6 \pm 0.0$	NB
P	Symphyotrichum novi-belgii var. crenifolium	New York Aster				S2?	10	10.6 ± 0.0	NB
þ	Humulus lupulus var. Iupuloides	Common Hop				S2?	4	89.2 ± 0.0	NB
P	Rubus x recurvicaulis	arching dewberry				S2?	2	53.9 ± 1.0	NB
Ρ	Osmorhiza longistylis	Smooth Sweet Cicely				S2S3	3	19.6 ± 0.0	NB
Р	Symphyotrichum racemosum	Small White Aster				S2S3	8	71.8 ± 1.0	NB
Р	Alnus serrulata	Smooth Alder				S2S3	38	36.8 ± 1.0	NB
P	Cuscuta cephalanthi	Buttonbush Dodder				S2S3	1	70.1 ± 0.0	NB
Р	Gentiana linearis	Narrow-Leaved Gentian				S2S3	5	95.6 ± 5.0	NB
Р	Hedeoma pulegioides	American False Pennyroyal				S2S3	57	18.1 ± 1.0	NB
Р	Aphyllon uniflorum	One-flowered Broomrape				S2S3	20	$34.5 \pm 0.0$	NB
Р	Polygala senega	Seneca Snakeroot				S2S3	2	90.7 ± 1.0	NB
Р	Persicaria careyi	Carey's Smartweed				S2S3	7	20.1 ± 1.0	NB
P	Hepatica americana	Round-lobed Hepatica				S2S3	32	36.6 ± 0.0	NB
P	Ranunculus sceleratus	Cursed Buttercup				S2S3	7	$36.3 \pm 0.0$	NB
P	Cephalanthus occidentalis	Common Buttonbush				S2S3	66	$36.3 \pm 0.0$	NB
P	Galium obtusum	Blunt-leaved Bedstraw				S2S3	5	$59.5 \pm 0.0$	NB
P	Euphrasia randii	Rand's Eyebright				S2S3	38	$14.0 \pm 0.0$	NB
P	Dirca palustris	Eastern Leatherwood				S2S3	15	94.0 ± 1.0	NB
P	Phryma leptostachya	American Lopseed				S2S3	4	$98.3 \pm 1.0$	NB
Þ	Verbena urticifolia	White Vervain				S2S3	17	$90.3 \pm 1.0$ $90.1 \pm 1.0$	NB
P	Viola novae-angliae	New England Violet				S2S3	16	$4.0 \pm 0.0$	NB
P	Carex rostrata	Narrow-leaved Beaked				S2S3	2	$4.0 \pm 0.0$ $40.1 \pm 0.0$	NB
P	O	Sedge				S2S3		40.4 . 4 0	NB
P	Carex vacillans	Estuarine Sedge					4	$13.4 \pm 1.0$	
•	Scirpus atrovirens	Dark-green Bulrush				S2S3	2	50.9 ± 0.0	NB
P	Juncus ranarius	Seaside Rush				S2S3	1	59.5 ± 0.0	NB
Р	Allium tricoccum	Wild Leek				S2S3	27	83.9 ± 0.0	NB
Р	Corallorhiza maculata var. occidentalis	Spotted Coralroot				S2S3	6	$19.4 \pm 0.0$	NB
Р	Corallorhiza maculata var. maculata	Spotted Coralroot				S2S3	2	93.3 ± 1.0	NB
Р	Elymus canadensis	Canada Wild Rye				S2S3	19	59.5 ± 0.0	NB
Р	Piptatheropsis canadensis	Canada Ricegrass				S2S3	6	36.8 ± 1.0	NB
P	Puccinellia phryganodes					0000	40	0.000	NB
F	ssp. neoarctica	Creeping Alkali Grass				S2S3	18	8.3 ± 0.0	
Р	Poa glauca	Glaucous Blue Grass				S2S3	1	61.7 ± 2.0	NB
Р	Potamogeton vaseyi	Vasey's Pondweed				S2S3	12	$45.6 \pm 0.0$	NB
Р	Isoetes tuckermanii ssp. acadiensis	Acadian Quillwort				S2S3	9	14.0 ± 1.0	NB
Р	Botrychium tenebrosum	Swamp Moonwort				S2S3	1	$44.0 \pm 0.0$	NB
P	Panax trifolius	Dwarf Ginseng				S3	6	$56.0 \pm 0.0$	NB
Р	Artemisia campestris ssp. caudata	Tall Wormwood				S3	25	$48.6\pm0.0$	NB
P P	Nabalus racemosus Solidago racemosa	Glaucous Rattlesnakeroot Racemose Goldenrod				S3 S3	70 15	55.9 ± 1.0 71.4 ± 0.0	NB NB
Р	Tanacetum bipinnatum ssp. huronense	Lake Huron Tansy				S3	16	69.1 ± 1.0	NB
Р	Pseudognaphalium macounii	Macoun's Cudweed				S3	9	51.8 ± 0.0	NB
P	Turritis glabra	Tower Mustard				S3	1	$59.5 \pm 0.0$	NB
•	Arabis nuchocarna	('ream_tlowered Rockeress						$612 \pm 0.0$	
P P	Arabis pycnocarpa Cardamine maxima	Cream-flowered Rockcress Large Toothwort				S3 S3	12 26	61.2 ± 0.0 59.5 ± 0.0	NB NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
Р	Sagina nodosa	Knotted Pearlwort				S3	25	8.8 ± 0.0	NB
0	Sagina nodosa ssp. borealis	Knotted Pearlwort				S3	2	46.2 ± 0.0	NB
	Stellaria humifusa	Saltmarsh Starwort				S3	7	11.8 ± 0.0	NB
	Stellaria longifolia	Long-leaved Starwort				S3	7	$5.0 \pm 0.0$	NB
•	Oxybasis rubra	Red Goosefoot				S3	4	58.8 ± 0.0	NB
•	Hudsonia tomentosa	Woolly Beach-heath				S3	4	40.1 ± 0.0	NB
•	Cornus obligua	Silky Dogwood				S3	183	36.3 ± 0.0	NB
)	Lonicera oblongifolia	Swamp Fly Honeysuckle				S3	23	43.3 ± 6.0	NB
<b>)</b>	Triosteum aurantiacum	Orange-fruited Tinker's Weed				S3	8	90.6 ± 1.0	NB
	Viburnum lentago	Nannyberry				S3	92	$36.4 \pm 0.0$	NB
,	Rhodiola rosea	Roseroot				S3	55	$3.4 \pm 1.0$	NB
<b>)</b>	Astragalus alpinus	Alpine Milk-vetch				S3	2	$59.5 \pm 0.0$	NB
<b>b</b>	Astragalus alpinus var.	Alpine Milk-Vetch				S3	3	87.5 ± 0.0	NB
	brunetianus Oxytropis campestris var.								NB
) )	johannensis	Field Locoweed				S3	11	$70.5 \pm 50.0$	
)	Bartonia paniculata	Branched Bartonia				S3	1	$23.7 \pm 0.0$	NB NB
0	Bartonia paniculata ssp. iodandra	Branched Bartonia				S3	19	27.8 ± 1.0	
)	Gentianella amarella ssp. acuta	Northern Gentian				S3	10	45.7 ± 0.0	NB
	Geranium bicknellii	Bicknell's Crane's-bill				S3	6	18.1 ± 1.0	NB
	Myriophyllum farwellii	Farwell's Water Milfoil				S3	36	$10.8 \pm 0.0$	NB
	Myriophyllum humile	Low Water Milfoil				S3	16	$42.5 \pm 0.0$	NB
	Myriophyllum quitense	Andean Water Milfoil				S3	71	$55.0 \pm 0.0$	NB
	Proserpinaca palustris	Marsh Mermaidweed				S3	51	$4.1 \pm 0.0$	NB
,	Utricularia resupinata	Inverted Bladderwort				S3	19	$27.0 \pm 0.0$	NB
)	Fraxinus pennsylvanica	Red Ash				S3	125	$38.6 \pm 0.0$	NB
)	Rumex pallidus	Seabeach Dock				S3	17	$8.4 \pm 1.0$	NB
)	Rumex occidentalis	Western Dock				S3	1	$86.1 \pm 1.0$	NB
)		Horn-leaved Riverweed				S3			NB
1	Podostemum ceratophyllum						25	36.8 ± 1.0	NB
	Primula mistassinica	Mistassini Primrose				S3 S3	13 2	54.4 ± 0.0 29.9 ± 0.0	NB
	Pyrola minor	Lesser Pyrola							
1	Anemone multifida	Cut-leaved Anemone				S3	1	93.6 ± 0.0	NB
	Clematis occidentalis	Purple Clematis				S3	16	36.7 ± 0.0	NB
	Ranunculus flabellaris	Yellow Water Buttercup				S3	24	35.0 ± 0.0	NB
	Amelanchier canadensis	Canada Serviceberry				S3	15	6.3 ± 1.0	NB
	Crataegus scabrida	Rough Hawthorn				S3	3	$70.6 \pm 0.0$	NB
•	Rubus occidentalis	Black Raspberry				S3	27	$14.2 \pm 0.0$	NB
	Salix candida	Sage Willow				S3	2	85.3 ± 1.0	NB
•	Salix myricoides	Bayberry Willow				S3	7	$21.0 \pm 0.0$	NB
	Salix nigra	Black Willow				S3	86	55.7 ± 1.0	NB
)	Salix interior	Sandbar Willow				S3	32	59.5 ± 0.0	NB
)	Comandra umbellata	Bastard's Toadflax				S3	1	59.5 ± 0.0	NB
)	Agalinis purpurea var. parviflora	Small-flowered Purple False Foxglove				S3	11	81.6 ± 1.0	NB
•	, Valeriana uliginosa	Swamp Valerian				S3	2	36.3 ± 1.0	NB
	Viola adunca	Hooked Violet				S3	4	$12.8 \pm 1.0$	NB
	Symplocarpus foetidus	Eastern Skunk Cabbage				S3	123	$4.0 \pm 0.0$	NB
	Carex adusta	Lesser Brown Sedge				S3	4	$4.0 \pm 0.0$ 58.5 ± 1.0	NB
	Carex arcta	Northern Clustered Sedge				S3	36	$36.8 \pm 1.0$	NB
•	Carex conoidea	Field Sedge				S3	28	$36.8 \pm 1.0$ 18.4 ± 1.0	NB
) )							28 4		
, )	Carex garberi	Garber's Sedge				S3	4 7	53.6 ± 1.0	NB
	Carex granularis	Limestone Meadow Sedge				S3	-	$57.5 \pm 0.0$	NB
) }	Carex gynocrates	Northern Bog Sedge				S3	4	47.1 ± 0.0	NB
)	Carex hirtifolia	Pubescent Sedge				S3	3	90.5 ± 0.0	NB
)	Carex livida	Livid Sedge				S3	2	61.7 ± 2.0	NB

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Pro
P	Carex ormostachya	Necklace Spike Sedge				S3	7	53.8 ± 0.0	NB
Ρ	Carex plantaginea	Plantain-Leaved Sedge				S3	5	86.1 ± 0.0	NB
5	Carex prairea	Prairie Sedge				S3	1	90.6 ± 5.0	NS
2	Carex rosea	Rosy Sedge				S3	26	$59.5 \pm 0.0$	NB
5	Carex sprengelii	Longbeak Sedge				S3	2	$95.4 \pm 0.0$	NB
P	Carex tenuiflora	Sparse-Flowered Sedge				S3	17	$36.8 \pm 1.0$	NB
P	Carex vaginata Cyperus esculentus var.	Sheathed Sedge				S3	16	$39.7 \pm 6.0$	NB NB
Ρ	leptostachyus	Perennial Yellow Nutsedge				S3	34	$59.5 \pm 0.0$	ND
2	Cyperus squarrosus	Awned Flatsedge				S3	14	88.5 ± 0.0	NB
0	Eriophorum gracile	Slender Cottongrass				S3	3	54.1 ± 0.0	NB
0	Blysmopsis rufa	Red Bulrush				S3	4	$44.4 \pm 0.0$	NB
2	Elodea nuttallii	Nuttall's Waterweed				S3	11	$36.8 \pm 1.0$	NB
2	Juncus vaseyi	Vasey Rush				S3	1	$3.5 \pm 0.0$	NB
5	Najas gracillima	Thread-Like Naiad				S3	11	$11.0 \pm 0.0$	NB
5									
	Cypripedium reginae	Showy Lady's-Slipper				S3	23	45.7 ± 1.0	NB
	Neottia auriculata	Auricled Twayblade				S3	9	56.1 ± 1.0	NB
0	Platanthera grandiflora	Large Purple Fringed Orchid				S3	61	1.9 ± 5.0	NB
0	Platanthera orbiculata	Small Round-leaved Orchid				S3	15	18.8 ± 1.0	NB
0	Spiranthes lucida	Shining Ladies'-Tresses				S3	11	53.7 ± 1.0	NB
2	Agrostis mertensii	Northern Bent Grass				S3	1	14.1 ± 1.0	NB
0	Bromus latiglumis	Broad-Glumed Brome				S3	2	58.2 ± 0.0	NB
2	Dichanthelium linearifolium	Narrow-leaved Panic Grass				S3	9	$36.6 \pm 0.0$	NB
5	Leersia virginica	White Cut Grass				S3	41	81.5 ± 10.0	NB
5		Mat Muhly				S3	9	$94.0 \pm 0.0$	NB
	Muhlenbergia richardsonis								
0	Schizachyrium scoparium	Little Bluestem				S3	18	75.6 ± 0.0	NB
2	Zizania aquatica	Southern Wild Rice				S3	1	59.5 ± 0.0	NB
2	Zizania aquatica var. aguatica	Eastern Wild Rice				S3	3	95.7 ± 5.0	NB
2	Adiantum pedatum	Northern Maidenhair Fern				S3	18	21.3 ± 0.0	NB
c	Asplenium trichomanes	Maidenhair Spleenwort				S3	11	$58.8 \pm 0.0$	NB
	,								
	Anchistea virginica	Virginia chain fern				S3	43	59.6 ± 1.0	NB
	Dryopteris goldieana	Goldie's Woodfern				S3	8	93.5 ± 0.0	NB
2	Woodsia alpina	Alpine Cliff Fern				S3	6	70.9 ± 1.0	NB
0	Woodsia glabella	Smooth Cliff Fern				S3	1	91.5 ± 1.0	NB
5	lsoetes tuckermanii ssp. tuckermanii	Tuckerman's Quillwort				S3	21	13.6 ± 1.0	NB
	Diphasiastrum x sabinifolium	Savin-leaved Ground-cedar				S3	7	39.9 ± 1.0	NB
	Huperzia appressa	Mountain Firmoss				S3	2	63.6 ± 1.0	NB
5	Sceptridium dissectum	Dissected Moonwort				S3	26	19.0 ± 5.0	NB
5	Botrychium lanceolatum ssp. angustisegmentum	Narrow Triangle Moonwort				S3	12	58.8 ± 0.0	NB
5	Botrvchium simplex	Least Moonwort				S3	11	39.0 ± 0.0	NB
5						S3	6	$39.0 \pm 1.0$	NB
	Ophioglossum pusillum	Northern Adder's-tongue							
	Selaginella selaginoides	Low Spikemoss				S3	4	$34.8 \pm 0.0$	NB
	Crataegus submollis	Quebec Hawthorn				S3?	19	16.5 ± 1.0	NB
5	Crataegus succulenta	Fleshy Hawthorn				S3?	1	95.7 ± 5.0	NB
<b>)</b>	Platanthera hookeri	Hooker's Orchid				S3?	24	36.3 ± 2.0	NB
)	Bidens hyperborea	Estuary Beggarticks				S3S4	1	59.5 ± 0.0	NB
2	Solidago altissima	Tall Goldenrod				S3S4	6	$65.2 \pm 0.0$	NB
2	Symphyotrichum boreale	Boreal Aster				S3S4	20	$12.6 \pm 0.0$	NB
0	Betula pumila	Bog Birch				S3S4	26	48.7 ± 16.0	NB
5	Mertensia maritima	Sea Lungwort				S3S4	50	$8.3 \pm 0.0$	NB
þ	Subularia aquatica ssp. americana	American Water Awlwort				S3S4	18	8.9 ± 0.0	NB
5	Lobelia cardinalis	Cardinal Flower				S3S4	395	$5.0 \pm 0.0$	NB
						S3S4			NB
5	Callitriche hermaphroditica	Northern Water-starwort					6	29.5 ± 0.0	

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Crassula aquatica	Water Pygmyweed				S3S4	11	50.6 ± 1.0	NB
P	Penthorum sedoides	Ditch Stonecrop				S3S4	82	5.7 ± 0.0	NB
Р	Elatine americana	American Waterwort				S3S4	8	$53.2 \pm 0.0$	NB
Р	Hedysarum americanum	Alpine Hedysarum				S3S4	3	$59.5 \pm 0.0$	NB
P	Fagus grandifolia	American Beech				S3S4	162	$5.5 \pm 0.0$	NB
P	Geranium robertianum	Herb Robert				S3S4	27	12.1 ± 0.0	NB
Р	Stachys hispida	Smooth Hedge-Nettle				S3S4	12	82.4 ± 0.0	NB
Р	Stachys pilosa	Hairy Hedge-Nettle				S3S4	6	59.5 ± 0.0	NB
Р	Teucrium canadense	Canada Germander				S3S4	3	47.8 ± 0.0	NB
Р	Utricularia radiata	Little Floating Bladderwort				S3S4	91	11.2 ± 0.0	NB
Р	Utricularia gibba	Humped Bladderwort				S3S4	43	$8.9 \pm 0.0$	NB
Р	Fraxinus americana	White Ash				S3S4	161	8.7 ± 1.0	NB
Р	Epilobium strictum	Downy Willowherb				S3S4	23	38.4 ± 0.0	NB
Р	Fallopia scandens	Climbing False Buckwheat				S3S4	36	16.8 ± 0.0	NB
Р	Rumex persicarioides	Peach-leaved Dock				S3S4	1	56.2 ± 0.0	NB
Р	Littorella americana	American Shoreweed				S3S4	36	7.0 ± 1.0	NB
Р	Thalictrum confine	Northern Meadow-rue				S3S4	82	12.8 ± 0.0	NB
Р	Drymocallis arguta	Tall Wood Beauty				S3S4	32	$13.1 \pm 1.0$	NB
P	Rosa palustris	Swamp Rose				S3S4	168	$7.8 \pm 1.0$	NB
P	Rubus pensilvanicus	Pennsylvania Blackberry				S3S4	13	$18.6 \pm 3.0$	NB
P	Galium boreale	Northern Bedstraw				S3S4	6	$49.7 \pm 0.0$	NB
P	Galium labradoricum	Labrador Bedstraw				S3S4	18	$16.3 \pm 0.0$	NB
P	Salix pedicellaris	Bog Willow				S3S4	70	8.8 ± 0.0	NB
P	Geocaulon lividum	Northern Comandra				S3S4	13	18.9 ± 0.0	NB
P	Parnassia glauca	Fen Grass-of-Parnassus				S3S4	2	$59.5 \pm 0.0$	NB
P	Agalinis neoscotica	Nova Scotia Agalinis				S3S4	56	$35.6 \pm 0.0$	NB
P	Limosella australis	Southern Mudwort				S3S4 S3S4	11	$36.3 \pm 5.0$	NB
P	Ulmus americana	White Elm				S3S4 S3S4	134	$50.3 \pm 0.0$ 5.2 ± 0.0	NB
P		Small-spike False-nettle				S3S4	153	$5.2 \pm 0.0$ $5.0 \pm 0.0$	NB
P	Boehmeria cylindrica						34	$5.0 \pm 0.0$ 12.8 ± 1.0	
P	Juniperus horizontalis	Creeping Juniper				S3S4 S3S4	34 6	$12.8 \pm 1.0$ 59.5 ± 0.0	NB NB
P	Carex capillaris	Hairlike Sedge							NB
P	Carex eburnea	Bristle-leaved Sedge				S3S4	1	82.0 ± 0.0	
P	Carex exilis	Coastal Sedge				S3S4	109	21.6 ± 0.0	NB
•	Carex haydenii	Hayden's Sedge				S3S4	70	5.0 ± 0.0	NB
P	Carex lupulina	Hop Sedge				S3S4	108	$36.3 \pm 0.0$	NB
P	Carex tenera	Tender Sedge				S3S4	51	17.8 ± 2.0	NB
P	Carex wiegandii	Wiegand's Sedge				S3S4	33	$20.8 \pm 0.0$	NB
Р	Carex recta	Estuary Sedge				S3S4	8	14.1 ± 1.0	NB
Р	Carex atratiformis	Scabrous Black Sedge				S3S4	2	$59.5 \pm 0.0$	NB
Р	Cladium mariscoides	Smooth Twigrush				S3S4	118	19.7 ± 0.0	NB
Р	Cyperus dentatus	Toothed Flatsedge				S3S4	80	4.3 ± 1.0	NB
Р	Eleocharis quinqueflora	Few-flowered Spikerush				S3S4	10	$70.5 \pm 0.0$	NB
Р	Rhynchospora capitellata	Small-headed Beakrush				S3S4	20	52.2 ± 0.0	NB
P	Trichophorum clintonii	Clinton's Clubrush				S3S4	26	$4.6 \pm 0.0$	NB
Р	Bolboschoenus fluviatilis	River Bulrush				S3S4	58	54.6 ± 1.0	NB
Р	Triglochin gaspensis	Gasp				S3S4	21	8.4 ± 1.0	NB
Р	Lilium canadense	Canada Lily				S3S4	91	12.6 ± 2.0	NB
Р	Triantha glutinosa	Sticky False-Asphodel				S3S4	10	59.5 ± 0.0	NB
Р	Corallorhiza maculata	Spotted Coralroot				S3S4	8	$3.9 \pm 0.0$	NB
Р	Liparis loeselii	Loesel's Twayblade				S3S4	18	35.5 ± 0.0	NB
P	Neottia cordata	Heart-leaved Twayblade				S3S4	21	$11.6 \pm 0.0$	NB
P	Platanthera obtusata	Blunt-leaved Orchid				S3S4	40	18.9 ± 1.0	NB
-	Platanthera obtusata ssp.								NB
Р	obtusata	Blunt-leaved Orchid				S3S4	1	59.3 ± 0.0	
Р	Calamagrostis pickeringii	Pickering's Reed Grass				S3S4	121	$21.2 \pm 0.0$	NB
P	Calamagrostis stricta	Slim-stemmed Reed Grass				S3S4	3	$55.6 \pm 2.0$	NB
	Eragrostis pectinacea	Tufted Love Grass				S3S4 S3S4			NB
P	Frantostis nectinacea					\$3\$4	16	17.1 ± 0.0	

Taxonomic									
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	# recs	Distance (km)	Prov
Р	Potamogeton praelongus	White-stemmed Pondweed				S3S4	14	42.8 ± 0.0	NB
Р	Potamogeton richardsonii	Richardson's Pondweed				S3S4	23	61.7 ± 1.0	NB
Р	Xyris montana	Northern Yellow-Eyed-Grass				S3S4	30	27.0 ± 0.0	NB
Р	Cryptogramma stelleri	Steller's Rockbrake				S3S4	2	59.5 ± 0.0	NB
Р	Asplenium viride	Green Spleenwort				S3S4	16	54.4 ± 0.0	NB
Р	Dryopteris fragrans	Fragrant Wood Fern				S3S4	3	58.8 ± 0.0	NB
Р	Equisetum palustre	Marsh Horsetail				S3S4	11	67.1 ± 0.0	NB
Р	Polypodium appalachianum	Appalachian Polypody				S3S4	14	8.4 ± 1.0	NB
Р	Montia fontana	Water Blinks				SH	1	19.2 ± 1.0	NB
Р	Solidago caesia	Blue-stemmed Goldenrod				SX	2	64.2 ± 1.0	NB
Р	Celastrus scandens	Climbing Bittersweet				SX	3	85.8 ± 100.0	NB
Р	Carex swanii	Swan's Sedge				SX	45	50.4 ± 1.0	NB

### 5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the AC CDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

#### # recs CITATION

- 14566 eBird. 2014. eBird Basic Dataset. Version: EBD_relNov-2014. Ithaca, New York. Nov 2014. Cornell Lab of Ornithology, 25036 recs.
- 6484 Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.
- 4916 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 2881 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 1800 Paquet, Julie. 2018. Atlantic Canada Shorebird Survey (ACSS) database 2012-2018. Environment Canada, Canadian Wildlife Service.
- 1596 Berrigan, L. 2019. Maritimes Marsh Monitoring Project 2013, 2014, 2016, 2017, and 2018 data. Bird Studies Canada, Sackville, NB.
- 1446 Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R. 2020. North American Breeding Bird Survey Dataset 1966 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9J6QUF6
- 1203 iNaturalist. 2020. iNaturalist Data Export 2020. iNaturalist.org and iNaturalist.ca, Web site: 128728 recs.
- 1055 Blaney, C.S. & Mazerolle, D.M. 2011. NB WTF Fieldwork on Magaguadavic & Lower St Croix Rivers. Atlantic Canada Conservation Data Centre, 4585 recs.
- Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).
- 783 Askanas, H. 2016. New Brunswick Wood Turtle Database. New Brunswick Department of Energy and Resource Development.
- 662 Wallace, S. 2020. Stewardship Department species occurrence data on NTNB preserves. Nature Trust of New Brunswick.
- 514 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
- 449 eBird. 2020. eBird Basic Dataset. Version: EBD_relNov-2019. Ithaca, New York. Nov 2019, Cape Breton Bras d'Or Lakes Watershed subset. Cornell Lab of Ornithology.
- 444 Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- 399 Watts, Todd. 2021. Bird Species at Risk records, NB. Peskotomuhkati Nation at Skutik.
- 393 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs. https://doi.org/10.1037/arc0000014.
- 357 Sollows, M.C., 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.
- 344 Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.
- 329 Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).
- 322 Benedict, B. Connell Herbarium Specimens (Data). University New Brunswick, Fredericton. 2003.
- 316 Epworth, W. 2016. Species at Risk records, 2014-2016. Fort Folly Habitat Recovery Program, 38 recs.
- 273 Watts, T. 2021. Fuscopannaria leucosticta, Pannaria lurida and Fraxinus nigra records from western Charlotte County, New Brunswick. Peskotomuhkati Nation at Skutik, 273 records.
- 253 Mazerolle, D.M. 2020. Atlantic Canada Conservation Data Centre botanical fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 252 Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.
- 240 Chapman-Lam, C.J. 2022. Atlantic Canada Conservation Data Centre 2021 botanical fieldwork. Atlantic Canada Conservation Data Centre, 15099 recs.
- 199 Riley, J. 2020. Digby County lichen observations. Pers. comm. to J.L. Churchill.
- 194 Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.
- 192 Paquet, Julie. 2019. Atlantic Canada Shorebird Survey ACSS database for 2019. Environment Canada, Canadian Wildlife Service.
- 188 Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
- 186 Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- 186 Nature Trust of New Brunswick. 2021. Nature Trust of New Brunswick site inventory data submitted in April 2021. Nature Trust of New Brunswick, 2189 records.
- 182 Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada).
- 168 Brunelle, P.-M. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.
- 167 Stantec. 2014. Energy East Pipeline Corridor Species Occurrence Data. Stantec Inc., 4934 records.
- 163 Tranquilla, L. 2015. Maritimes Marsh Monitoring Project 2015 data. Bird Studies Canada, Sackville NB, 5062 recs.

# recs	
160	Blaney, C.S. 2019. Sean Blaney 2019 field data. Atlantic Canada Conservation Data Centre, 4407 records.
152	Watts, Todd. 2021. Todd Watts rare species data 2021. Peskotomakuti First Nation at Skutik, 152 records.
151	Mazerolle, D.M. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 13515 recs.
149	Boyne, A.W. 2000. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 168 recs.
148	Blaney, C.S. & Mazerolle, D.M. 2011. Field data from NCC properties at Musquash Harbour NB & Goose Lake NS. Atlantic Canada Conservation Data Centre, 1739 recs.
148	Blaney, C.S. 2020. Sean Blaney 2020 field data. Atlantic Canada Conservation Data Centre, 4407 records.
138	Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.
128	Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.
125	Bishop, G. & Papoulias, M.; Arnold (Chaplin), M. 2005. Grand Lake Meadows field notes, Summer 2005. New Brunswick Federation of Naturalists, 1638 recs.
125	Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.
121	Klymko, J. 2018. Maritimes Butterfly Atlas database. Atlantic Canada Conservation Data Centre.
117	SwiftWatch. 2022. Total Chimney Swift counts from roost watches for the duration of the SwiftWatch program (2011-2021). Birds Canada.
109	Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.
109	Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
107	Riley, J. 2019. Digby County lichen observations. Pers. comm. to J.L. Churchill, 50 recs.
104	Chapman, C.J. 2019. Atlantic Canada Conservation Data Centre 2019 botanical fieldwork. Atlantic Canada Conservation Data Centre, 11729 recs.
102	Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.
93	Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.
92	Chapman-Lam, Colin J. 2022. Atlantic Canada Conservation Data Centre 2022 contracted project work. Atlantic Canada Conservation Data Centre.
89	Robinson, Sarah. 2022. Winter bird obserations at Woodwards Cove, NB. CBCL.

- 88 Benjamin, L.K. 2009. NSDNR Fieldwork & Consultants Reports. Nova Scotia Dept Natural Resources, 143 recs.
- 87 Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.
- 84 Belland, R.J. Maritimes moss records from various herbarium databases. 2014.
- 84 Mazerolle, D.M. 2017. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 83 Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.
- 80 Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.
- 78 O'Malley, Z., Z.G. Compson, J.M. Orlofske, D.J. Baird, R.A. Curry, and W.A. Monk. 2021. Riparian and in channel habitat properties linked to dragonfly emergence. Scientific Reports, 10(17665):1-12.
- 76 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 74 Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.
- 71 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.
- 69 Beardmore, T. 2017. Wood turtle data: observations May 2017. Nashwaaksis Stream, NB. Natural Resources Canada, 78 records.
- 69 Richardson, Leif. 2018. Maritimes Bombus records from various sources. Richardson, Leif.
- 66 Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.
- 61 Klymko, J.J.D. 2018. 2017 field data. Atlantic Canada Conservation Data Centre.
- 60 Belliveau, A.G. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2017. Atlantic Canada Conservation Data Centre.
- 60 iNaturalist. 2020. iNaturalist butterfly records selected for the Maritimes Butterfly Atlas. iNaturalist.
- 57 Nature Trust of New Brunswick. 2020. Nature Trust of New Brunswick 2020 staff observations of species occurence data. Nature Trust of New Brunswick, 133 records.
- 55 Nussey, Pat & NCC staff. 2019. AEI tracked species records, 2016-2019. Chapman, C.J. (ed.) Atlantic Canada Conservation Data Centre, 333.
- 54 Clayden, S. Digitization of Wolfgang Maass Nova Scotia forest lichen collections, 1964-2004. New Brunswick Museum. 2018.
- 53 Robinson, S.L. 2015. 2014 field data.
- 51 iNaturalist. 2018. iNaturalist Data Export 2018. iNaturalist.org and iNaturalist.ca, Web site: 11700 recs.
- 51 Sabine, M. 2016. Black Ash records from the NB DNR Forest Development Survey. New Brunswick Department of Natural Resources.
- 48 e-Butterfly. 2016. Export of Maritimes records and photos. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
- 47 Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.
- 46 Haughian, S.R. 2018. Description of Fuscopannaria leucosticta field work in 2017. New Brunswick Museum, 314 recs.
- 46 Manthorne, A. 2014. MaritimesSwiftwatch Project database 2013-2014. Bird Studies Canada, Sackville NB, 326 recs.
- 46 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.
- 44 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 44 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 41 Thomas, A.W. 1996, A preliminary atlas of the butterflies of New Brunswick, New Brunswick Museum,
- 40 Wisniowski, C. & Dowding, A. 2019, NB species occurrence data for 2016-2018, Nature Trust of New Brunswick.
- 37 Porter, Caitlin. 2020. Observations for 26 EcoGifts sites in southwest New Brunswick. Atlantic Canada Conservation Data Centre, 1073 records.
- 37 Wilhelm, S.I. et al. 2019. Colonial Waterbird Database. Canadian Wildlife Service.
- 36 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 35 Bishop, G., M. Lovit. 2019. Vascular Plant Flora of the Three Islands. Mazerolle, D.M., Chapman, C.J. (ed.) Bowdoin College & New Brunswick Museum, 291 pp.
- 34 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 32 Porter, Caitlin. 2021. Field data for 2020 in various locations across the Maritimes. Atlantic Canada Conservation Data Centre, 3977 records.
- 30 Patrick, Allison. 2021. Animal and plant records from NCC properties from 2019 and 2020. Nature Conservancy Canada.
- 29 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.

#### # recs CITATION

- 28 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2009. New Brunswick Dept Natural Resources, 19 recs (14 active).
- 26 Klymko, J. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre.
- 25 Klymko, J. 2020. Atlantic Canada Conservation Data Centre zoological fieldwork 2019. Atlantic Canada Conservation Data Centre.
- 25 Tingley, S. (compiler). 2001. Butterflies of New Brunswick. , Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.
- 24 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 24 Spicer, C.D. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 211 recs.
- 23 Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012.
- 22 Klymko, J. 2019. Atlantic Canada Conservation Data Centre zoological fieldwork 2018. Atlantic Canada Conservation Data Centre.
- 22 Sabine, M. 2016. NB DNR staff incidental Black Ash observations. New Brunswick Department of Natural Resources.
- 21 Sollows, M.C,. 2009. NBM Science Collections databases: Coccinellid & Cerambycid Beetles. New Brunswick Museum, Saint John NB, download Feb. 2009, 569 recs.
- 20 Belliveau, A.G. 2018. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2018. E.C. Smith Herbarium, 6226 recs.
- 20 Chapman, C.J. 2018. Atlantic Canada Conservation Data Centre botanical fieldwork 2018. Atlantic Canada Conservation Data Centre, 11171 recs.
- 20 Haughian, Sean. 2021. Update to lichen data from 2017-2021. Nova Scotia Museum.
- 20 Wisniowski, C. & Dowding, A. 2020. NB species occurrence data for 2020. Nature Trust of New Brunswick.
- 19 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- 19 Brazner, J. 2016. Nova Scotia Forested Wetland Bird Surveys. Nova Scotia Department of Lands and Forestry.
- 19 Honeyman, K. 2019. Unique Areas Database, 2018. J.D. Irving Ltd.
- 19 McMullin, R.T. 2022. Maritimes lichen records. Canadian Museum of Nature.
- 19 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
- 18 Chapman-Lam, C.J. 2021. Atlantic Canada Conservation Data Centre 2020 botanical fieldwork. Atlantic Canada Conservation Data Centre, 17309 recs.
- 17 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 17 Spicer, C.D. 2001. Powerline Corridor Botanical Surveys, Charlotte & Saint John Counties. A M E C International, 1269 recs.
- 15 McLean, K. 2020. Species occurrence records from Clean Annapolis River Project fieldwork in 2020. Clean Annapolis River Project, 206 records.
- 15 Sabine, M. 2016. Black Ash records from NB DNR permanent forest sampling Plots. New Brunswick Department of Natural Resources, 39 recs.
- 14 Clayden, S.R. 2005. Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia). Committee on the Status of Endangered Wildlife in Canada, 27 recs.
- 14 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99., Pers. comm. to K.A. Bredin. 91 recs.
- 14 Newell, R.E. 2005. E.C. Smith Digital Herbarium. E.C. Smith Herbarium, Irving Biodiversity Collection, Acadia University, Web site: http://luxor.acadiau.ca/library/Herbarium/project/. 582 recs.
- 13 Belliveau, A.G. 2020. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2019, 2020. E.C. Smith Herbarium.
- 13 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000.
- 13 Benjamin, L.K. (compiler). 2012. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 4965 recs.
- 13 G.Proulx, R. Newell, A. Mills, D. Bayne. 2018. Selaginella rupestris records, Digby Co. Nova Scotia Lands and Forestry, 1387601 recs.
- 13 Hughes, Cory. 2020. Atlantic Forestry Centre Coccinella transversoguttata collections. Canadian Forest Service, Atlantic Forestry Centre.
- 13 Robinson, S.L. 2014. 2013 Field Data. Atlantic Canada Conservation Data Centre.
- 11 Klymko, J.J.D. 2016. 2014 field data. Atlantic Canada Conservation Data Centre.
- 11 Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013.
- 11 NatureServe Canada. 2019. iNaturalist Maritimes Butterfly Records. iNaturalist.org and iNaturalist.ca.
- 11 Shortt, R. Connell Herbarium Black Ash specimens. University New Brunswick, Fredericton. 2019.
- 11 Shortt, R. UNB specimen data for various tracked species formerly considered secure. Connell Memorial Herbarium, UNB, Fredericton NB. 2019.
- 11 Webster, R.P. 2004. Lepidopteran Records for National Wildlife Areas in New Brunswick. Webster, 1101 recs.
- 10 Blaney, C.S. 2018. Atlantic Canada Conservation Data Centre Fieldwork 2018. Atlantic Canada Conservation Data Centre.
- 10 Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2015. Atlantic Canada Conservation Data Centre Fieldwork 2015. Atlantic Canada Conservation Data Centre, # recs.
- 10 Department of Natural Resources and Energy Development. 2022. Wood Turtle records for New Brunswick. Government of New Brunswick, 28 records.
- 10 Neily, T. H. 2018. Lichen and Bryophyte records, AEI 2017-2018. Tom Neily; Atlantic Canada Conservation Data Centre.
- 10 Noseworthy, J. 2013. Van Brunt's Jacob's-ladder observations along tributary of Dipper Harbour Ck. Nature Conservancy of Canada, 10 recs.
- 9 Belliveau, A.G. 2014. Plant Records from Southern and Central Nova Scotia. Atlantic Canada Conservation Data Centre, 919 recs.
- 9 Belliveau, A.G. 2016. Atlantic Canada Conservation Data Centre Fieldwork 2016. Atlantic Canada Conservation Data Centre, 10695 recs.
- 9 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- 9 Department of Natural Resources and Energy Development. 2022. Pinedrops (Pterospora andromedea) records for New Brunswick. Government of New Brunswick, 12 records.
- 9 Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- 9 Lovit, M. 2015. Rare Passamaguoddy Flora of Grand Manan. New Brunswick Museum, Florence M. Christie Grant in Botany, 32 pp.
- 9 Pronych, G. & Wilson, A. 1993. Atlas of Rare Vascular Plants in Nova Scotia. Nova Scotia Museum, Halifax NS, I:1-168, II:169-331. 1446 recs.
- 8 Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs.
- 8 Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.
- 8 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active).
- 8 Klymko, J. Dataset of butterfly records at the New Brunswick Museum not yet accessioned by the museum. Atlantic Canada Conservation Data Centre. 2016.
- 8 Webster, R.P. Atlantic Forestry Centre Insect Collection, Maritimes butterfly records. Natural Resources Canada. 2014.
- 8 Young, Elva. 2019. Epargyreus clarus records from Charlotte County. Young, Elva, pers. comm.
- 7 Christie, D.S. 2000. Christmas Bird Count Data, 1997-2000. Nature NB, 54 recs.
- 7 Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs.

# recs	CITATION
7	King, Amelia. 2020. Belleisle Watershed Coalition Turtle Watch Data. Belleisle Watershed Coalition.
7	Klymko, J.J.D. 2012. Insect fieldwork & submissions, 2003-11. Atlantic Canada Conservation Data Centre. Sackville NB, 1337 recs.
7	Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
6	Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000. Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
6	Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs.
6	e-Butterfly. 2019. Export of Maritimes records and photos. McFarland, K. (ed.) e-butterfly.org.
6	McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick. New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
6	Richardson, D., Anderson, F., Cameron, R., Pepper, C., Clayden, S. 2015. Field Work Report on the Wrinkled Shingle lichen (Panaria lurida). COSEWIC.
6	Webster, R.P. Database of R.P. Webster butterfly collection. 2017.
6	Whittam, R.M. 1999. Status Report on the Roseate Tern (update) in Canada. Committee on the Status of Endangered Wildlife in Canada, 36 recs.
5	Belliveau, A.G. 2021. E.C. Smith Herbarium and Atlantic Canada Conservation Data Centre Fieldwork 2021. E.C. Smith Herbarium.
5	Blaney, C.S.; Mazerolle, D.M. 2011, Fieldwork 2011. Atlantic Canada Conservation Data Centre, Sackville NB.
5	Boyne, A.W. 2000. Harlequin Duck Surveys. Canadian Wildlife Service, Sackville, unpublished data. 5 recs.
5	Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp.
5	Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
5	Hicklin, P.W. 1999. The Maritime Shorebird Survey Newsletter. Calidris, No. 7. 6 recs.
5	Moldowan, Patrick Chrysemys picta records from COSEWIC status report. pers. comm. 2021.
5	Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2014.
5	Roland, A.E. & Smith, E.C. 1969. The Flora of Nova Scotia, 1st Ed. Nova Scotia Museum, Halifax, 743pp.
1	Beardmore, T. 2017. 2017 Butternut observations. Natural Resources Canada.
4	Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.
4	Clayden, S.R. 2003. NS lichen ranks, locations. Pers. comm to C.S. Blaney. 1p, 5 recs, 5 recs.
4	Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
4	LaPaix, R.W. 2012. Note Science Conections databases. Vascular plants new bioinswick indecum, Saint John ND, 37 Tecs.
4	Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs.
4	Marshan, L. 1990. Adamic Samon. Souries new Brutswick outers indy St A 20. Dept of Fishere's & Oceans, Adamic Region, Science. Stock Statis Report Dor 15. 0 fecs.
4	Marx, M. & Reiney, K.D. 2001. Noth Addition Ng/in Whate Balabase. Only and be Islandy of House 1990. A feed. Patrick, A.; Horne, D.; Noseworthy, J. et. al. 2017. Field data for Nova Scotia and New Brunswick, 2015 and 2017. Nature Conservancy of Canada.
3	Benjamin, L.K. (compiler). 2007. Significant Habitat & Species Database. Nova Scotia Dept Natural Resources, 8439 recs.
3	Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip., 135 rec.
2	Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.
3	Clayden, S.R. 2002. Attalitie damont, Manufine Trombes overhelem Decor. Deptor Frances & Decaris, Attalitie Region, Science Stock Status Report Do-14. 35 ress.
3	Forbes, G. 2001. Bog Lemming, Phalarope records, NB., Pers. comm. to K.A. Bredin. 6 recs.
3	Forbes, G. 2021. Chrysemys picta record from Waasis, New Brunswick. pers. comm.
3	Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
3	Maddox, G.D., Cannell, P.F. 1982. The Butterflies of Kent Island, Grand Manan, New Brunswick. Journal of the Lepidopterists' Society, 36(4): 264-268.
2	Naddox, O.D., Calment, T.T. 1902. The Datemies of Kent Island, Orald Marian, New Dranswick. Southal of the Lepidoptensis Society, So(4). 204-200. Nash, Vicky. 2018. Hammond River Angling Association Wood Turtle observations. Hammond River Angling Association, 3 recs.
2	Newell, R.E. 2006. Rare plant observations in Digby Neck. Pers. comm. to S. Blaney, 6 recs.
3	Riley, J. 2020. Digby County Pannaria lurida observations. Pers. comm. to J.L. Churchill.
3	Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
3	Staicer, C. 2021. Additional compiled Nova Scotia Species at Risk bird records, 2005-2020. Dalhousie University.
3	Toms, B. 2018. Bat Species data from www.batconservation.ca for Nova Scotia. Mersey Tobeatic Research Institute, 547 Records.
2	Amirault, D.L. & Stewart, J. 2007. Piping Plover Database 1894-2006. Canadian Wildlife Service, Sackville, 3344 recs, 1228 new.
2	Amirault, D.L. & Stewart, J. 2007. Piping Prover Database To94-2006. Canadian Wildlife Service, Sackville, 3344 Tecs, 1228 New. Amirault, D.L. 1997-2000. Unpublished files. Canadian Wildlife Service, Sackville, 470 recs.
2	Anniadit, D.L. 1997-2000. Onpublished lies. Canadian Wildlife Service, Sackville, 470 fecs. Anon. 2017. Export of Maritimes Butterfly records. Global Biodiversity Information Facility (GBIF).
2	Basquill, S.P., Porter, C. 2019. Bryophyte and lichen specimens submitted to the E.C. Smith Herbarium. NS Department of Lands and Forestry.
2	Bishop, G., Bagnell, B.A. 2004. Site Assessment of Musquash Harbour, Nature Conservancy of Canada Property - Preliminary Botanical Survey. B&B Botanical, 12pp.
2	Bishop, G., Bagnell, B.A. 2004. Site Assessment of Musquash Harbour, Nature Conservancy of Canada Property - Preliminary Botanical Survey. B&B Botanical, 12pp. Brunelle, PM. 2005. Wood Turtle observations. Pers. comm. to S.H. Gerriets, 21 Sep. 3 recs.
2	Clayden, S.R. 2005. Email to Sean Blaney regarding Pilophorus cereus and P. fibula at Fidele Lake area, Charlotte County, NB. pers. comm., 2 records.
2	Cowie, F. 2020. Ellianto Sean Blaney regarding Phophorus cereus and P. India al Pidele Lake area, Charlotte County, ND. pers. contin., 2 records.
2	Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs.
2	Edsall, J. 1992. Sommer 1992 Report. New Brunswick Bird Info Line, 2 recs.
2	Goltz, J. 2017. Harlequin Duck observations. New Brunswick Department of Agriculture, Aquaculture and Fisheries.
2	Goltz, J.P. 2001. Botany Ramblings April 29-June 30, 2001. N.B. Naturalist, 28 (2): 51-2. 8 recs.
2	Goltz, J.P. 2001. Botany Ramblings April 29-June 30, 2001. N.B. Naturalist, 26 (2): 51-2. 8 recs. Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs.
2	Guiz, J.F. 2002. Dotainy Rambings. T July to 30 September, 2002. N.D. Naturaist, 23 (3):04-32. Trecs.

- 2 2
- 2
- 2
- Hinds, H.R. 1999. A Vascular Plant Survey of the Musquash Estuary in New Brunswick., 12pp.
  Layberry, R.A. & Hall, P.W., LaFontaine, J.D. 1998. The Butterflies of Canada. University of Toronto Press. 280 pp+plates.
  Manthorne, A. 2019. Incidental aerial insectivore observations. Birds Canada.
  McCain, J. & R.B. Pike and A.R. Hodgdon. 1973. The vascular flora of Kent Island, New Brunswick. Rhodora 75:311-322, 2 records.
  McIntosh, W. 1904. Supplementary List of the Lepidoptera of New Brunswick. Bulletin of the Natural History Society of New Brunswick, 23: 355-357. 2

CITATION
Mersey Tobetic Research Institute. 2021. 2020 Monarch records from the MTRI monitoring program. Mersey Tobetic Research Institute, 72 records.
Neily, T.H. 2019. Tom Neily NS Bryophyte records (2009-2013). T.H. Neily, Atlantic Canada Conservation Data Centre, 1029 specimen records.
Neily, T.H. Tom Neily NS Sphagnum records (2009-2014). T.H. Neily, Atlantic Canada Conservation Data Centre. 2019.
Perrin, J., Russel, J. 1912. Catalogue of Butterflies and Moths, Mostly Collected in the Neighborhood of Halifax and Digby, Nova Scotia. Proceedings and Transactions of the Nova Scotian Institute of Science, 12(3),
258-290.
Proulx, V.D. 2002. Selaginella rupestris sight record at Centreville, Nova Scotia. Virginia D. Proulx collection, 2 recs.
Richardson, D., Anderson, F., Cameron, R, McMullin, T., Clayden, S. 2014. Field Work Report on Black Foam Lichen (Anzia colpodes). COSEWIC.
Wisniowski, C. 2018. Optimizing wood turtle conservation in New Brunswick through collaboration, strategic planning, and landowner outreach. Nature Trust of New Brunswick, 10 records.
Allen, Cory. 2021. Email to John Klymko regarding Glyptemys insculpta observation. Personal communication.
Bagnell, B.A. 2003. Update to New Brunswick Rare Bryophyte Occurrences. B&B Botanical, Sussex, 5 recs.
Basquill, S.P. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre, Sackville NB, 69 recs.
Bayne, D.Z. 2014. 2014 rare species observations from southwest Nova Scotia. Nova Scotia Department of Natural Resources, 46 recs.
Belliveau, A.G. 2020. Email to Colin Chapman on new NS locations for Allium tricoccum. Chapman, C.J. (ed.) Acadia University.
Benedic, B. 2006. Argus annotation: Salix pedicellaris. Pers. comm to C.S. Blaney, June 21, 1 rec.
Benedict, B. Agalinis neoscotica specimen from Grand Man. 2009.
Bredin, K.A. 2001. WTF Project: Freshwater Mussel Fieldwork in Freshwater Species data. Atlantic Canada Conservation Data Centere, 101 recs.
Brunelle, PM. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs.
Brunton, D. F. & McIntosh, K. L. Agalinis neoscotica herbarium record from D. F. Brunton Herbarium. D.F. Brunton Herbarium, Ottawa. 2005.
Brunton, D.F. 2016. Record of Potamogeton vaseyi in Joslin Creek, NB. pers. comm., 1 record.
Calhoun, J.C. Butterfly records databased at the McGuire Center for Lepidoptera and Biodiversity. Calhoun, J.C. 2020.
Clayden, S.R. 2007. NBM Science Collections. Pers. comm. to D. Mazerolle, 1 rec.
Clayden, S.R. 2020. Email regarding Blue Felt Lichen (Pectenia plumbea) occurrences in New Brunswick, from Stephen Clayden to Sean Blaney. pers. comm., 2 records.
Clayden, S.R. 2022. Email to Sean Blaney regarding Heterodermia squamulosa record in Loch Alva PNA., 1 record.
Dadswell, M.J. 1979. Status Report on Shortnose Sturgeon (Acipenser brevirostrum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 15 pp.
Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces., Science Stock Status Report D3-22. 13 recs.
Deseta, N. 2021. Email to John Klymko regarding Riparia riparia observations. Nashwaak Watershed Association Inc.
e-Butterfly. 2018. Selected Maritimes butterfly records from 2016 and 2017. Maxim Larrivee, Sambo Zhang (ed.) e-butterfly.org.
Edsall, J. 1993. Summer 1993 Report. New Brunswick Bird Info Line, 2 recs.
Elderkin M.F. 2007. Selaginella rupestris, Iris prismatica & Lophiola aurea records in NS. NS Dept of Natural Resources, Wildlife Div. Pers. comm. to C.S. Blaney, 3 recs.
Forbes, Graham. 2021. Email to John Klymko regarding Glyptemys insculpta observation. Personal communication.
Gobeil, R.E. 1965. Butterflies On Kent Island, New Brunswick. Journal of the Lepidopterists' Society., 19(3): 181-183.
Goltz, J.P. 2016. Email to Sean Blaney re: discovery of Carex waponahkikensis at Campobello Island. pers. comm., 1 record.
Goltz, J.P. 2020. Email to Sean Blaney regarding Anchistea virginica (Virginia Chain-fern) at Magaguadavic Lake, NB. pers. comm., 1 record.
Hayes, Jodi. 2022. Email to AC CDC regarding Snapping Turtle, NB.
Hicklin, P.W. 1990. Shorebird Concentration Sites (unpubl. data). Canadian Wildlife Service, Sackville, 296 sites, 30 spp.
Hill, N.M. 1994. Status report on the Long's bulrush Scirpus longii in Canada. Committee on the Status of Endangered Wildlife in Canada, 7 recs.
Hinds, H.R. 2000. Flora of New Brunswick (2nd Ed.). University New Brunswick, 694 pp.
Houghton, Andrew. 2021. Email to Sean Blaney re: nesting Snapping Turtle, NB. pers. comm.
Hubley, Nicole. 2022. Monarch (Danaus plexippus) records submitted to MTRI from the 2021 field season. Mersey Tobeatic Research Institute.
Jessop, B. 2004. Acipenser oxyrinchus locations. Dept of Fisheries & Oceans, Atlantic Region, Pers. comm. to K. Bredin. 1 rec.
Jolicoeur, G. 2008. Anticosti Aster at Chapel Bar, St John River. QC DOE? Pers. comm. to D.M. Mazerolle, 1 rec.
Klymko, J., Sabine, D. 2015. Verification of the occurrence of Bombus affinis (Hymenoptera: Apidae) in New Brunswick, Canada. Journal of and Acadian Entomological Society, 11: 22-25.
Klymko, J.J.D.; Robinson, S.L. 2014. 2013 field data. Atlantic Canada Conservation Data Centre.
LaPaix, R.W.; Crowell, M.J.; MacDonald, M. 2011. Stantec rare plant records, 2010-11. Stantec Consulting, 334 recs.
Maass, W.S.G. & Yetman, D. 2002. Assessment and status report on the boreal felt lichen (Erioderma pedicellatum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
MacFarlane, Wayne. 2018. Skunk Cabbage observation on Long Island, Kings Co. NB. Pers. comm., 1 records.
McAlpine, D.F. & Cox, S.L., McCabe, D.A., Schnare, JL. 2004. Occurrence of the Long-tailed Shrew (Sorex dispar) in the Nerepis Hills NB. Northeastern Naturalist, vol 11 (4) 383-386. 1 rec.
McAlpine, D.F. 2020. Email to John Klymko about Epargyreus clarus record from Grand Bay, NB. Pers, comm.
Mollraith, A.L. 1986. Additions to the flora of Kent Island, New Brunswick. Rhodora 88:441-443, 1 record.
NatureServe Canada. 2018. INaturalist Butterfly Data Export. iNaturalist.org and iNaturalist.ca.
NatureServe Canada. 2010. INaturalist Date in y Data Export : Invaturalist.org and iNaturalist.ca.
Newell, R. & Neily, T.; Toms, B.; Proulx, G. et al. 2011. NCC Properties Fieldwork in NS: August-September 2010. Nature Conservancy Canada, 106 recs.
NS DNR. 2017. Black Ash records from NS DNR Permanent Sample Plots (PSPs), 1965-2016. NS Dept of Natural Resources.
Ogden, K. Nova Scotia Museum butterfly specimen database. Nova Scotia Museum. 2017.
Sabine, D.L. & Goltz, J.P. 2006. Discovery of Utricularia resupinata at Little Otter Lake, CFB Gagetown. Pers. comm. to D.M. Mazerolle, 1 rec. Sabine, D.L. 2004. Specimen data: Whittaker Lake & Marysville NB. Pers. comm. to C.S. Blaney, 2pp, 4 recs.
Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier.

- 1
- Semple, John. 1996. Department of Biology, Univers..., 2nd Ed. Simpson, D. Collection sites for Black Ash seed lots preserved at the National Tree Seed Centre in Fredericton NB. National Tree Seed Centre, Canadian Forest Service. 2016. 1

#### # recs CITATION

- 1 Taylor, Eric B. 1997. Status of the Sympatric Smelt (genus Osmerus) Populations of Lake Utopia, New Brunswick. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
- 1 Toms, Brad & Pepper, Chris; Neily, Tom. 2022. Nova Scotia lichen database [as of 2022-04]. Mersey Tobeatic Research Institute.
- 1 Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs.
- 1 Toner, M. 2009. Wood Turtle Sightings. NB Dept of Natural Resources. Pers. comm. to S. Gerriets, Jul 13 & Sep 2, 2 recs.
- 1 Toner, M. 2011. Wood Turtle sighting. NB Dept of Natural Resources. Pers. com. to S. Gerriets, Sep 2, photo, 1 rec.
- 1 Torenvliet, Ed. 2010. Wood Turtle roadkill. NB Dept of Transport. Pers. com. to R. Lautenschlager, Aug. 20, photos, 1 rec.
- 1 Walker, E.M. 1942. Additions to the List of Odonates of the Maritime Provinces. Proc. Nova Scotian Inst. Sci., 20. 4: 159-176. 2 recs.
- 1 Wallace, S. 2022. Email to Sean Blaney regarding NB DNRED Ranger Wood Turtle sightings from 2021. NB DNRED, 5 records.
- 1 Watts, T. 2021. Emails to Sean Blaney regarding Black Tern colony at King Brook Lake, Charlotte Co. and Third Lake, York Co., NB. Peskotomuhkati Nation at Skutik, 2 records.
- 1 Webster, R.P. Email to John Klymko detailing records of butterflies collected by Reggie Webster in June 2017. Webster, R.P. 2017.
- 1 Webster, R.P. Reggie Webster's records of Encyclops caerulea . pers. collection. 2018.
- 1 Zinck, M. & Roland, A.E. 1998. Roland's Flora of Nova Scotia. Nova Scotia Museum, 3rd ed., rev. M. Zinck; 2 Vol., 1297 pp.

# APPENDIX D

# Maritime Breeding Bird Atlas Square Summary



## ATLAS DES OISEAUX NICHEURS DES MARITIMES BREEDING BIRD ATLAS

Square Summary (19FK79)

#species (1st atlas)#species (2nd atlas)#hours#pc doneposs prob conf total poss prob conf total 1st 2nd road offrd123762111451041963820.41506

Region summary (#11: Charlotte)

squares		th data			#nc done	target #pc		
squares	1st	2nd	1st	2nd	#pc done			
67	63	59	163	186	616	251		

Target number of point counts in this square: 13 road side, 2 off road (1 in Mature coniferous, 1 in Mature deciduous). Please try to ensure that each off-road station is located such that the entire 100m radius circle is within the prescribed habitat.

	Code %		%			Code %		6			Code		/ 0	
SPECIES		2nd	1st	2nd	SPECIES		2nd	1st	2nd	SPECIES	1st	2nd	1st	2nd
Canada Goose		н	12	27	Osprey	ON	CF	61	33	Razorbill ‡§			3	3
Wood Duck	Р	FY	38	38	Bald Eagle ¤		NY	38	52	Black Guillemot ‡§			20	30
Gadwall ‡			1	0	Northern Harrier	Р		33	33	Atlantic Puffin ‡§			1	1
American Wigeon	н		14	8	Sharp-shinned Hawk	н	н	20	33	Rock Pigeon	NB	н	15	32
American Black Duck	FL	FY	52	62	Cooper's Hawk †			1	1	Mourning Dove	FL	н	46	71
Mallard		FY	9	20	Northern Goshawk			15	11	Yellow-billed Cuckoo ‡			0	3
Blue-winged Teal	FL		23	5	Red-should Hawk †			12	5	Black-billed Cuckoo			31	20
Green-winged Teal	FL	Ρ	31	13	Broad-winged Hawk	Т		47	52	Eastern Screech-Owl ‡			0	3
Ring-necked Duck		FY	34	22	Red-tailed Hawk			15	13	Great Horned Owl		н	26	23
Greater Scaup †			0	0	<u>Sora</u>	Н		14	5	Barred Owl	Т	н	23	47
Common Eider §	FL	Н	26	33	American Coot †		Н	0	1	Long-eared Owl †			6	6
Common Goldeneye			4	1	Semipalmated Plover †			4	0	Short-eared Owl †			3	0
Hooded Merganser		FY	31	35	Piping Plover †			0	0	North Saw-whet Owl	Т		20	27
Common Merganser		FY	41	22	Killdeer	NE	Н	47	18	Common Nighthawk †	Т	Н	38	33
Red-breast Merganser	Р	Р	19	13	Spotted Sandpiper	FL	Ρ	60	38	Whip-poor-will			17	10
Ring-necked Pheasant			7	15	Willet			4	5	Chimney Swift †	ON	Н	31	16
Ruffed Grouse	FL		41	54	Upland Sandpiper †			3	6	Ruby-thr Hummingbird	Н	н	44	72
Spruce Grouse	н		17	15	<u>Wilson's Snipe</u>	Т		28	25	Belted Kingfisher		Н	41	49
Wild Turkey †			4	8	American Woodcock	Т		44	37	Red-head Woodpecker †			1	0
Common Loon			39	38	Black-legged Kittiwake ‡§			0	6	Yellow-bellied Sapsucker	NY		52	40
Pied-billed Grebe		FY	1	5	Bonaparte's Gull ‡			1	0	Downy Woodpecker	NY	н	46	71
Leach's Storm-Petrel ‡§			7	3	Laughing Gull † §			1	1	Hairy Woodpecker	т	н	50	72
Double-crest Cormorant §	н	Н	25	22	Ring-billed Gull ‡§			0	1	Am Three-toed Woodpecker †			4	0
Great Cormorant ‡§			1	3	Herring Gull §		Н	28	32	Black-back Woodpecker			26	13
American Bittern	Т	Н	23	18	Great Black-backed Gull §		Н	26	28	Northern Flicker	FL	FY	66	84
Great Blue Heron §	н	Н	36	28	Roseate Tern ‡§			1	1	Pileated Woodpecker	ON	FY	33	47
Green Heron †			1	1	Common Tern §			11	8	American Kestrel	ON	н	50	40
Black-crown NHeron † §			14	6	Arctic Tern ‡§			6	1	Merlin			12	33
Turkey Vulture ‡¤			1	30	Common Murre ‡§			3	3	Olive-sided Flycatcher †	Т		44	27

next page >>

### Maritimes Breeding Bird Atlas - Summary Sheet for Square 19FK79 (page 2 of 3)

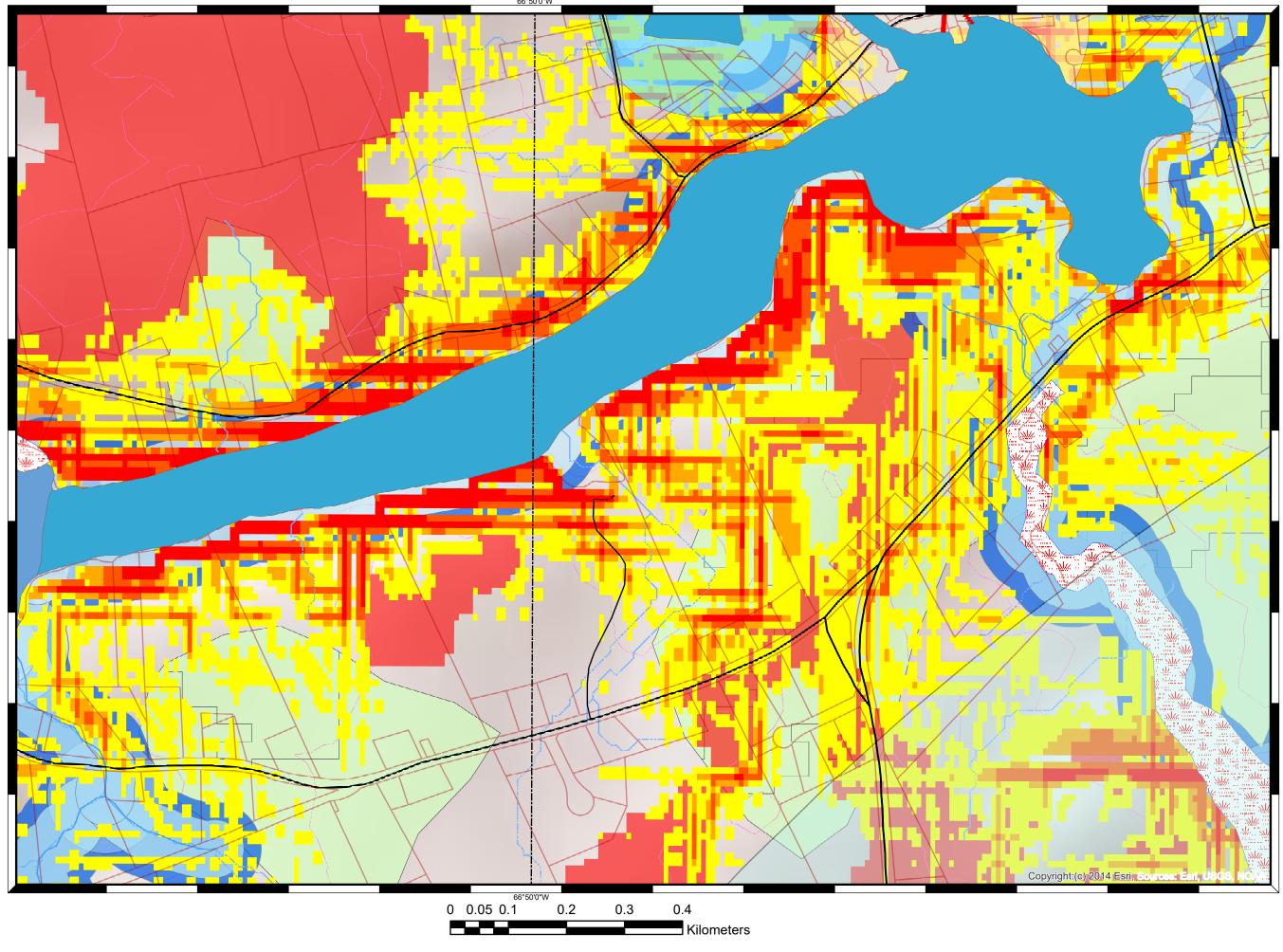
SPECIES	Code %		%	SPECIES	Cod	Code		, D	SPECIES		ode	%	D
	1st 2	nd 1s	t 2nd		1st 2	nd	1st :	2nd		1st	2nd	1st :	2nd
Eastern Wood-Pewee	ТН	4	4 42	Winter Wren	AY T	•	66	84	Chestn-sided Warbler	Т	FY	55	79
Yellow-bellied Flycatcher	NE H	ł 5	3 69	Golden-crown Kinglet	FL F	Y	57	81	Blackpoll Warbler	AY	S	22	16
Alder Flycatcher	ТА	6	1 83	Ruby-crown Kinglet	T S	5	57	64	Black-thr Blue Warbler			22	71
Willow Flycatcher †			15	Eastern Bluebird †	ON A	Ε	25	40	Palm Warbler	Т	S	28	57
Least Flycatcher	н	5	0 62	Veery	ΤS	6	52	64	Pine Warbler †			11	28
Eastern Phoebe	S	3 3	0 64	Bicknell's Thrush †	Т		15	5	Yellow-rumped Warbler	AY	FY	71	81
Gr Crested Flycatcher	н	1 3	1 13	Swainson's Thrush	AY S	5	68	74	Black-thr Green Warbler	FL	FY	66	88
Eastern Kingbird	FL F	Y 4	6 37	Hermit Thrush	AY N	IY	61	83	Canada Warbler †	Т	S	58	66
Blue-headed Vireo	ΤF	Y 6	1 81	Wood Thrush †			25	3	Wilson's Warbler	н	S	38	33
<u>Warbling Vireo</u> †	н	2	8 0	American Robin	AY C	F	84	91	Eastern Towhee ‡			1	0
Philadelphia Vireo			6 15	Gray Catbird	AY C	F	60	72	Chipping Sparrow	AY	FY	63	72
Red-eyed Vireo	FL A	6	6 86	Northern Mockingbird †	Т		17	6	Field Sparrow †			4	0
Gray Jay	FL H	ł 3	0 33	Brown Thrasher †	н	ł	6	13	Vesper Sparrow †			15	6
Blue Jay	тн	ł 5	5 74	European Starling	ON F	Y	63	64	Savannah Sparrow	FL	S	52	61
American Crow	NB A	E 6	8 79	Cedar Waxwing	NB F	Y	76	86	Nelson's Shtail Sparrow	Т		11	6
Common Raven	NB A	E 6	8 77	Ovenbird	T S	5	65	77	Song Sparrow	AY	CF	76	76
Horned Lark †			43	North Waterthrush	ΤS	6	42	50	Lincoln's Sparrow	Т		49	42
Purple Martin			4 0	Black-white Warbler	ΤF	Y	66	84	Swamp Sparrow	AY	AE	44	64
Tree Swallow	ON A	E 8	2 66	Tennessee Warbler	Т		46	22	White-throat Sparrow	FL	CF	80	86
North Rgh-wing Swallow †	Н		61	Nashville Warbler	AY C	F	61	81	Dark-eyed Junco	NE	FY	66	79
Bank Swallow §	ON	5	2 16	Mourning Warbler	тн	ł	36	28	Scarlet Tanager †			23	18
<u>Cliff Swallow §</u>	ON	6	0 30	Common Yellowthroat	AY C	F	80	86	Northern Cardinal		Н	6	16
Barn Swallow	NY F	Y 7	7 50	American Redstart	FL D	D	79	86	Rose-breast Grosbeak	NB		53	23
Black-capp Chickadee	AY A	E 6	6 86	Cape May Warbler	Т		34	18	Indigo Bunting		н	12	25
Boreal Chickadee	AY H	ł 3	3 38	Northern Parula	AY P	)	63	83	Bobolink	AY		42	28
Red-breast Nuthatch	FL C	CF 5	2 81	Magnolia Warbler	AY F	Y	68	86	Red-wing Blackbird	FL	FY	53	57
White-breast Nuthatch		1	98	Bay-breasted Warbler	AY H	ł	50	49	Eastern Meadowlark †			3	0
Brown Creeper	T S	3 3	6 35	Blackburnian Warbler	Т		55	66	Rusty Blackbird †	т		39	13
House Wren †			45	Yellow Warbler	FL P	)	63	57	Common Grackle	FL	FY	60	77

<< previous page

<u>next page >></u>

### Maritimes Breeding Bird Atlas - Summary Sheet for Square 19FK79 (page 3 of 3)

SPECIES	Co	9	6	
SPECIES	1st	2nd	1st	2nd
Brown-head Cowbird	FL		44	16
Baltimore Oriole			17	10
Pine Grosbeak			15	1
Purple Finch	Т	Т	73	83
House Finch †			6	5
Red Crossbill †	Н		22	11
White-winged Crossbill	FL		53	22
Pine Siskin	FL	Н	53	33
American Goldfinch	Т	Т	61	76
<u>Evening Grosbeak</u>	Ρ		57	16
House Sparrow	FL		20	6


This list includes all species found during the Maritimes Breeding Bird Atlas (1st atlas: 1986-1990, 2nd atlas: 2006-2010) in the region #11 (Charlotte). Underlined species are those that you should try to add to this square (19FK79). They have not yet been reported during the 2nd atlas, but were found during the 1st atlas in this square or have been reported in more than 50% of the squares in this region during the 2nd atlas so far. "Code" is the code for the highest breeding evidence for that species in square 19FK79 during the 2nd and 1st atlas respectively. The % columns give the percentage of squares in that region where that species was reported during the 2nd and 1st atlas (this gives an idea of the expected chance of finding that species in region #11). Rare/Colonial Species Report Forms should be completed for species marked: § (Colonial), ‡ (regionally rare), ‡ (rare in the Maritimes, documentation only required for confirmed records). Current as of 17/05/2023. An up-to-date version of this sheet is available from <a href="http://www.mba-aom.ca/jsp/summaryform.jsp?squareID=19FK79?lang=en">http://www.mba-aom.ca/jsp/summaryform.jsp?squareID=19FK79?lang=en</a>

<< previous page

# APPENDIX E

Archaeological Predictive Model





66°50'0"W



Legend

# VALUE

0 - 28
28.00000001 - 38
38.00000001 - 48
48.00000001 - 810
Alluvial Sediments (15)



Date: 6/21/2023



Solutions today | Tomorrow (N) mind

