

APPENDIX

C-1 HYDROGEOLOGICAL ASSESSMENTS

March 24, 2017 Project No: 1307-004

Mr. John McKinney, P.Eng. Manager, Municipal Engineering Opus International Consultants (Canada) 80 Bishop Drive Fredericton, NB, E3C 1B2

Dear Mr. McKinney,

Re: Groundwater Supply – Drilling and Test Pumping of Well TW-02, New Maryland

INTRODUCTION

On behalf of the Village of New Maryland (VNM), NB, Opus International Consultants (Canada) Limited (Opus) retained BGC Engineering Inc. (BGC) to provide hydrogeological support in the further development of the community's municipal groundwater supply. In this latest phase of the work an existing well (TW 05-02) on the **Exercise** property in New Maryland (PID 75062174, Figure 1) was deepened and a pumping test was carried out.

Figure 1 – Property Location Plan

This letter describes the work carried out on the property in February and March 2017. It follows your acceptance of our proposal dated December 1, 2016.

METHODOLOGY

BGC carried out the following tasks:

- Supervised the deepening of Well TW 05-02.
- Conducted a pumping test of the deepened well.
- Presented all findings in this letter report.

DRILLING

Between February 20 and 22, 2017 Well TW 05-02 was deepened at 0.2 m (8 inch) diameter from 109.7 m (360 feet) to 147.5 m (484 feet), the process being a lengthy one because steel was encountered at the bottom of the pre-deepened hole and had to be removed. The work was carried out by Sullivan's Well Drilling Ltd. The log of the well is attached. The upper 110 m of this log is based on the original (2005) well driller's report, whilst the lower part reflects the detailed examination of drill cuttings by our hydrogeologist (2017).

Prior to deepening, the well was overflowing by an estimated 500 m³/d (~90 usgpm). At the end of the pumping tests, the shut-in pressure was measured; it was equivalent to a head of 3.376 m (11.1 feet) above the top of the steel well casing.

Based on the water return during drilling, the well yield was estimated to be in excess of 1,600 m^{3}/d (300 usgpm).

PUMPING TEST OF WELL TW 05-02

On February 27, 2017 a step-drawdown pumping test was carried out on Well TW 05-02. The well was tested at four incremental steps, these pumping rates being as shown in Table 1. Each rate was maintained for approximately 60 minutes before proceeding to the next step. Water levels were recorded both manually and with automatic dataloggers, by measuring the depth to groundwater below the top of casing (BTOC) in the available wells, then converting to drawdowns. The results are summarized in Table 1 and plotted in Figure 2. From the step test it was concluded that the constant rate pumping test should be carried out at 1,832 m³/d (336 usgpm).

The constant rate test began at 1:40 pm on February 27, 2017, following the (almost) immediate recovery of the pumped well from the step testing. Water levels in the pumped well and in three observation wells (TW 05-01, 03 and 04 in Figure 1) were observed. The initial static water level in the pumped well (TW 05-02) was not measured, but was later assumed to be 3.376 m above the top of the casing, as measured after the test. The pumping phase of the test continued for 72 hours and both the drawdown and (post-pumping) recovery stages were measured manually and

by datalogger. The water level data are plotted in Figure 3 (on a natural scale). Drawdown data are plotted on a logarithmic time scale in Figure 4.

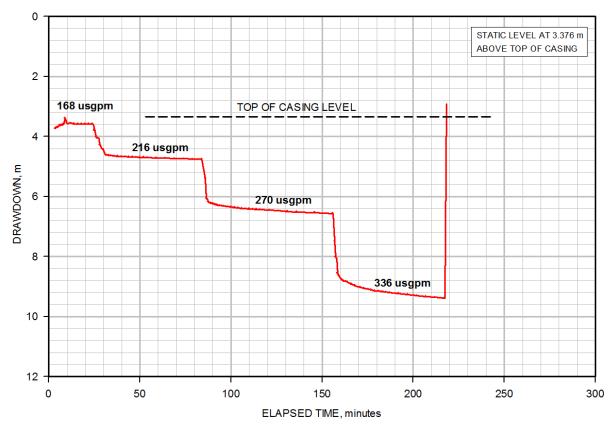

STEP	PUMPING	PUMPING RATE		I AFTER 60 TES
	m³/d	usgpm	metres	feet
1	916	168	3.61	11.84
2	1,177	216	4.76	15.61
3	1,472	270	6.57	21.54
4	1,832	336	9.39	30.80

Table 1. Step Test of Well TW 05-02

NOTES:

Aquifer Loss Coefficient, B = 0.002 days/m² or 0.035 feet/usgpm

Well Loss Coefficient, C = 1.64 x 10^{-6} days/m⁵ or 1.64 x 10^{-4} feet/usgpm²

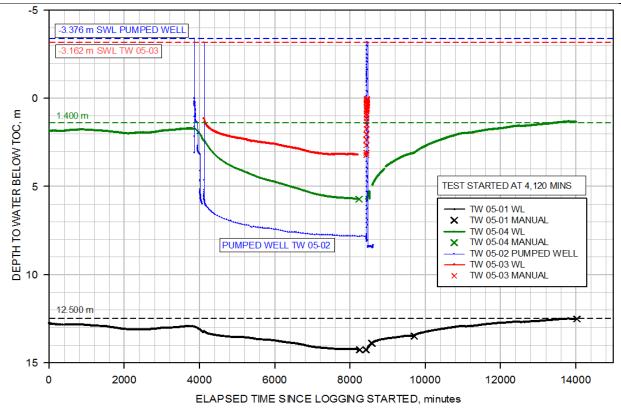


Figure 3. Step Test and Constant Rate Pumping Test of Well TW 05-02 – Water Levels vs. Time

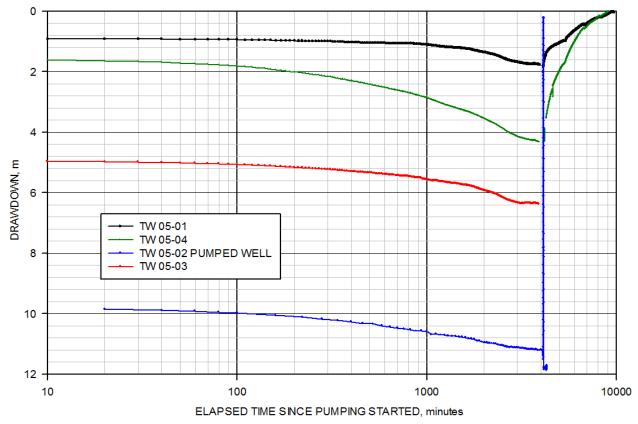


Figure 4. Constant Rate Pumping Test of Well TW 05-02 – Drawdown vs. Log Time

Page 4

BGC ENGINEERING INC.

Analysis of the pumping test data was completed using traditional Cooper-Jacob (1946) and Theis (1935) analytical methods for the pumping and recovery phases. By this means, the aquifer's transmissivity and storativity properties were calculated.

After 72 hours (4,320 minutes) of continuous pumping, the drawdown in the pumped well was 11.22 m. From the slope of the drawdown versus log time plot (Figure 4), it was inferred that some recharge was intercepted two days into the test (~2,880 minutes) when the cone of depression had expanded some 600 m from the pumped well (inferred later from Figure 5). The data suggest an aquifer transmissivity of approximately 250 m²/d (20,000 usgpd/ft) and a storativity of $3x10^{-3}$ or lower, the latter indicating confined aquifer conditions supported by the presence of artesian flow.

The drawdown in the closest observation well (TW 05-03), located 4.95 m from the pumped well (TW 05-02), was 6.45 m after 72 hours of pumping (refer to Figure 4).

The hydraulic responses of the two other observation wells (TW 05-01 and 04) during the pumping test are also presented in Figures 3 and 4. The drawdown in Well TW 05-04 (64 m from the pumped well) was 4.32 m at the end of the pumping period while the drawdown in Well TW 05-01 (145 m from the pumped well) was 1.77 m at the end of the test. Distance drawdown data are plotted in Figure 5, from which an aquifer transmissivity of 225 m²/d (~18,200 usgpd/ft) is inferred.

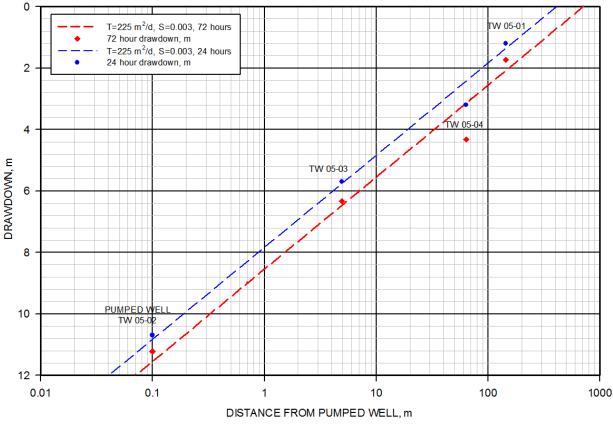
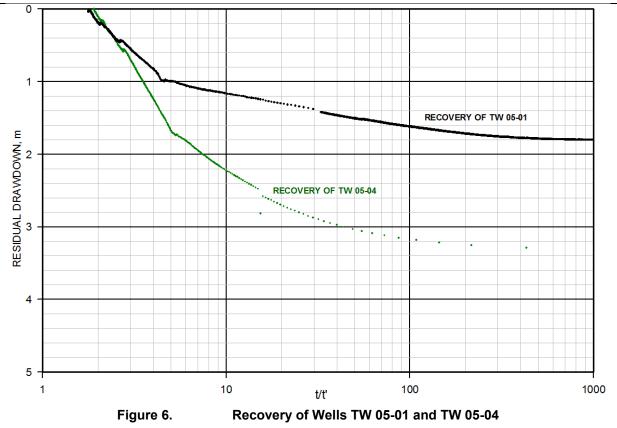



Figure 5. Constant Rate Pumping Test of Well TW 05-02 – Distance Drawdown

The pumped well (TW 05-02) completely recovered in less than 24 hours from the end of the pumping portion of the test. The intercept of the log t/t' curve¹ with zero residual drawdown for observation wells TW 05-01 and 04 was at a t/t' value of approximately 2, confirming that impermeable boundaries were not encountered during the test.

WATER QUALITY

Water samples were recovered from Well TW 05-02 by others in 2005 when the well was first drilled. Those data are appended. in the associated report (GEMTEC, 2005). Three water samples were recovered by BGC during the current pumping test. Associated laboratory certificates are attached and these recent data are also summarized in Tables 2 and 3.

The sampled water from TW 05-02 is of a calcium bicarbonate type, meeting the Health Canada Guideline for Canadian Drinking Water Quality (CDWQG) except with respect to manganese for which, at 0.4 mg/L is 8 times the CDWQG concentration². The manganese concentration remained fairly consistent with time.

¹ t = time since pumping started; t' = time since pumping ceased

² The aesthetic objective concentration for manganese is <0.05 mg/L.

Re: Groundwater Supply - Drilling and Test Pumping of Well TW-02, New Maryland

RPC Sample ID:					277410-1	228195-1	28239-1
BGC Sample ID: Date Sampled:	TW 05-02 21-Feb-17	TW 05-02 1-Mar-17 (48 hrs)	TW 05-02 2-Mar-17 (72 hrs)				
Analytes	Units	RL	MAC	AO			
Sodium	mg/L	0.05	$ \mathcal{X} $	200	34.6	35.6	34.7
Potassium	mg/L	0.02	4	l é l	0.54	0.49	0.48
Calcium	mg/L	0.05	181	1.1	45.2	42.8	41.7
Magnesium	mg/L	0.01		111	2.99	2.83	2.74
Iron	mg/L	0.02	2	0.3	0.02	< 0.02	0.02
Manganese	mg/L	0.001		0.05	0.417	0.399	0.382
Copper	mg/L	0.001	1	1.0	< 0.001	< 0.001	< 0.001
Zinc	mg/L	0.001	Ĩ.,	5.0	0.002	0.002	0.008
Ammonia (as N)	mg/L	0.05			< 0.05	< 0.05	< 0.05
рН	units	÷	-	6.5 - 8.5	8.1	7.9	8.0
Alkalinity (as CaCO ₃)	mg/L	2	l'and	181	97	105	104
Chloride	mg/L	0.5	1.5.1	250	53.1	52.9	46.1
Fluoride	mg/L	0.05	1.5	$(-1) (2^{T}) = 0$			· · · · · · · · · · · · · · · · · · ·
Sulfate	mg/L	1	2	500	21	21	21
Nitrate + Nitrite (as N)	mg/L	0.05	10	1.611	< 0.05	< 0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	1.5.1	1.20	< 0.01	0.02	0.02
r-Silica (as SiO₂)	mg/L	0_1	1,52	120	13.7	14.0	13.6
Carbon - Total Organic	mg/L	0.5	-	-	0.5	0.6	0.5
Turbidity	NTU	0_1	1.5	1.2.1	28.5	< 0.1	< 0.1
Conductivity	µS/cm	1	1.2		413	410	411
Calculated Parameters							
Bicarbonate (as CaCO ₃)	mg/L				95.8	104.	103.
Carbonate (as CaCO ₃)	mg/L	-	1.2	-	1.13	0.778	0.968
Hydroxide (as CaCO ₃)	mg/L		- e- 1	1.00	0.063	0.040	0.050
Cation Sum	meq/L	- e - 1	1.52	1.20	4.04	3.94	3.84
Anion Sum	meq/L	1-2-1	1.121		3.87	4.03	3.82
Percent Difference	%		1.2	$= \kappa - 1$	2.07	-1.07	0.34
Theoretical Conductivity	µS/cm	÷	14		394	395	378
Hardness (as CaCO₃)	mg/L	0.2	1.5	18 °	125	118	115
lon Sum	mg/L		1.01	500	231	234	224
Saturation pH (5°C)	units		1.2.1	1 - An 1	8.0	8.0	8.0
Langelier Index (5°C)	The second	-	1.2	100	0.11	-0.07	0.01

NOTE: RL=Reporting Limit; MAC=maximum acceptable concentration; AO=Aesthetic Objective. Exceedences of CDWQG are highlighted in yellow

Re: Groundwater Supply - Drilling and Test Pumping of Well TW-02, New Maryland

RPC Sample ID: BGC Sample ID: Date Sampled:	277410-1 TW 05-02 21-Feb-17	228195-1 TW 05-02 1-Mar-17 (48 hrs)	28239-1 TW 05-02 2-Mar-17 (72 hrs)				
Analytes	Units	RL	MAC	AO		(40 110)	(12 1110)
Aluminum	µg/L	1	- 9-		5	2	4
Antimony	µg/L	0.1	6		0.3	< 0.1	< 0.1
Arsenic	µg/L	1	10	-	5	<1	< 1
Barium	µg/L	1	1000		175	167	165
Beryllium	µg/L	0.1	-	-0.0041	< 0.1	< 0.1	< 0.1
Bismuth	µg/L	1	. Ar	[<1	<1	<1
Boron	µg/L	1	5000		21	22	21
Cadmium	µg/L	0.01	5		< 0.01	< <mark>0.01</mark>	< 0.01
Calcium	µg/L	50		1.1	45200	42800	41700
Chromium	µg/L	1	50		< 1	<1	< 1
Cobalt	μg/L	0.1	-	-	0.7	< 0.1	< 0.1
Copper	µg/L	1	1	1000	< 1	< 1	< 1
Iron	µg/L	20		300	20	< 20	20
Lead	µg/L	0.1	10	1901	< 0.1	< 0.1	3.5
Lithium	µg/L	0.1	Å.		34.1	36.6	35.0
Magnesium	µg/L	10	÷.	1	2990	2830	2740
Manganese	µg/L	1	4	50	417	399	382
Mercury	µg/L	0.025	1	-			
Molybdenum	µg/L	0.1	- 6 - 1	1.00	1.3	0.4	0.3
Nickel	µg/L	1	- 4	11.4	<1	< 1	< 1
Potassium	µg/L	20	1		540	490	480
Rubidium	µg/L	0.1		1.54.01	0.7	0.6	0.6
Selenium	µg/L	1	10		< 1	<1	<1
Silver	µg/L	0.1	-	-	< 0.1	< 0.1	< 0.1
Sodium	µg/L	50	140	200000	34600	35600	34700
Strontium	µg/L	1		-	938	907	878
Tellurium	µg/L	0.1	-	-	< 0.1	< 0.1	< 0.1
Thallium	µg/L	0.1	4		< 0.1	< 0.1	< 0.1
Tin	µg/L	0.1	-	-	< 0.1	< 0.1	< 0.1
Uranium	µg/L	0.1	20	-	0.1	< 0.1	< 0.1
Vanadium	µg/L	1			<1	<1	<1
Zinc	µg/L	1	-	5000	2	2	8

NOTE: RL=Reporting Limit; MAC=maximum acceptable concentration; AO=Aesthetic Objective. Exceedences of CDWQG are highlighted in yellow

BGC ENGINEERING INC.

DISCUSSION

The available drawdown is judged to be approximately 45 m (~150 feet, refer to the well log). Estimates of drawdown at various pumping rates and elapsed times since pumping started, are presented in Table 4. Comparing these estimates with 45 m, it is concluded that the safe yield of Well TW 05-02, as now constructed, exceeds 2,725 m³/d (500 usgpm).

In addition to the available drawdown, however, the maximum rate at which this well could be pumped will be governed by: (a) the maximum size of pump that could be installed in a well of this diameter, and (b) the maximum permissible interference drawdown expected in the closest domestic wells. In this case the limiting criterion is interference drawdown. Pumping from Well TW 05-02 at 2,725 m³/d (500 usgpm) for a prolonged period could cause interference drawdowns of 8 metres in the closest domestic wells, which is probably unacceptable (Table 5). At one half of this rate, or 1,360 m³/d (250 usgpm) the predicted longer-term interference drawdown in the closest domestic well is 4 metres, which is much less likely to cause detrimental effect requiring mitigation (well deepening or replacement).

PUMPIN	NG RATE	DRAWDOWN IN PUMPED WELL				
		AFTER 1 YEAR		AFTER 10 YEARS		
m³/d	usgpm	metres	feet	metres	feet	
1,360	250	12.1	39.6	13.7	44.8	
1,910	350	18.6	61.0	20.8	68.4	
2,725	500	30.2 99.1		33.4	109.7	

Table 4. Estimated Pumping Drawdown of Well TW 05-02

NOTES: The calculations above are based on:

(a) Aquifer Loss Coefficient, B = $2.0 \times 10^{-3} \text{ days/m}^2 \text{ or } 0.035 \text{ feet/usgpm}$

(b) Well Loss Coefficient, C = 1.6 x 10⁻⁶ days/m⁵ or 0.00016 feet/usgpm²

(c) Transmissivity of between 225 m²/d (18,200 usgpm/ft) and 280 m²/d (22,500 usgpm/ft)

Table 5. Estimated Interference Drawdowns in Closest Domestic We
--

PUMPIN	NG RATE	DRAWDOWN IN CLOSEST DOMESTIC WELL (SAY 500 m DISTANT)				
			AFTER 1 YEAR		10 YEARS	
m³/d	usgpm	metres	feet	metres	feet	
1,360	250	3.3	10.7	4.2	13.7	
1,910	350	4.6	15.0	5.8	19.1	
2,725	500	6.6	21.5	8.3	27.3	

The yield of Well TW 05-02 is unusually high for a bedrock well developed in the Carboniferous bedrock of New Maryland. Given the lack of success achieved in groundwater exploration programs conducted in other parts of the Village, one or two production wells should probably be developed on this **property** or nearby. Three challenges have been identified:

- Water quality which does not meet CDWQ guidelines with respect to the aesthetic analyte manganese; such water will require treatment;
- The presence of artesian conditions which bring with it the risk of causing leakage of water around the well casing; and complicates the plumbing arrangement; and
- Interference with nearby domestic wells. This will require monitoring and could involve mitigation (well deepening or replacement or connection to a municipal supply).

CONCLUSIONS

- The sandstone and fine conglomerate aquifer in the area explored by the TW 05 series test wells has a transmissivity of approximately 225 m²/d (~18,200 usgpd/ft) and a storativity in the range 2 x 10⁻⁴ to 0.003. Well TW 05-02 has an Aquifer Loss Coefficient, B of 0.002 days/m² (or 0.035 feet/usgpm), and a Well Loss Coefficient, C of 1.64 x 10⁻⁶ days/m⁵ (or 1.64 x 10⁻⁴ feet/usgpm²).
- 2. The sustainable yield of well TW 05-02, as presently constructed, is estimated to be 1,360 m³/d (250 usgpm), based on a predicted interference drawdown induced in the closest domestic wells of 4 metres, which is likely acceptable. The associated drawdown after 10 years of pumping this production well at this rate is estimated to be 13.7 m (~45 feet), which compares with a maximum available drawdown of 45 metres (148 feet).
- Groundwater quality in TW 05-02 meets the Health Canada Canadian Drinking Water Quality Guidelines (CDWQG) except for manganese which was 8 times the CDWQG concentration. Although an aesthetic criterion, manganese will require treatment if this well is to be used as a municipal supply.
- 4. In practice, Well TW 05-02 should not be used for production purposes. Instead, a larger diameter well (300 mm minimum) should be constructed nearby with at least 20 m of casing grouted in to the bedrock to ensure that no leakage occurs around the casing under the pressure induced by the artesian head.
- 5. The TW-05-02/03 area should not be considered as a viable wellfield warranting the construction of piping to the community system until a second production well of similar yield has been proven to supplement the well near TW 05-02. It is suggested that a location at the back (southeast) of the property be explored for this purpose.
- 6. Pumping from TW 05-02 or from a production well drilled nearby, will cause interference drawdowns in nearby domestic wells. At the recommended pumping rate of 1,360 m³/d (250 usgpm), the predicted long-term interference drawdown at the closest domestic wells is estimated to be 4 m. Such interference may have no adverse effect on those domestic wells which presently tap only part of the available drawdown, but marginal domestic wells could be impacted, and mitigation (well deepening or replacement or connection to a municipal supply) may be required.

- Re: Groundwater Supply Drilling and Test Pumping of Well TW-02, New Maryland
 - 7. Water quality in nearby domestic wells could be altered, but not necessarily degraded, by the operation of new higher capacity production wells on the property. Baseline and longer-term monitoring of water levels and water quality at selected domestic wells should be undertaken to address this possibility.

LIMITATIONS

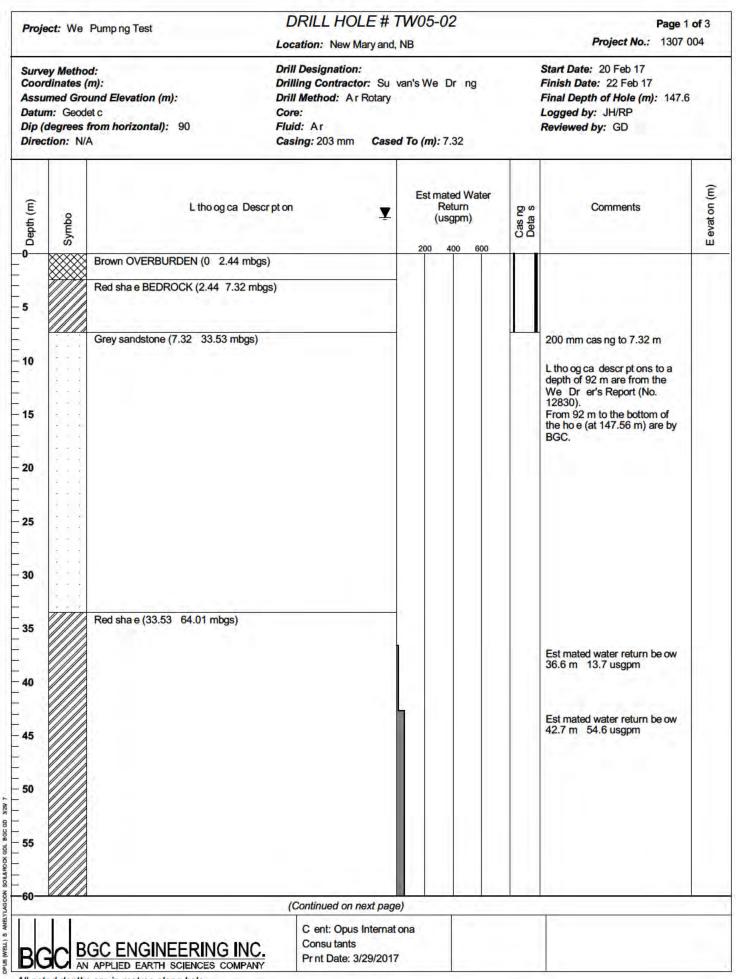
BGC Engineering Inc. (BGC) prepared this document for the account of Opus International Consultants (Canada) and the Village of New Maryland. The material in it reflects the judgment of BGC staff in light of the information available to BGC at the time of document preparation. Any use which a third party makes of this document or any reliance on decisions to be based on it is the responsibility of such third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this document.

As a mutual protection to our client, the public, and ourselves, all documents and drawings are submitted for the confidential information of our client for a specific project. Authorization for any use and/or publication of this document or any data, statements, conclusions or abstracts from or regarding our documents and drawings, through any form of print or electronic media, including without limitation, posting or reproduction of same on any website, is reserved pending BGC's written approval. A record copy of this document is on file at BGC. That copy takes precedence over any other copy or reproduction of this document.

CLOSURE

Please contact either of the undersigned if we can clarify this report or otherwise be of further assistance.

Sincerely,


BGC ENGINEERING INC. per:

ullu

Geoff Dickinson, M.Eng., P.Eng. Principal Hydrogeologist

John Hart, B.Sc.. Consultant Hydrogeologist

gd170320/JH/mr/cr

All noted depths are in metres along hole

Proje	ect: We	Pump ng Test	DRILL HOLE #	IW05	-02		Page 2	
		UC1/5 W.	Location: New Mary and	NB			Project No.: 1307 0	004
Coon Assu Datur Dip (d	m: Geod	(m): ound Elevation (m): let c from horizontal): 90	Drill Designation: Drilling Contractor: Su Drill Method: Ar Rotary Core: Fluid: Ar Casing: 203 mm Case	van's We d To (m			Start Date: 20 Feb 17 Finish Date: 22 Feb 17 Final Depth of Hole (m): 147.6 Logged by: JH/RP Reviewed by: GD	
Depth (m)	Symbo	L tho og ca	Descr pt on	321	mated Water Return (usgpm) 400 600	Cas ng Deta s	Comments	E evation (m)
60—		Red Sha e (cont nued)		200	400 000	-		
65		Grey sha e (64.01 69.49 mbgs)				Est mated water return be ow 42.7 m 54.6 usgpm	
70 75		Grey sandstone (69.49 77.72 r	nbgs)				L tho og ca descr pt ons to a depth of 92 m are from the We Dr er's Report (No. 12830). From 92 m to the bottom of	
80 85		Grey sha e (77.72 92.05 mbgs)				the ho e (at 147.56 m) are by BGC.	
90		Grey quartz sandstone (92.05	111.28 mbgs)	L			Est mated water return be ow 91.4 m 164 usgpm Est mated water return be ow	
95		98.97 99.22 mbgs quartz san	dstone with coa				92.1 m > 550 usgpm	
100								
110		107.93 111.28 mbgs grey qua						
115	000	Grey cong omerate (111.28 11 Grey quartz sandstone (111.89	127.13 mbgs)					
400	• • •	115.24 115.85 mbgs grey qua	artz sandstone to cong omerate					
120-			(Continued on next pag	e)				
	R	GC ENGINEERING I	C ent: Opus Internat Consu tants	ona				

All noted depths are in metres along hole

Datum: Geo	od: (m): ound Elevation (m): det c \$ from horizontal): 90	Location: New Mary and, Drill Designation: Drilling Contractor: Su M Drill Method: Ar Rotary Core: Fluid: Ar Casing: 203 mm Cased	Sec. Sec.		Project No.: 1307 (Start Date: 20 Feb 17 Finish Date: 22 Feb 17 Final Depth of Hole (m): 147.6 Logged by: JH/RP Reviewed by: GD	
Depth (m) Symbo	L tho og ca Descr p	ton	Est mated Water Return (usgpm) 200 400 600	Cas ng Deta s	Comments	1
20 25					Est mated water return be ow 92.1 m > 550 usgpm	
30 35	Grey quartz sandstone (129.57 139.63	mbgs)			L tho og ca descr pt ons to a depth of 92 m are from the We Dr er's Report (No. 12830). From 92 m to the bottom of the ho e (at 147.56 m) are by BGC.	
40	Red brown coarse sandstone (139.63 143.59 147.56 mbgs poor y cemented sandstone END OF TEST WELL 147.56 mbgs					

Report ID:227410-IASReport Date:03-Mar-17Date Received:22-Feb-17

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Geoff Dickinson **Project #: 1307.004**

Location: New Maryland

Analysis of Water

RPC Sample ID:			227410-1
Client Sample ID:	Well 2 (334 ft)		
			· · · ·
Date Sampled:	21-Feb-17		
Analytes	Units	RL	
Sodium	mg/L	0.05	34.6
Potassium	mg/L	0.02	0.54
Calcium	mg/L	0.05	45.2
Magnesium	mg/L	0.01	2.99
Iron	mg/L	0.02	0.02
Manganese	mg/L	0.001	0.417
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.002
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	8.1
Alkalinity (as $CaCO_3$)	mg/L	2	97
Chloride	mg/L	0.5	53.1
Sulfate	mg/L	1	21
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	13.7
Carbon - Total Organic	mg/L	0.5	0.5
Turbidity	NTU	0.1	28.5
Conductivity	µS/cm	1	413
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	95.8
Carbonate (as $CaCO_3$)	mg/L	-	1.13
Hydroxide (as CaCO ₃)	mg/L	-	0.063
Cation Sum	meq/L	-	4.04
Anion Sum	meq/L	-	3.87
Percent Difference	%	-	2.07
Theoretical Conductivity	µS/cm	-	394
Hardness (as CaCO ₃)	mg/L	0.2	125
Ion Sum	mg/L	-	231
Saturation pH (5°C)	units	-	8.0
Langelier Index (5°C)	-	-	0.11

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

WATER CHEMISTRY Page 1 of 3

Krista Skinner

Krista Skinner Chemical Technician Inorganic Analytical Chemistry

Attention: Geoff Dickinson

CERTIFICATE OF ANALYSIS

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594

www.rpc.ca

Project #: 1307.004			
Location: New Maryland			
Analysis of Metals in Water			
RPC Sample ID:			227410-1
Client Sample ID:			Well 2 (334 ft)
Date Sampled:		-	21-Feb-17
Analytes	Units	RL	
Aluminum	μg/L	1	5
Antimony	μg/L	0.1	0.3
Arsenic	μg/L	1	5
Barium	µg/L	1	175
Beryllium	µg/L	0.1	< 0.1
Bismuth	µg/L	1	< 1
Boron	µg/L	1	21
Cadmium	µg/L	0.01	< 0.01
Calcium	µg/L	50	45200
Chromium	μg/L	1	< 1
Cobalt	μg/L	0.1	0.7
Copper	μg/L	1	< 1
Iron	µg/L	20	20
Lead	µg/L	0.1	< 0.1
Lithium	µg/L	0.1	34.1
Magnesium	µg/L	10	2990
Manganese	µg/L	1	417
Molybdenum	µg/L	V. I	I.J
Nickel	µg/L	1	< 1
Potassium	µg/L	20	540
Rubidium	µg/L	0.1	0.7
Selenium	µg/L	1	< 1
Silver	µg/L	0.1	< 0.1
Sodium	µg/L	50	34600
Strontium	µg/L	1	938
Tellurium	μg/L	0.1	< 0.1
Thallium	μg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	μg/L	0.1	0.1
Vanadium	μg/L	1	< 1
Zinc	μg/L	1	2

Report ID:227410-IASReport Date:03-Mar-17Date Received:22-Feb-17

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

Report ID:228195-IASReport Date:16-Mar-17Date Received:02-Mar-17

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Geoff Dickinson

Project #: 1307-004 Location: New Maryland

Analysis of Water

RPC Sample ID:			228195-1
Client Sample ID:			TW-05-02 (48Hr)
Date Sampled:	1-Mar-17		
Analytes	Units	RL	
Sodium	mg/L	0.05	35.6
Potassium	mg/L	0.02	0.49
Calcium	mg/L	0.05	42.8
Magnesium	mg/L	0.01	2.83
Iron	mg/L	0.02	< 0.02
Manganese	mg/L	0.001	0.399
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.002
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	7.9
Alkalinity (as $CaCO_3$)	mg/L	2	105
Chloride	mg/L	0.5	52.9
Sulfate	mg/L	1	21
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	0.02
r-Silica (as SiO ₂)	mg/L	0.1	14.0
Carbon - Total Organic	mg/L	0.5	0.6
Turbidity	NTU	0.1	< 0.1
Conductivity	μS/cm	1	410
		_	
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	104.
Carbonate (as CaCO ₃)	mg/L	-	0.778
Hydroxide (as CaCO ₃)	mg/L	-	0.040
Cation Sum	meq/L	-	3.94
Anion Sum	meq/L	-	4.03
Percent Difference	%	-	-1.07
Theoretical Conductivity	μS/cm	-	395
Hardness (as CaCO ₃)	mg/L	0.2	118
Ion Sum	mg/L	-	234
Saturation pH (5°C)	units	-	8.0
Langelier Index (5°C)	-	-	-0.07

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

WATER CHEMISTRY

Page 1 of 3

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

CERTIFICATE OF ANALYSIS

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594

www.rpc.ca

Attention: Geoff Dickinson			
Project #: 1307-004			
Location: New Maryland			
Analysis of Metals in Wa	ter		
RPC Sample ID:			228195-1
Client Sample ID:			TW-05-02 (48Hr)
			,
Date Sampled:			1-Mar-17
Analytes	Units	RL	
Aluminum	μg/L	1	2
Antimony	µg/L	0.1	< 0.1
Arsenic	µg/L	1	< 1
Barium	μg/L	1	167
Beryllium	µg/L	0.1	< 0.1
Bismuth	μg/L	1	< 1
Boron	μg/L	1	22
Cadmium	μg/L	0.01	< 0.01
Calcium	μg/L	50	42800
Chromium	µg/L	1	< 1
Cobalt	μg/L	0.1	< 0.1
Copper	µg/L	1	< 1
Iron	µg/L	20	< 20
Lead	μg/L	0.1	< 0.1
Lithium	μg/L	0.1	36.6
Magnesium	μg/L	10	2830
Manganese	µg/L	1	399
Molybdenum	μg/L	U. I	v. 4
Nickel	μg/L	1	< 1
Potassium	µg/L	20	490
Rubidium	μg/L	0.1	0.6
Selenium	µg/L	1	< 1
Silver	µg/L	0.1	< 0.1
Sodium	μg/L	50	35600
Strontium	µg/L	1	907
Tellurium	μg/L	0.1	< 0.1
Thallium	μg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	μg/L	0.1	< 0.1
Vanadium	μg/L	1	< 1
Zinc	μg/L	1	2

Report ID:228195-IASReport Date:16-Mar-17Date Received:02-Mar-17

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

Report ID:228239-IASReport Date:16-Mar-17Date Received:03-Mar-17

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Geoff Dickinson

Project #: 1307-004 Location: New Maryland

Analysis of Water

RPC Sample ID:			228239-1
Client Sample ID:			TW 05-02 (72Hr)
Date Sampled:			2-Mar-17
Analytes	Units	RL	
Sodium	mg/L	0.05	34.7
Potassium	mg/L	0.02	0.48
Calcium	mg/L	0.05	41.7
Magnesium	mg/L	0.01	2.74
Iron	mg/L	0.02	0.02
Manganese	mg/L	0.001	0.382
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.008
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	8.0
Alkalinity (as $CaCO_3$)	mg/L	2	104
Chloride	mg/L	0.5	46.1
Sulfate	mg/L	1	21
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	0.02
r-Silica (as SiO ₂)	mg/L	0.1	13.6
Carbon - Total Organic	mg/L	0.5	0.5
Turbidity	NTU	0.1	< 0.1
Conductivity	μS/cm	1	411
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	103.
Carbonate (as $CaCO_3$)	mg/L	-	0.968
Hydroxide (as CaCO ₃)	mg/L	-	0.050
Cation Sum	meq/L	-	3.84
Anion Sum	meq/L	-	3.82
Percent Difference	%	-	0.34
Theoretical Conductivity	µS/cm	-	378
Hardness (as CaCO ₃)	mg/L	0.2	115
Ion Sum	mg/L	-	224
Saturation pH (5°C)	units	-	8.0
Langelier Index (5°C)	-	-	0.01

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

WATER CHEMISTRY

Page 1 of 3

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

Attention: Geoff Dickinson

CERTIFICATE OF ANALYSIS

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212

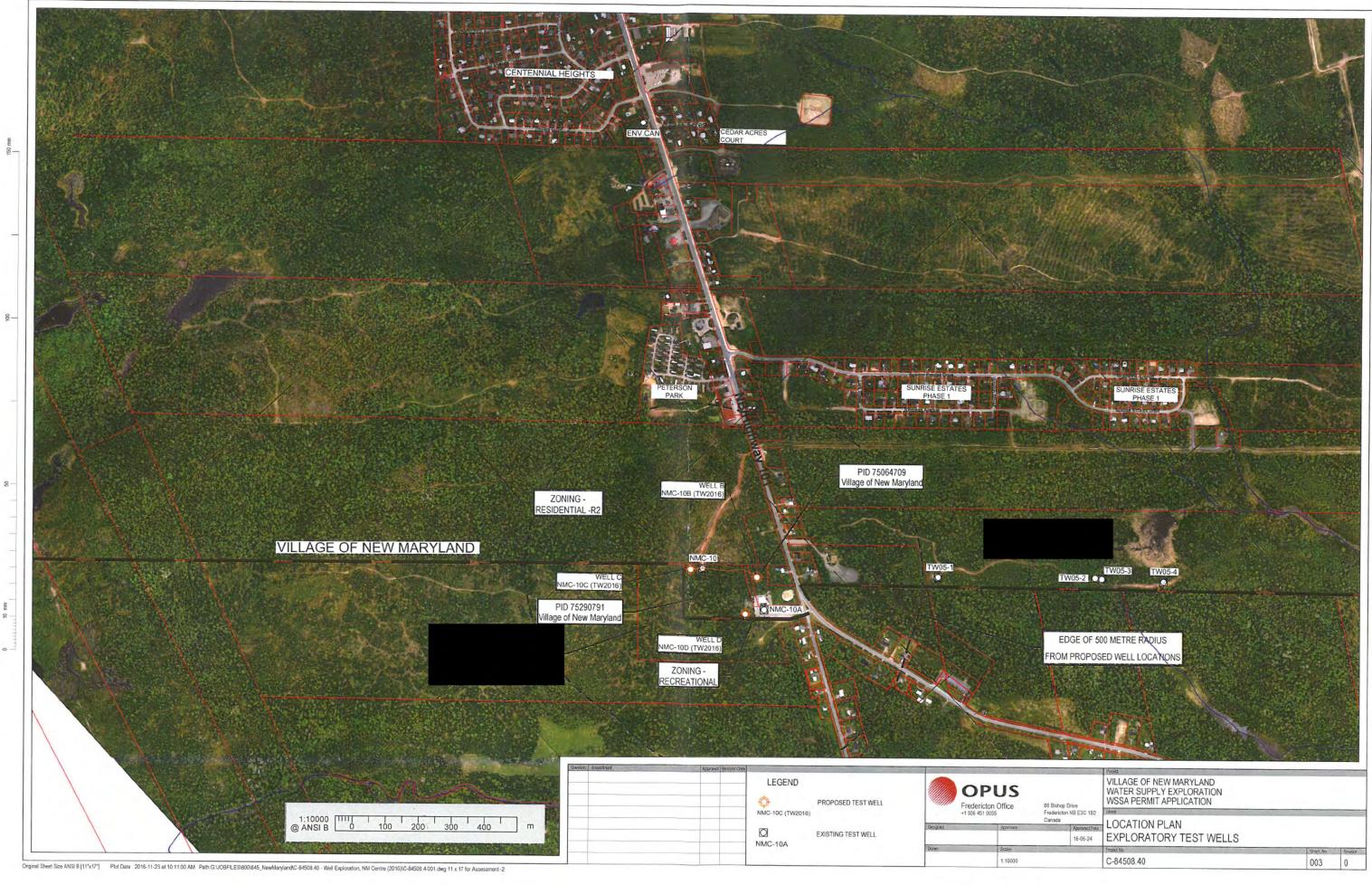
Fax: 506.452.0594

www.rpc.ca

Project #: 1307-004 Location: New Maryland Analysis of Metals in Water RPC Sample ID: 228239-1 Client Sample ID: TW 05-02 (72Hr) Date Sampled: 2-Mar-17 Analytes Units RL Aluminum µg/L 1 4 Antimony 0.1 < 0.1 µg/L Arsenic 1 µg/L < 1 1 Barium 165 µg/L Beryllium µg/L 0.1 < 0.1 Bismuth µg/L 1 < 1 1 21 Boron µg/L Cadmium 0.01 < 0.01 µg/L Calcium 50 41700 µg/L Chromium µg/L 1 < 1 Cobalt 0.1 µg/L < 0.1 Copper 1 µg/L < 1 20 20 Iron µg/L 0.1 3.5 Lead µg/L Lithium µg/L 0.1 35.0 Magnesium µg/L 10 2740 Manganese µg/L 1 382 Molybdenum µg/L υ. i **U.**J Nickel µg/L 1 < 1 Potassium µg/L 20 480 Rubidium 0.1 0.6 µg/L Selenium µg/L 1 < 1 0.1 Silver < 0.1 µg/L 50 34700 Sodium µg/L Strontium 1 878 µg/L Tellurium 0.1 < 0.1 µg/L Thallium µg/L 0.1 < 0.1 Tin 0.1 < 0.1 µg/L Uranium µg/L 0.1 < 0.1 Vanadium µg/L 1 < 1 Zinc 1 8 µg/L

Report ID:228239-IASReport Date:16-Mar-17Date Received:03-Mar-17

CERTIFICATE OF ANALYSIS


for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Sulfate Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M45 4.M45 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2130 B APHA 2510 B	"Phenate" Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry Turbidimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES

LIMITED GROUND ENGINEERING & MATERIALS TECHNOLOGY

RECEIVED

191 Doak Road Fredericton, NB E3C 2E6 JAN 10 2007

BOJECT ENGINEERING

TEL: (506) 453-1025 FAX: (506) 453-9470 E-mail: gemtecf@gemtec.ca

File: 4231.04

ARSAM LTD 634 Brunswick Street Fredericton, NB E3B 1H6

July 14, 2005

Attention: Mr. Yves Chamberlain

RE: GROUNDWATER EXPLORATION, PID 75062174, NEW MARYLAND, NB

Between June 1st and July 7th, 2005, four wells were drilled on the above noted property. The locations of the three test wells (TW05-1, TW05-2, and TW05-4) and one observation well (TW05-3) are shown on the attached figure. A brief description of each well is provided in Table 1.

Well ID	TW05-1	TW05-2	TW05-3	TW05-4
Total Depth (m)	91.44	97.54	91.44	103.63
Well Diameter (m)	0.1524	0.2032 ³	0.1524	0.1524
Casing length (m)	6.1	12.2 ⁴	6.1	6.1
Estimated Yield ¹ (igpm)	65	100+	20	60
Static Water Level ² , June 15 th	12.40	Artesian ⁵	Artesian	3.54

Table 1 - Well Summary

Notes:

1. Driller's estimated yield

2. Below top of casing

3. TW05-2 diameter increased from 0.1524 to 0.2032 to accommodate larger yield for potential use as production well

4. Additional 6.1 metres of casing installed (potential production well)

5. Overflowing well

Water samples were collected from test wells TW05-1, TW05-2, and TW05-4. The water samples were analysed for both organic and inorganic parameters as outlined in the NBDELG Water Supply Source Assessment (WSSA) Guidelines. The results are shown in Table 2. Overall the water quality is good. At TW05-2 a noticeable sulphide taste to the water is present. The sulphide (as H₂S) concentrations were all below the laboratory detection limit. However, treatment will likely be required. The manganese concentration was above the Canadian Drinking Water Quality Guidelines (CDWQG) in all three samples and will also likely require

Geotechnical and Materials Engineering • Hydrogeology • Materials Testing and Inspection Environmental Engineering • Solid Waste Management • Transportation Engineering treatment. The 0.51 mg/L iron concentration in the sample collected from TW05-4 exceeded the CDWQG of 0.3 mg/L and is likely associated with the suspended material (turbidity) in the sample. The sulphide, manganese, and iron CDWQG are aesthetic objectives not related to human health.

As per the WSSA Guidelines, a pump test is required to determine the long-term sustainable yield of the aquifer. A step test should be performed first, which will provide data to determine the optimal pumping rate for a 72 hr constant rate pump test.

Please contact Shaun Pelkey or myself if you have any questions.

Sincerely,

jà.

Michael Fisher, EIT.

Enclosure

MJF/

4321.04\2005m/071312.doc

Village of New Maryland Arsam Ltd. Property Well Information Analytical Results and Well Summary

	1	1.1.1.1.1.1.1		Well ID		
Analytes	Units	MAC/AO	TW05-1	TW05-2	TW05-4	
Well Data						
Estimated Yield	igpm	1	65	100+	60	
Total Depth	m	-	91	97.54	104	
Well Diam.	m		0.1524	0.2032	0.1524	
Casing Legth	m		6	12.2	6	
Static Water Level (June 15, 2005)	m	(12.4000	Artesian	3.5400	
General Chemistry						
Sodium	units	200	19	27.4	43.1	
Potasium	mg/L		0.48	0.5	1.36	
Calcium	mg/L	240 L	37.2	42.3	25.2	
Mangnesium	mg/L		2.2	2.82	1.46	
Iron	mg/L	0.3	<0.02	< 0.02	0.51	
Manganese	mg/L	0.05	0.534	0.413	0.141	
Copper	mg/L	2 C 197 1	0.001	< 0.001	< 0.001	
Zinc	mg/L		0.005	< 0.001	0.015	
Ammonia (as N)	mg/L	1 G. 1	<0.05	< 0.05	< 0.05	
pH (units)	mg/L	1.040	8	(6)	8	
Alkalinity (as CaCO3)	mg/L		130	104	107	
Chloride	mg/L	1 2.5	8.5	39.4	28.1	
Fluride	mg/L	1.5	0.11	0.33	0.21	
Sulfate	mg/L	500	6	22	20	
Sulfide	mg/L	0.05	< 0.05	< 0.05	< 0.05	
Nitrate+Nitrite	mg/L	-	<0.05	< 0.05	< 0.05	
o-Phosphate (as P)	mg/L		< 0.01	0.03	< 0.01	
r-Silica (as SWiO2)	mg/L	1 w 1	13.6	13.8	10.9	
Total Organix Carbon	mg/L	-	1.4	0.8	0.8	
Turbidity (NTU)	mg/L	-	7.5	0.3	39	
Conductivity (uS/cm)	mg/L		273	362	324	

				Well ID	
Analytes	Units		TW05-1	TW05-2	TW05-4
Trace Metals					
Aluminum	µg/L	-	2	<1	3
Antimony	µg/L	6	0.1	<0.1	0.2
Arsenic	µg/L	10	3	<1	1.10
Barium	µg/L	1000	147	144	138
Beryllium	µg/L		<0.1	<0.1	< 0.1
Bismuth	µg/L	1 (1 () () () () () () () () ()	<1	<1	<1
Boron	µg/L	1.1.1.2.1.1.1	22	17	32
Cadmium	µg/L	5	<0.1	<0.1	< 0.1
Calcium	µg/L	2	37200	42300	25200
Chromium	µg/L	50	<1	1	<1
Cobalt	µg/L	-	0.2	<0.1	0.2
Copper	µg/L		1	<1	1
Iron	μg/L	300	<20	<20	510
Lead	μg/L	10	<0.1	<0.1	<0.1
Lithium	μg/L μg/L	10	14.6	27.6	24.1
Magnesium			2200	27.0	1460
	µg/L	50	534	413	1400
Manganese	µg/L	1002	and the set of the set	and the second sec	
Molybdenum	µg/L	-	1	1	2
Nickel	µg/L	· · ·	<1	<1	<1
Potassium	µg/L	1 (÷1	480	500	1360
Rubidium	µg/L		0.3	0.5	1
Selenium	µg/L		<1	<1	<1
Silver	µg/L		<0.1	<0.1	<0.1
Sodium	µg/L	200000	19000	27400	43100
Strontium	µg/L		862	834	755
Tellurium	µg/L		<0.1	<0.1	<0.1
Thallium	µg/L	-	<0.1	<0.1	<0.1
Tin	µg/L	- E.	<0.1	<0.1	<0.1
Uranium	µg/L	20	<0.1	0.1	<0.1
Vanadium	µg/L	Same	<1	<1	<1
Zinc	µg/L	5000	5	<1	12
Calculated Parameters			1 101	100	100
Bicarbonate as CaCO3	mg/L	÷	104	129	106
Carbonate as CaCO3	mg/L	-	0.01	1.21	0.996
Hydroxide as CaCO3	mg/L	1	0.001	0.05	0.05
Cation Sum	meq/L	÷.	3.56	2.9	3.32
Anion Sum	meq/L		3.65	2.96	3.35
% Difference	-	1.161	-1.21	-1.14	-0.4
Theoretical Conductivity		1.12	356	268	320
Hardness as CaCO3	mg/L	1 (E	117	102	68.9
Ion Sum	mg/L	181	212	167	196
Saturation pH (5C)	-	1.1.1	8	7.9	8.2
Langelier Index (5C)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-1.97	0.08	-0.18

65.53m

73.15m

91.44m

54.6 lpm

68.25 lpm

91 lpm

12829

12829

12829

Report Number 12829

Well Driller's Report Date printed 2016/11/22 Drilled by Well Use Work Type **Drill Method** Work Completed Drinking Water, Other New Well Rotary 06/01/2005 Casing Information Casing above ground 0.61m Drive Shoe Used? Yes Well Log Casing Type Slotted? Diameter From End 12829 Steel 15.24cm 0m 6.10m Aquifer Test/Yield Estimated Pumping Final Water Flowing Initial Water Safe Yield Method Level (BTC) Rate Level (BTC) Well? Duration Rate Air 6.10m 273 lpm 1hr 40min 6.10m 0 lpm No 0 lpm (BTC - Below top of casina) Well Grouting Disinfectant Pump Installed **Drilling Fluids Used** None N/A 12% NaOCI There is no Grout information. Intake Setting (BTC) Qty OL 0m Driller's Log Overall Well Depth Well Log From End Colour Rock Type 109.73m 12829 0m 0.30m Brown Overburden Bedrock Level 12829 0.30m 6.10m Grey Shale 0m 12829 6.10m 17.68m Red Shale 12829 17.68m 42.67m Grey Shale 12829 42.67m 60.96m Grey Sandstone Grey 12829 60.96m 92.96m Shale 100.58m Grey 12829 92.96m Sandstone 109.73m Grey 12829 100.58m Sandstone Water Bearing Fracture Zone Setbacks Well Log Depth Rate Well Log Distance Setback From 12829 42.67m 18.2 lpm 12829 762.00m Right of any Public Way Road 12829 55.78m 27.3 lpm

60.96m 91.44m

92.05m

12830 12830

12830

11.38 lpm 45.5 lpm 45.5 lpm

136.5 lpm 455 lpm

Report Number 12830

Date pri	inted	2016/11	/22							
Drilled by Well Use Drinking Water				Work T New W	ork Type Drill Metho w Well Rotary		i	-	Work Cor 06/03/	
	Casing	Informat	ion		Casing abo	ve ground 0.61	m	Drive Sho	be Used? Yes	11
	Well Log	Casing T	/pe	Dia	meter -	From	End	Slotted?		
	12830	Steel		(15.2	24cm	0m	7.32m			
Aquifer Method Air	r Test/Yi	Initial W Level (E 0m	BTC)	Pumping Rate 455 lpm of casina)	Duration 1hr 20min	Final Water Level (BTC) 0m	Estima Safe Y 455 Ip	ïeld	Flowing Well? No	Rate 0 Ipm
	There is no	Grout inf	ormatior	Nor	lling Fluids Us ne	sed	Disinfecta 12% NaO Qty 0L	CI	Pump Installe N/A Intake Setting (B 0m	
Driller's		-	12.2						all Well Depth	1
Nell Log	From	End	Colou	r	F	Rock Type		97.5	4m	
2830 2830 2830	81.08m 0m 2.44m	97.54m 2.44m 7.32m	Grey Brown Red		C	ihale Overburden Ihale		Bedr 0m	ock Level	
2830	7.32m	33.53m	Grey			andstone				
2830 2830	33.53m 64.01m	64.01m 69.49m	Red Grey			ihale ihale				
12830	69.49m	77.72m	Grey			andstone		-		
12830	77.72m	81.08m	Grey			ihale		_		
Nater B	Bearing F	racture	Zone	S	Setbacks					
Nell Log	Depth	I	Rate	V	Vell Log Di	stance S	etback From	m		
	36.58m		11.38 lpm				ight of any F		Road	-
12830	00.0011		r moo ipin				Bur or and .	abile truy i	1000	

Report Number 12831

Well Driller's Report

Date printed 2016/11/22

				Work Type Drill Method r, Domestic New Well Rotary				Work Complete 06/06/2005		
	Casing Information				Casing abov	e ground 0.61	n Driv	ve Shoe Used? Yes		
				1	There is no casi	ng information.				
Aquife	r Test/Yie	eld					Estimated			
Method		Initial W Level (E		Pumping Rate	Duration	Final Water Level (BTC)	Safe Yield	Flowing Well?	Rate	
Air		Om (BTC - E		0 lpm of casina)	1hr 20min	0m	91 lpm	No	0 lpm	
Well Gr	outing			Dri	lling Fluids Us	ed	Disinfectant	Pump Installe	d	
	There is no	Grout inf	ormation	Nor	ne		12% NaOCI	N/A		
								Intake Setting (B	TC)	
							Qty OL	0m		
Well Log	From	End	Color	ır		ock Type	Qty OL	Overall Well Depth 91.44m		
Well Log 12831		End 2.44m 4.57m	Colou Brown Grey	ır	0		Qty OL	Overall Well Depth 91.44m Bedrock Level		
Well Log 12831 12831	From 0m	2.44m	Brown	ır	0 S	ock Type verburden	Qty 0L	Overall Well Depth 91.44m		
Well Log 12831 12831 12831 12831 12831	From 0m 2.44m 4.57m 16.15m	2.44m 4.57m 16.15m 21.03m	Brown Grey	ır	O S S	ock Type verburden hale	Qty 0L	Overall Well Depth 91.44m Bedrock Level)	
Well Log 12831 12831 12831 12831 12831 12831	From 0m 2.44m 4.57m 16.15m 21.03m	2.44m 4.57m 16.15m 21.03m 31.09m	Brown Grey Red Grey Red	ır	O S S S S	ock Type verburden hale hale hale	Qty 0L	Overall Well Depth 91.44m Bedrock Level		
Well Log 12831 12831 12831 12831 12831 12831 12831	From 0m 2.44m 4.57m 16.15m 21.03m 31.09m	2.44m 4.57m 16.15m 21.03m 31.09m 65.53m	Brown Grey Red Grey Red Grey	ır	0 S S S S S S	ock Type verburden hale hale hale hale	Qty 0L	Overall Well Depth 91.44m Bedrock Level)	
Driller's Well Log 12831 12831 12831 12831 12831 12831 12831	From 0m 2.44m 4.57m 16.15m 21.03m	2.44m 4.57m 16.15m 21.03m 31.09m	Brown Grey Red Grey Red	ır	0 S S S S S S	ock Type verburden hale hale hale	Qty 0L	Overall Well Depth 91.44m Bedrock Level		
Well Log 12831 12831 12831 12831 12831 12831 12831 12831	From 0m 2.44m 4.57m 16.15m 21.03m 31.09m	2.44m 4.57m 16.15m 21.03m 31.09m 65.53m 91.44m	Brown Grey Red Grey Red Grey Grey		0 S S S S S S	ock Type verburden hale hale hale hale	Qty 0L	Overall Well Depth 91.44m Bedrock Level	,	
Well Log 12831 12831 12831 12831 12831 12831 12831 12831 12831 Water E	From 0m 2.44m 4.57m 16.15m 21.03m 31.09m 65.53m Bearing F	2.44m 4.57m 16.15m 21.03m 31.09m 65.53m 91.44m	Brown Grey Red Grey Red Grey Grey		o s s s s s s S S etbacks	ock Type verburden hale hale hale hale andstone	Qty OL	Overall Well Depth 91.44m Bedrock Level		
Well Log 12831 12831 12831 12831 12831 12831 12831 12831 12831 Water E Well Log	From 0m 2.44m 4.57m 16.15m 21.03m 31.09m 65.53m Bearing F	2.44m 4.57m 16.15m 21.03m 31.09m 65.53m 91.44m	Brown Grey Red Grey Red Grey Grey Zone		o s s s s s Setbacks Vell Log Dis	ock Type verburden hale hale hale andstone stance Se		Overall Well Depth 91.44m Bedrock Level 0m		
Well Log 12831 12831 12831 12831 12831 12831 12831 Water E Well Log 12831 12831	From 0m 2.44m 4.57m 16.15m 21.03m 31.09m 65.53m Bearing F Depth	2.44m 4.57m 16.15m 21.03m 31.09m 65.53m 91.44m	Brown Grey Red Grey Red Grey Grey Zone Rate		o s s s s s Setbacks Vell Log Dis	ock Type verburden hale hale hale andstone stance Se	etback From	Overall Well Depth 91.44m Bedrock Level 0m		
Well Log 12831 12831 12831 12831 12831 12831 12831 12831	From 0m 2.44m 4.57m 16.15m 21.03m 31.09m 65.53m Bearing F Depth 30.48m	2.44m 4.57m 18.15m 21.03m 31.09m 65.53m 91.44m racture	Brown Grey Red Grey Grey Grey Zone Rate 18.2 Ipm		o s s s s s Setbacks Vell Log Dis	ock Type verburden hale hale hale andstone stance Se	etback From	Overall Well Depth 91.44m Bedrock Level 0m		

Report Number 12832

A

<

Well Driller's Report

Date printed 2016/11/22

68.25 lpm 91 lpm 136.5 lpm 273 lpm

36.58m

60.96m

73.15m

103.63m

12832

12832

12832

12832

		Work Type Drill Method nestic New Well Rotary				ł				Comp /07/20			
	Casing	sing Information Casing above ground 0.61m				m	Drive Shoe Used? Ye			Yes			
	Well Log	Casing Ty	pe	Dia	meter		From	End	SI	Slotted?			
	12832	Steel		15.	24cm		0m	8.53r	n				
Aquife Methoc Air	r Test/Yi I	Initial W Level (E 3.05	TC)	Pumping Rate 273 lpm of casina)	Duratio 1hr 25n		Final Water Level (BTC) 3.05m	Sa	timated fe Yield 73 Ipm	I	Flowing Well? No		Rate) Ipm
Well Gr	There is no	o Grout info	ormation	No	lling Fluids ne	s Use	ed		fectant NaOCI 0L		Pump Ins N/A Intake Settir 0m	ng (BTC)
Well Log		End	Colou			De	ock Type				all Well De	epth	
					0.7					103.6	-		
12832	0m 7.92m	7.92m 11.58m	Brown Red				erburden			Bedr	ock Level		
2832	7.92m 11.58m	21.95m					ale ale			0m			
2832	21.95m	21.95m 24.99m	Grey Red				ale						
2832	24.99m	25.91m	Grey				ale						
2832	25.91m	33.53m	Red				nglomerate						
12832	33.53m	35.05m	Red				ale						
12832	35.05m	59.44m	Grey	-			ndstone						
12832	59.44m	103.63m			_		ndstone						
		Fracture 2			Setbacks					-]
Well Log	Depth		Rate	V	Vell Log	Dis	lance S	etback	From				
12832	22.86m		2.75 lpm	1	2832	762	.00m R	ight of a	any Public	Way F	Road		bar -
12832	30.48m		15.5 lpm										
2832	36 58m		9 25 Inm										

OPUS INTERNATIONAL

GROUNDWATER SUPPLY FOR THE VILLAGE OF NEW MARYLAND

HYDROGEOLOGICAL ASSESSMENT REPORT FOR TW17-01

FINAL

PROJECT NO.: 1307004

DATE:

April 9, 2018

April 9, 2018 Project No.: 1307004

Mr. John McKinney Manager, Municipal Engineering Opus International 80 Bishop Drive Fredericton, NB E3C 1B2

Dear Mr. McKinney,

Re: Groundwater Supply – Hydrogeological Assessment of TW17-01, New Maryland, NB

As requested, BGC Engineering Inc. (BGC) is pleased to provide you with the following final report for the above-noted study relating to the Arsam Wellfield in New Maryland, NB.

In this latest phase of the project, a production-scale well (TW17-01) was drilled, developed, and tested on a property within the boundaries of the Village of New Maryland (PID 75062174 owned by This work followed the Water Supply Source Assessment (WSSA) process, as directed by the Environmental Impact Assessment (EIA) Branch of the New Brunswick Department of Environmental and Local Government (NBDELG) and was initiated based on our earlier findings at the TW05-02 location on the same property (BGC 2017).

Should you have any questions regarding this report, please feel free to contact the undersigned.

Yours sincerely,

BGC ENGINEERING INC. per:

Kent Wiezel, M.A.Sc., P.Eng. Senior Hydrogeological Engineer quality analyses were completed during each phase of testing.

EXECUTIVE SUMMARY

On behalf of the Village of New Maryland (the Village), New Brunswick, Opus International Consultants (Opus) retained BGC Engineering Inc. (BGC) to provide hydrogeological support for the further development of the community's municipal groundwater supply. Ideally an additional 1,360 m³/d (250 usgpm) from this area is being sought by the Village.

In this latest phase of the work, a 305 mm (12-inch) diameter production-scale well (TW17-01) was drilled in a sandstone-conglomerate aquifer in the Village, on PID 75062174 (owned by **Exercise**, herein referred to as the Property). Through the course of the drilling, developing and testing program, three step-drawdown tests and two 72-hour constant-rate pumping tests were completed at TW17-01. Two supplementary 6-hour step-drawdown tests were also completed, one each at nearby test wells TW05-02 and TW05-04. These tests were all critical in evaluating the hydraulic performance of TW17-01 at various check points, as the well

and surrounding fracture network were methodically developed over several phases. Water

Following completion of the well development effort, the second, and final, 72-hour pumping test was completed in TW17-01 in January 2018 (pumping test #2) at a constant rate of 1,635 m³/d (300 usgpm). The total drawdown induced in production-scale well TW17-01 after 72 hours of pumping at this rate was approximately 18 m, which is 35 m less than the drawdown experienced here during the initial 72-hour test (pumping test #1). The calculated well efficiency at the end of pumping test #2 was approximately 50%, which reflects the current hydraulic condition of TW17-01.

Based on the results of pumping test #2, it is recommended that production-scale well TW17-01 be brought on-line as a water supply production well for the Village. Rather than basing the operating water level on drawdown, which fluctuates with the seasonally varying static water level (historically up to 10 m), the pumping level in the well should be maintained above an elevation of 25.1 m (82.3 feet) asl (above sea level) at all times, which is the approximate elevation of the bottom of the casing, as currently constructed.

A maximum allowable withdrawal rate of 1,360 m³/d (250 usgpm) is recommended to limit the amount of potential well interference, both in the nearby residential wells (BGC 2017), and in a potential second pumping well (most likely at the TW05-02 location). On the basis of an assumed contributing drainage area of 12 km², and a range of annual aquifer recharge from precipitation and snowmelt between 10% (110 mm) and 30% (330 mm), this recommended withdrawal rate represents between 13% and 38% of the assumed available groundwater recharge in the aquifer. The recommended withdrawal rate could be re-visited following an adequate period of operation and monitoring, as more data are gathered on regional water levels and drawdown due to longer-term pumping from the well and aquifer.

The yield of production-scale well TW17-01 is relatively high for a bedrock well developed in the Carboniferous bedrock of the New Maryland area, and appears sufficient to meet the Village's

current demand. An additional production-scale well could be developed on the Property at the TW05-02 location, and in combination with TW17-01, this would give the Village an additional wellfield (referred to as the Arsam Wellfield) from which to derive a water supply. Three challenges have been identified in developing a viable wellfield at this location:

- Water quality that exceeds the Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ) with respect to the aesthetic objectives for manganese and sulfide, which are two to three times the guideline, and will require treatment.
- Artesian pressures and overflow conditions, which bring the risk of causing leakage of water around the well casing and complicates the surface plumbing arrangements.
- Interference with nearby domestic wells, which will require long-term monitoring and may involve mitigation (e.g., well deepening, well replacement, or connection to a municipal supply).

It is recommended that a second production well be constructed at test well TW05-02 location, by modifying TW05-02 to include 30.5 m (100 feet) of protective steel casing with drive-shoe seated into the bedrock, to help prevent potential leakage around the outside of the casing under artesian pressures. The completion of this work will be challenging during high groundwater level conditions (upwards of 3 m above ground surface), therefore, this work should be completed during a drier period of relatively low groundwater elevations (e.g., July or August). Pumping from TW17-01 (and/or TW05-03) to waste may also be considered throughout a portion of the recommended well construction process, to allow further lowering of the prevailing artesian pressures, if needed.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
TABLE OF CONTENTS	iii
LIST OF TABLES	iv
LIST OF FIGURES	iv
LIST OF APPENDICES	v
ACRONYMS AND ABBREVIATIONS	vi
UNITS OF MEASURE	vi
LIMITATIONS	vii
1.0 INTRODUCTION	1
2.0 BACKGROUND	2
2.1. Site Description	2
2.2. Hydrogeologic Setting	3
2.2.1. Geology	
2.2.2. Topography and Drainage	
2.2.3. Hydrogeology	
2.3. Regulatory Setting	
3.0 METHODS	
3.1. Production Well Drilling	
 3.2. Well Development 3.3. Hvdraulic Testing 	
3.3. Hydraulic Testing 3.3.1. Step-Drawdown Tests	
3.3.2. Constant-Rate Pumping Tests	
3.4. Groundwater Sampling	
4.0 RESULTS	
4.1. Step-Drawdown Tests	
4.2. Constant-Rate Pumping Tests	17
4.2.1. Drawdown	17
4.2.2. Recovery	22
4.2.3. Potential Impacts	
4.2.4. Long-Term Safe Yield	
4.3. Groundwater Quality	
5.0 DISCUSSION	
6.0 CONCLUSIONS	
7.0 RECOMMENDATIONS	-
8.0 CLOSURE	35
REFERENCES	36

LIST OF TABLES

Table 2-1.	Summary of well construction details.	3
Table 4-1.	TW17-01 Step-drawdown test #1 (September 18, 2017)1	2
Table 4-2.	TW17-01 Step-drawdown test #2 (September 21, 2017)1	2
Table 4-3.	TW17-01 Step-drawdown test #3 (December 19, 2017)1	2
Table 4-4.	TW05-02 step-drawdown test (October 20, 2017)1	4
Table 4-5.	TW05-04 step-drawdown test (October 21, 2017)1	4
Table 4-6.	TW17-01 constant-rate pumping test (January 2018) – Drawdown 1	7
Table 4-7.	TW17-01 constant-rate pumping test (January 2018) – Recovery2	2
Table 4-8.	Estimated interference drawdown of wells TW17-01 and TW05-022	25
Table 4-9.	Estimated usage of annual aquifer recharge for the subject Property2	:6
Table 4-10.	GCDWQ exceedances in TW17-012	29

LIST OF FIGURES

Figure 1-1.	Property location within the Village of New Maryland, NB1
Figure 2-1.	Location of test wells and monitoring wells used in this investigation2
Figure 2-2.	Drainage area and topography around the subject Property4
Figure 2-3.	Conceptual cross-section along the test wells on the subject Property5
Figure 2-4.	Groundwater elevations in the Victoria Hall well with precipitation6
Figure 4-1.	TW17-01 step-drawdown tests – Drawdown vs. Time
Figure 4-2.	TW05-02 and TW05-04 step-drawdown tests – Drawdown vs. Time 15
Figure 4-3.	Inverse Specific Capacity vs. Yield for all step-drawdown tests16
Figure 4-4.	TW17-01 constant-rate pumping test – Elevation vs. Time
Figure 4-5.	TW17-01 constant-rate pumping test – Drawdown vs. Linear Time19
Figure 4-6.	TW17-01 constant-rate pumping test – Drawdown vs. Log Time20
Figure 4-7.	TW17-01 constant-rate pumping test – Distance-Drawdown21
Figure 4-8.	TW17-01 constant-rate pumping test – Recovery23
Figure 4-9.	Piper plot of major ions of the groundwater samples

20180409_VoNM_17-01_Investigation

LIST OF APPENDICES

- APPENDIX A WELL LOGS
- APPENDIX B RIVER STAGE PLOTS
- APPENDIX C WATER QUALITY RESULTS
- APPENDIX D RPC CERTIFICATES

ACRONYMS AND ABBREVIATIONS

Acronyms and abbreviations used in this report:

ATOC	Above Top of Casing
В	Aquifer Loss Coefficient
BGC	BGC Engineering Inc.
BTOC	Below Top of Casing
С	Well Loss Coefficient
ECCC	Environment and Climate Change Canada
EIA	Environmental Impact Assessment
GCDWQ	Guidelines for Canadian Drinking Water Quality
Opus	Opus International Consultants (Canada) Limited
NBDELG	New Brunswick Department of Environment and Local Government
Property	(PID 75062174)
RPC	Research and Productivity Council
S	Storativity
Sullivan's	Sullivan's Well Drilling Ltd.
Т	Transmissivity
VOCs	Volatile Organic Compounds
VoNM	Village of New Maryland
WSSA	Water Supply Source Assessment
WfPADO	Wellfield Protected Area Designation Order
WSC	Water Survey of Canada

UNITS OF MEASURE

Units of measure used in this report:

asl	above sea level
bgs	below ground surface
km	kilometres
L/s	litres per second
L/d	litres per day
m	metres
mg/L	milligram per litre
mins	minutes
mm	millimetres
m²/d	square metres per day
m³/d	cubic metres per day
t	time since pumping started
ť	time since pumping ceased
t/ť	ratio of time since pumping started to time since pumping ceased
usgpm	US gallons per minute

LIMITATIONS

BGC Engineering Inc. (BGC) prepared this document for the account of Opus International. The material in it reflects the judgment of BGC staff in light of the information available to BGC at the time of document preparation. Any use which a third party makes of this document or any reliance on decisions to be based on it is the responsibility of such third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this document.

As a mutual protection to our client, the public, and ourselves, all documents and drawings are submitted for the confidential information of our client for a specific project. Authorization for any use and/or publication of this document or any data, statements, conclusions or abstracts from or regarding our documents and drawings, through any form of print or electronic media, including without limitation, posting or reproduction of same on any website, is reserved pending BGC's written approval. A record copy of this document is on file at BGC. That copy takes precedence over any other copy or reproduction of this document.

1.0 INTRODUCTION

On behalf of the Village of New Maryland (the Village), New Brunswick, Opus International Consultants (Opus) retained BGC Engineering Inc. (BGC) to provide hydrogeological support for the further development of the community's municipal groundwater supply. In this latest phase of the work, a 305 mm (12-inch) diameter production-scale well (TW17-01) was drilled on PID 75062174 (owned by **Sector 1999**) herein referred to as the Property) within the boundaries of the Village of New Maryland as shown in Figure 1-1. Subsequent hydraulic pumping tests and associated water quality analyses were completed.

Figure 1-1. Property location within the Village of New Maryland, NB.

This report describes the work completed on the Property between August 2017 and January 2018. It follows our groundwater supply report for the hydrogeological investigation completed at the existing test well TW05-02 in February and March 2017 (BGC 2017) and was completed as per the scope of work outlined in BGC (2016).

20180409_VoNM_17-01_Investigation

2.0 BACKGROUND

2.1. Site Description

The project site is located in the south-eastern portion of New Maryland, NB on PID 75062174 (as shown in Figure 2-1) and accessed by Route 101. The 45-hectare property is primarily composed of undeveloped, forested land, and has a wetland in the approximate centre (identified on Figure 2-1). In addition to TW17-01, there are four existing test wells located on the Property (TW05-01, TW05-02, TW05-03, and TW05-04). These test wells, along with two other observation wells located in the Sunrise Estates subdivision (Sunrise-OW and Kingston), were monitored throughout the duration of the constant-rate pumping tests. Sunrise-OW is a supply well for the Village's Sanitary Pumping Station No. 2 (PID 75407429), and the Kingston well is a residential supply well for Kingston Avenue (PID 75068122). Refer to Table 2-1 for a summary of construction details, and Appendix A for the available well logs.

Figure 2-1. Location of test wells and monitoring wells used in this investigation.

WELL ID	DIAMETER (mm)	DEPTH (m)	CASING DEPTH (m)	CASING STICKUP (m)
TW05-01	152	109.73	6.10	0.65
TW05-02	203	147.60	7.32	0.75
TW05-03	152	91.44	Unknown ¹	0.50
TW05-04	152	143.80	7.60	0.62
TW17-01	305	148.40	30.50	0.54
Sunrise-OW	152	73.15	12.19	0.63
112 Kingston ²	152	33.53 ³	30.50 ³	0.09

Table 2-1.	Summary of we	Il construction details.
------------	---------------	--------------------------

Notes:

1. Casing depth not available from well log but is assumed to be similar to that installed at TW05-02 (immediately nearby).

2. Well log not available.

3. Information provided by the home owner (January 19, 2018).

The TW05 series of test wells were originally drilled in 2005 by Capital Well Drillers. Following BGC's recommendation, test wells TW05-02 (97.5 to 147.5 m) and TW05-04 (103.6 to 144.1 m) were deepened on February 22 and July 11, 2017, respectively, as reported in BGC (2017). The discovery of high-yielding water bearing fractures and high artesian pressures at depth in these wells led to the drilling and subsequent testing of test well TW17-01.

2.2. Hydrogeologic Setting

2.2.1. Geology

The overburden on the Property is a silt-dominated till, which is typically 1 to 20 m (3 to 66 feet) thick, deposited by advancing glaciers (Allard and Gilmore 2016). The bedrock in the area is part of the Minto Formation of the Pictou Group of rocks, consisting of Late Carboniferous aged, coarse-to-fine-grained sediments, including grey and red-brown beds of conglomerate, sandstone, siltstone, mudstone, and shale, with thin seams of coal (St. Peter and Fyffe 2005).

2.2.2. Topography and Drainage

The surface elevation in the greater New Maryland area ranges from approximately 10 to 200 m (33 to 656 feet) asl (above sea level), with the highest ground elevation being to the north-west in Hanwell. The surface elevation of the Property ranges from approximately 50 to 70 m (164 to 230 feet) asl, and generally slopes to the southeast. Two brooks are located near the Property, Burpee Brook and its tributary, Berry Brook, identified on Figure 2-2. Burpee Brook flows north to south across the Property, and Berry Brook flows roughly parallel with the Property to the south before entering Burpee Brook. Burpee Brook then joins the North Branch Rusagonis Stream, which flows roughly northwest to southeast through the immediate project area. The Rusagonis Stream is a tributary to the Oromocto River, which ultimately drains into the St. John River.

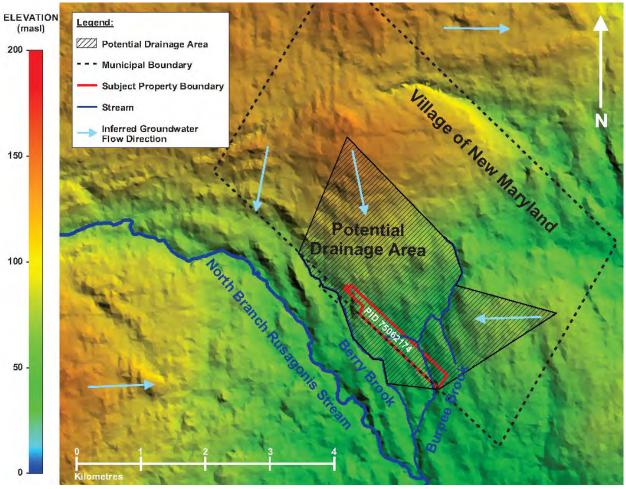


Figure 2-2. Drainage area and topography around the subject Property.

Based on topography, a 12 km² potential contributing drainage area to the aquifer was approximated (Figure 2-2). This potential drainage area is considered to provide recharge to the aquifer, based on local drainage divides as delineated using topography provided by the GeoNB data catalogue (SNB 2018). Using an average annual precipitation of approximately 1,100 mm (ECCC 2018), and an assumed annual aquifer recharge rate between 10% (110 mm/year) and 30% (330 mm/year), an estimated range for the total volume of groundwater recharge available in this aquifer is 1,320,000 to 3,960,000 m³/year. Considering the presence of up to 400 domestic wells within this drainage area, each assuming to withdraw between 0.6 m³/d (Opus 2018) and 1.0 m³/d (DeOreo et. al. 2016)¹, up to approximately 146,000 m³/year (between 4% and 11%) of the estimated available recharge may be extracted by domestic well use. A portion of this may be offset if some of these homes are eventually connected to the municipal system.

¹ Consumption data for the Village's current (existing) water supply system suggests an average of 580 L/d $(0.6 \text{ m}^3/\text{d})$ per residence (Opus 2018). DeOreo et. al. (2016) incorporated data collected from approximately 24,000 homes throughout Canada and the US, with the average annual residential water use found to be 912 L/d per residence (or 88,000 us gallons per year). To remain conservative, and for ease of calculations, an assumed value of 1,000 L/d (1 m³/d) was applied as a typical (average) residential water usage rate.

It is also important to note that less aquifer recharge may be available during extended dry periods. Under such prolonged dry conditions, there is a higher potential risk of increased drawdowns, and possibly over pumping, if water levels are left unchecked.

2.2.3. Hydrogeology

An interpreted sub-surface cross section of the Property from northwest to southeast (section A-A' as shown in Figure 2-1) is depicted in Figure 2-3. The general topography, bedding, and groundwater table slope from northwest to southeast. A large water bearing fracture was encountered at depth while deepening test wells TW05-02 and TW05-04, and during drilling of TW17-01. Test well TW05-01 may also intersect this fracture, within a likely zone between 65 and 95 m (213 and 312 feet) asl (refer to Appendix A for the well driller's log, and the identified zone on Figure 2-3) but this is not confirmed since this well was drilled by others. Due to an approximate 20 m difference in elevation between test well TW05-01 and the other wells on the Property, and the artesian pressures in the intercepted aquifer at depth, overflow conditions are only observed at the wells at lower elevation (TW05-02, TW05-03, TW05-04 and TW17-01) during the bulk of the year. Based on this information, it is suspected that overflow conditions are absent at TW05-01 due to its much higher elevation, as the conceptual model in Figure 2-3 depicts.

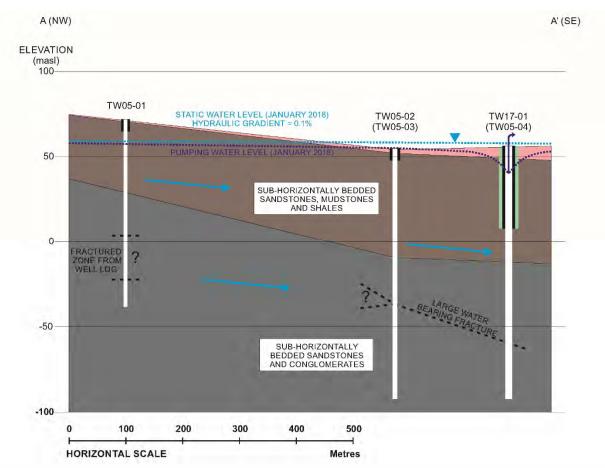


Figure 2-3. Conceptual cross-section along the test wells on the subject Property.

Groundwater levels at an observation well belonging to the Provincial monitoring network, located near Victoria Hall on PID 75064253 in New Maryland, have been monitored by the Government of New Brunswick since 1979 (NBDELG 2018). The Victoria Hall well (location identified on Figure 1-1) is located approximately 2 km from the subject Property (and approximately due north from the test wells), and on ground that is approximately 40 m higher in elevation. The historical data provide some indication of general water table trends in this aquifer. From January 2017 to January 2018, groundwater levels regularly fluctuated by 1 to 2 m, with a maximum fluctuation over that period of 6 m from May to October 2017, as shown in Figure 2-4. This prolonged decline in the groundwater level confirms the extremely dry conditions under which the drilling and initial testing were completed (refer to Figure 2-4).

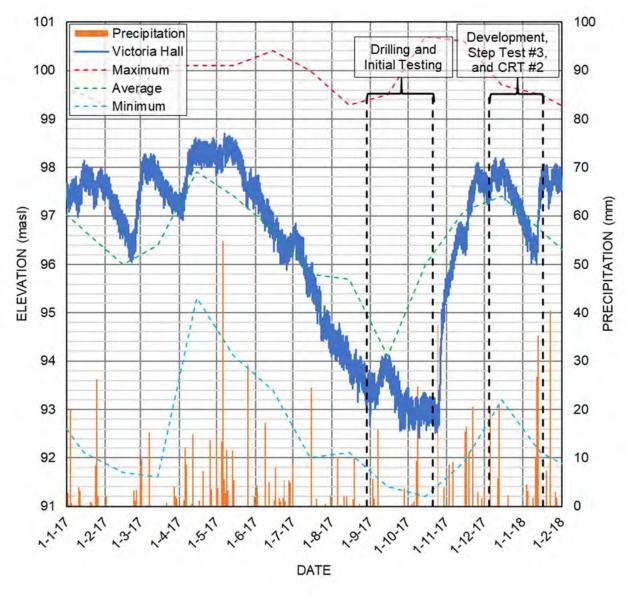


Figure 2-4. Groundwater elevations in the Victoria Hall well with precipitation.

²⁰¹⁸⁰⁴⁰⁹_VoNM_17-01_Investigation

The extended 6-month decline in groundwater levels had resulted in levels descending below the historical (39-year) average between July and November 2017 (green dahsed line in Figure 2-4). This decline is attributed to limited precipitation being received in the area over this period, (254 mm at the Fredericton International Airport monitoring station, ECCC 2018) which produced extremely dry (drought-like) conditions over these months (the precipitation is also shown in Figure 2-4 over that time period). The high variability in groundwater elevations measured at the Victoria Hall well, up to 10 m between the historical maximum and minimum water levels over the period of record (red and blue dashed lines, respectively), suggests that this aquifer is highly influenced by precipitation and snowmelt (with a time lag² of 5 days for its effects to reach the aquifer), and the antecedant moisture condition.

2.3. Regulatory Setting

Commercial, industrial and community groundwater supply investigations in New Brunswick follow the Water Supply Source Assessment (WSSA) process, as directed by the Environmental Impact Assessment (EIA) Branch of the New Brunswick Department of Environment and Local Government (NBDELG). The latest revision of the WSSA document can be found online (NBDELG 2017).

The intent of the WSSA process is to develop water supplies that are ultimately protected by controlling the potential factors that can be controlled during well construction and testing. These include mandating a minimum amount of protective casing, grouting around the protective casing, a minimum suite of chemical parameters for analytical groundwater sampling, and timing of pumping tests to coincide with relatively drier periods, when aquifer recharge is relatively low, to reduce the possibility of overestimating the sustainable well yield.

The WSSA process involves two main steps: the WSSA Initial Application (formerly 'Step One') and the Hydrogeological Assessment (formerly 'Step Two'). The WSSA Initial Application involves siting drilling targets (typically a desktop evaluation supported by ground truthing, previously completed by BGC for this project), and the Hydrogeological Assessment includes the actual field program (drilling, well construction and development, hydraulic testing and analytical sampling), analysis and reporting.

As quoted in the WSSA document, "WSSAs must be completed to the satisfaction of the Department of Environment and Local Government. Incomplete or inadequate submissions will be returned to the applicant for completion. The Hydrogeological Assessment and yield testing must be completed under the direct supervision of a qualified Professional Engineer or Geoscientist registered with the Association of Professional Engineers and Geoscientists of New Brunswick. All final work must be signed and professionally sealed." This report completes the requirement of the Hydrogeological Assessment portion of the WSSA process.

² A subset of 31 precipitation events that occurred between 2001 and 2016, was used to approximate the time lag between a precipitation event and the associated peak in the groundwater level observed in the Victoria Hall monitoring well.

3.0 METHODS

As part of this scope of work, BGC completed the following tasks:

- Designed the test well TW17-01 as a production-scale well.
- Supervised the drilling, construction and development of TW17-01.
- Designed and monitored the hydraulic testing programs completed at test wells TW17-01, TW05-02 and TW05-04.
- Presented the associated methodology and findings in this report.

3.1. Production Well Drilling

Between August 29 and September 12, 2017, a 305 mm (12-inch) diameter production-scale well (TW17-01) was drilled on the Property, approximately 3 m (10 feet) west of the existing test well TW05-04. The production-scale well was drilled to a final depth of 148.4 m (487 feet), with an airrotary drill supplied by Sullivan's Well Drilling Ltd. (Sullivan's). The upper 30.5 m (100 feet) was drilled at 406 mm (16-inch) diameter, and the annulus between the 305 mm (12-inch) diameter, 30.9 m (101.5 ft) long, protective steel casing and the outer borehole was grouted to surface. A cement-based grout was injected into the annular space from 10 to 30.5 m (32.8 to 100 feet) bgs (below ground surface) using a tremie pipe, and the upper 10 m (32.8 feet) of annular space was backfilled with bentonite clay.

Beneath the grouted, protective casing (with drive-shoe), the well consists of an open borehole in the bedrock. The bedrock was primarily sandstone and conglomerate, with beds of mudstone and shale, and occasional deposits of lignite (coal) and pyrite. Approximately 7 m (24 feet) of overburden was encountered above the surface of bedrock at TW17-01. Refer to Appendix A for a complete well log of production-scale well TW17-01.

3.2. Well Development

Production-scale well TW17-01 was initially developed, by means of an air-lift development tool, for eight hours on September 12 and 13, 2017. Following the initial well development, the well yield was estimated to be between 1,100 and 1,400 m³/d (200 and 250 usgpm). However, follow-up hydraulic testing showed that the specific capacity of TW17-01 was much lower than anticipated, when compared to that measured in nearby test wells TW05-04 and TW05-02.

On September 19 and 20, 2017, an effort was made to hydraulically fracture the nearby test well TW05-04, in an attempt to increase the connectivity between TW05-04 and TW17-01. A 305-mm (12-inch) packer could not be obtained for TW17-01, therefore, the effort was focused on TW05-04. Fractures were targeted by sealing the well above the desired interval with an inflatable packer, and pumping water through the packer to increase the pressure in the section of the well beneath the sealed packer. The primary targets were the larger water bearing fractures, which were producing artesian pressures, located at approximately 114 and 116 m (374 and 380 feet) bgs. Hydraulic fracturing was also attempted at other potential water bearing fractures, between 99 and 144 m (326 and 473 feet) bgs in TW17-01, or 90 and 139 m (295 and 456 ft) in TW05-04.

An additional five hours of air-lift development was completed on September 20, 2017, with most of this time spent targeting fracture zones in TW17-01. A marginal increase in the specific capacity of TW17-01 was noted following this effort, and a decision was made to attempt a more aggressive, higher-energy well development method at TW17-01 to improve the well efficiency.

The more aggressive well development method was conducted at TW17-01 between December 5 and 8, 2017, using a dual surge block, which threaded onto the bottom of the drill rod while still allowing compressed air to be pumped into the well. This well development process consisted of a combination of surging and air jetting. In total, approximately twenty hours of well development was completed by means of this method, alternating between surging and jetting, mainly targeting the same fractured zones as previous. This involved the following steps:

- Rapidly raising and lowering the surge block the length of one drill rod (7.6 m or 25 feet).
- Pumping compressed air through the surge block at very specific targeted intervals.
- Monitoring the hydraulic response in TW17-01 and the adjacent test well TW05-04.

3.3. Hydraulic Testing

Through the course of the drilling, developing and testing program, a total of three step-drawdown tests and two 72-hour constant-rate pumping tests were completed at production-scale well TW17-01. Two 6-hour step-drawdown tests were also completed at test wells TW05-02 and TW05-04 in this process. The step-drawdown and constant-rate pumping tests were designed and monitored by BGC staff and conducted by Sullivan's using a submersible pump and mobile generator. Water levels were recorded both manually and with automatic dataloggers, by measuring the distance to groundwater below the top of casing (BTOC) or above the top of casing (ATOC) depending on the artesian pressure and associated groundwater elevation in each well, then converting the collected water levels to drawdowns and elevations. Standpipes were installed on those wells where the groundwater level was ATOC due to artesian pressures causing overflowing conditions.

3.3.1. Step-Drawdown Tests

Three step-drawdown tests were completed in production-scale well TW17-01, respectively on September 18 (step test #1), September 21 (step test #2), and December 19, 2017 (step test #3). The first test was completed immediately after the drilling and initial well development, the second test was completed following hydraulic fracturing of TW05-04 and additional development at TW17-01, and the third test was completed following the more aggressive well development effort at TW17-01. Each test consisted of three to four incremental steps, with each rate being maintained for 60 minutes before proceeding to the next step.

Due to the significantly lower specific capacity measured at TW17-01 when compared to TW05-02, during the February 2017 step-test (BGC 2017), follow-up 6-hour step-drawdown tests were completed in test wells TW05-02 and TW05-04 on October 20 and 21, 2017, respectively. These tests were completed to asses if the initially low efficiency of TW17-01 may have been due in part to much lower (approximately 3 m, or 10 feet) groundwater elevations compared to

February 2017, or if this previously untested area has different hydraulic properties. Each test consisted of three incremental steps, maintaining the rate of steps 1 and 2 for 60 minutes each, before proceeding to a final 4-hour step.

3.3.2. Constant-Rate Pumping Tests

The first 72-hour constant-rate pumping test (pumping test #1) was completed at TW17-01 between September 25 and 28, 2017. Following the additional well development and step test #2, it was concluded that well TW17-01 should be pumped at a constant rate of 1,090 m³/d (200 usgpm). The results of the pumping test were not encouraging at that time (high observed drawdown leading to low specific capacity and well efficiency; refer to next section), and the testing program was, therefore, paused until the additional, higher-energy, more aggressive well development method could be completed, and TW17-01 could be re-tested.

The second 72-hour constant-rate pumping test (pumping test #2) was completed at TW17-01 between January 9 and 12, 2018, following a relatively cold and dry month. Following the higherenergy well development and step test #3, it was concluded that well TW17-01 could be pumped at a constant rate of 1,635 m³/d (300 usgpm), near the maximum capacity of the installed pump. Due to the lack of significant precipitation, and the frozen and snow-covered ground conditions, little aquifer recharge was likely occurring at the time of this test (i.e., approximate baseflow conditions had prevailed). Refer to Appendix B for river stage plots of the nearby St. John River at Fredericton (Figure B-1) and North Branch Oromocto River at Tracy (Figure B-2), between January 2017 and January 2018 (WSC 2018).

The initial static groundwater level in the pumped well (TW17-01) at 9:00 am on January 9, before the well seal was removed to install the pump, was 2.03 m ATOC. This static level was noticeably higher than what was measured prior to the first CRT here (0.16 m ATOC on September 21, 2017), when extremely dry (drought-like) site conditions had prevailed. Static groundwater levels for each of the observation wells were chosen as the water level that was collected from each well on January 9, 2018, immediately prior to removing the well seal from TW17-01.

Manual water level readings were measured in wells TW17-01 and TW05-04 every 30 seconds at the onset of pumping, and the frequency of readings were gradually reduced to hourly throughout the remainder of the test, following BGC's standard testing protocol. Manual levels were also recorded periodically from each of the observation wells throughout the test. Groundwater levels were also collected by means of dedicated automatic dataloggers from each of the six (6) observation wells, at a 10-minute frequency throughout the duration of the test.

The pumping phase of the CRT continued for 72 hours, and the pumping rate was monitored frequently with an in-line cumulative flow meter. The accuracy of this flow meter was confirmed by BGC field staff prior to the test, by means of a 500 L (132 usgal) reservoir. To help prevent direct artificial recharge to the aquifer during testing, the discharge water was piped roughly 30 m (100 feet) north toward the wetland. The risk of artificial recharge is considered to be low, due to the thick (7 m or 23 feet) silt-dominated till overburden, the 30.5 m (100 feet) of grouted and cased

construction of TW17-01, and the confined nature of the fracture-flow aquifer itself (as evidenced by the artesian pressures observed).

Manual measurements were also recorded at TW17-01 and TW05-04 during the first 90 minutes of (post-pumping) recovery until the pumped well had returned to overflow conditions (equal to 89% recovery). The pump removal process began immediately after overflow conditions began. An automatic datalogger was installed in TW17-01 once the pump was removed, and the well seal was then replaced.

The results of the second pumping test are representative of the current hydraulic condition of TW17-01 and are therefore presented and discussed in the remainder of this report.

3.4. Groundwater Sampling

Through the course of this latest phase of the project, a total of eight groundwater samples were collected and submitted to the Research and Productivity Council (RPC) Analytical Services Laboratory in Fredericton, NB for chemical analysis. Three samples were taken during each of the 72-hour pumping tests completed on well TW17-01, at approximately 24 hours, 48 hours, and 72 hours, and at the end of each 6-hour pumping test completed on test wells TW05-02 and TW05-04. The groundwater samples were analyzed for general chemistry with dissolved trace metals (including mercury, fluoride, and sulfide), volatile organic compounds (VOCs), and microbiology (including total coliforms, total faecal coliforms, and E. coli).

Each of the groundwater samples were collected in sample containers provided by the analytical lab. The samples were kept in refrigerated storage until being submitted to RPC for analyses. RPC is accredited with the Standards Council of Canada (SCC), and the analytical results provided from the lab were compared against the most recent Guidelines for Canadian Drinking Water Quality (GCDWQ), as published by Health Canada (2017).

4.0 RESULTS

4.1. Step-Drawdown Tests

The results of the three step-drawdown tests completed on production-scale well TW17-01 are summarized in Table 4-1, Table 4-2, and Table 4-3, and graphically in Figure 4-1.

-							
	STEP	YIELD, Q		DRAWDOWN, s		TRANSMISSIVITY, T	INVERSE SPECIFIC CAPACITY, s/Q
		(m³/d)	(usgpm)	(m)	(feet)	(m²/d)	(m/m³/d)
	1	883	162	30.09	98.7	147	0.0341
	2	1,177	216	53.57	175.8	121	0.0455
	3	1,472	270	79.84	261.9	108	0.0543

Table 4-1. TW17-01 Step-drawdown test #1 (September 18, 2017).

Notes:

1. Aquifer Loss Coefficient, B = $4.26 \times 10^{-3} \text{ days/m}^2 (3.34 \times 10^{-3} \text{ feet/usgpm}).$

2. Well Loss Coefficient, $C = 3.43 \times 10^{-5} \text{ day/m}^5 (7.62 \times 10^{-2} \text{ feet/usgpm}^2)$.

Table 4-2.	TW17-01	Step-drawdown	test #2 (September 21, 2017).

STEP	YIELD, Q		DRAWDOWN, s		TRANSMISSIVITY, T	INVERSE SPECIFIC CAPACITY, s/Q
	(m³/d)	(usgpm)	(m)	(feet)	(m²/d)	(m/m³/d)
1	785	144	13.77	45.2	230	0.0175
2	1,177	216	46.93	154.0	133	0.0399
3	1,472	270	75.46	247.6	112	0.0513
4	981	180	51.29	168.3		

Notes:

1. Aquifer Loss Coefficient, $B = -2.05 \times 10^{-2} \text{ days/m}^2$ (-0.366 feet/usgpm).

2. Well Loss Coefficient, $C = 4.95 \times 10^{-5} \text{ day/m}^5 (4.83 \times 10^{-3} \text{ feet/usgpm}^2)$.

Table 4-3. TW17-01 Step-drawdown test #3 (December 19, 2017).

STEP	YIEL	_D, Q	DRAWE	DOWN, s	TRANSMISSIVITY, T	INVERSE SPECIFIC CAPACITY, s/Q
	(m³/d)	(usgpm)	(m)	(feet)	(m²/d)	(m/m³/d)
1	883	162	5.81	19.1	443	0.0066
2	1,177	216	7.56	24.8	450	0.0064
3	1,472	270	11.75	38.5	389	0.0080
4	1,831	336	17.89	58.7	340	0.0098

Notes:

1. Aquifer Loss Coefficient, B = $2.88 \times 10^{-3} \text{ days/m}^2 (5.15 \times 10^{-2} \text{ feet/usgpm}).$

2. Well Loss Coefficient, C = $3.59 \times 10^{-6} \text{ day/m}^5 (3.50 \times 10^{-4} \text{ feet/usgpm}^2)$.

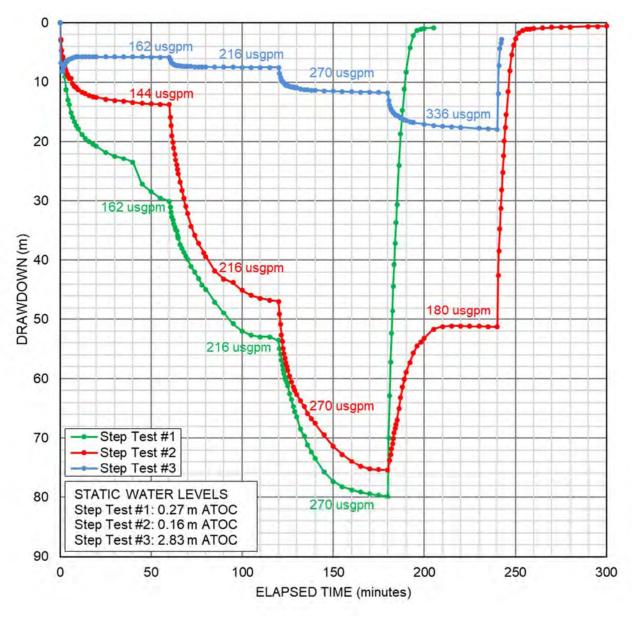


Figure 4-1. TW17-01 step-drawdown tests – Drawdown vs. Time.

The results of the step-drawdown tests completed on test wells TW05-02 (October 20, 2017), and TW05-04 (October 21, 2017) are summarized in Table 4-4 and Table 4-5, respectively, and graphically in Figure 4-2. A plot of inverse specific capacity (s/Q) versus well yield (Q), comparing results from the five-separate step-drawdown tests (i.e., step test #1, #2, and #3 completed in well TW17-01, and step-drawdown tests in TW05-02 and TW05-04), is shown in Figure 4-3.

STEP	YIEI	_D, Q	DRAWE	DOWN, s	TRANSMISSIVITY, T	INVERSE SPECIFIC CAPACITY, s/Q
	(m³/d)	(usgpm)	(m)	(feet)	(m²/d)	(m/m³/d)
1	1,177	216	4.63	15.17	626	0.0039
2	1,570	288	7.03	23.07	573	0.0045
3 (1-hr)	1,831	336	8.68	28.46	552	0.0047
3 (4-hr)	1,831	336	9.12	29.93		

Table 4-4. TW05-02 step-drawdown test (October 2	20, 2017).
--	------------

Notes:

1. Aquifer Loss Coefficient, B = $2.48 \times 10^{-3} \text{ days/m}^2$ (4.43 x 10^{-2} feet/usgpm).

2. Well Loss Coefficient, C = $1.25 \times 10^{-6} \text{ day/m}^5 (1.22 \times 10^{-4} \text{ feet/usgpm}^2)$.

STEP	YIEI	YIELD, Q DRAWDOWN, s		TRANSMISSIVITY, T	INVERSE SPECIFIC CAPACITY, s/Q	
	(m³/d)	(usgpm)	(m)	(feet)	(m²/d)	(m/m³/d)
1	218	40	0.44	1.45	975	0.0020
2	382	70	0.95	3.10	853	0.0025
3 (1-hr)	545	100	1.51	4.94	793	0.0028
3 (4-hr)	545	100	1.67	5.48		

Table 4-5. TW05-04 step-drawdown test (October 21, 2017).

Notes:

1. Aquifer Loss Coefficient, $B = 1.57 \times 10^{-3} \text{ days/m}^2$ (2.80 x 10⁻² feet/usgpm).

2. Well Loss Coefficient, $C = 2.24 \times 10^{-6} \text{ day/m}^5 (2.19 \times 10^{-4} \text{ feet/usgpm}^2)$.

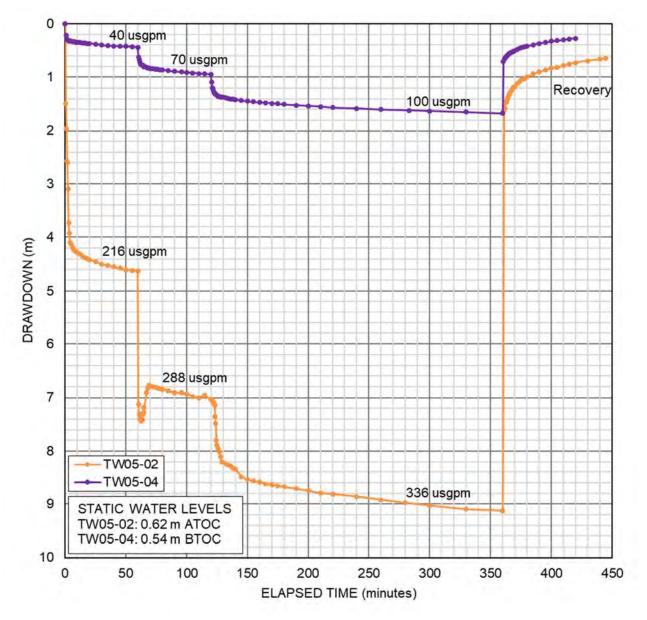
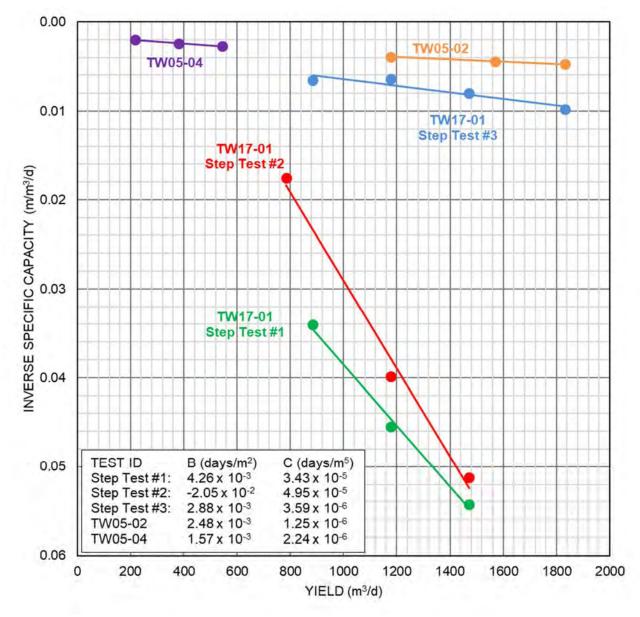
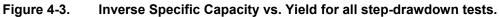




Figure 4-2. TW05-02 and TW05-04 step-drawdown tests – Drawdown vs. Time.

The resulting lines plotted for TW05-02 and TW05-04 in Figure 4-3 are considered to be more representative of the 'true' specific capacity for a well pumping from this aquifer. In completing the step tests at TW17-01, it becomes apparent that the initial two tests (step test #1 and step test #2) had produced much lower specific capacities, and thus much lower well efficiencies, than that produced in the dramatically improved step test #3. The TW17-01 step test #3 plot shows a significantly improved well performance, with similar Aquifer (B) and Well (C) Loss Coefficients to those previously measured at TW05-02 and TW05-04.

4.2. Constant-Rate Pumping Tests

Pumping test #1, at a constant discharge rate of 1,090 m³/d (200 usgpm), resulted in relatively high drawdowns (approximately 55 m, or 180 feet after 72 hours), and a low calculated well efficiency of approximately 7%³. The results of pumping test #2 at a constant discharge rate of 1,635 m³/d (300 usgpm) and a resulting drawdown of approximately 18 m are presented below and are representative of the latest hydraulic performance of TW17-01.

4.2.1. Drawdown

The measured drawdowns at the end of the CRT in each well within the monitoring network are shown in Table 4-6, including extrapolated drawdowns after 100 days and 10 years (assuming that no additional recharge or impermeable boundaries are encountered).

WELL ID RADIUS FRO PUMPED WE (m)		OBSERVED 72-HOUR DRAWDOWN (m)	EXTRAPOLATED 100-DAY DRAWDOWN (m)	EXTRAPOLATED 10-YEAR DRAWDOWN (m)
	0.451	. ,		. ,
TW17-01	0.15 ¹	18.025	22.2	26.0
TW05-04	3.0	4.523	6.8	9.0
TW05-03 ²	195	3.254	5.4	7.4
TW05-02	200	2.669	4.6	6.6
TW05-01	675	1.683	3.7	5.7
Sunrise-OW ^{2,3}	489	0.103	0.2	0.3
Kingston ^{2,3}	879	4	4	4

 Table 4-6.
 TW17-01 constant-rate pumping test (January 2018) – Drawdown.

Notes:

1. The distance of TW17-01 is taken as the well radius.

2. Well does not intersect large, artesian, water bearing fractures.

3. Used to monitor hydraulic response in the nearby residential area.

4. The observed hydraulic response from the constant-rate pumping test was negligible compared to daily use of this well.

Elevation data for each of the wells are plotted on Figure 4-4 from January 1 to 16, 2018, covering a period of background water levels from TW05-01, the pumping test, and recovery. Figure 4-4 also includes the North Branch Oromocto River water level over the same period (WSC 2018). Figure 4-5 and Figure 4-6 show drawdown vs. linear time and vs. logarithmic time, respectively. Figure 4-6 also includes extrapolated drawdown after 100 days and 10 years of continuous pumping.

20180409_VoNM_17-01_Investigation

³ Expected drawdown of approximately 4 m (13 feet) divided by the observed drawdown of 55 m (180 feet).

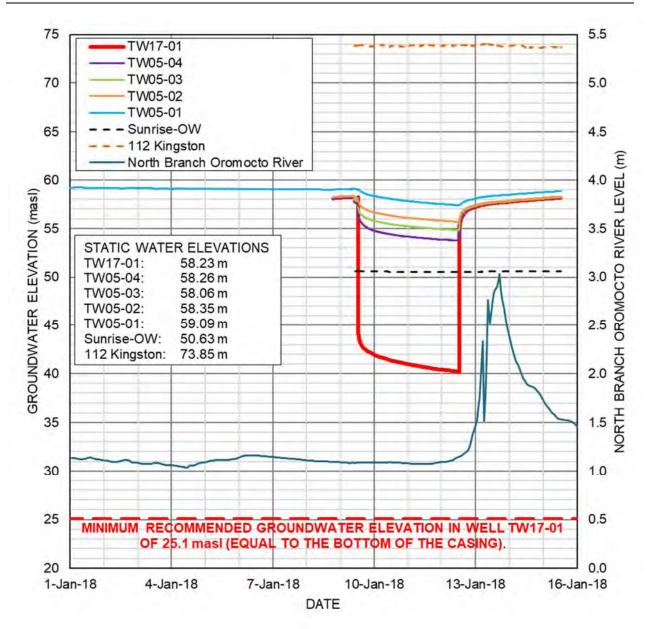


Figure 4-4. TW17-01 constant-rate pumping test – Elevation vs. Time.

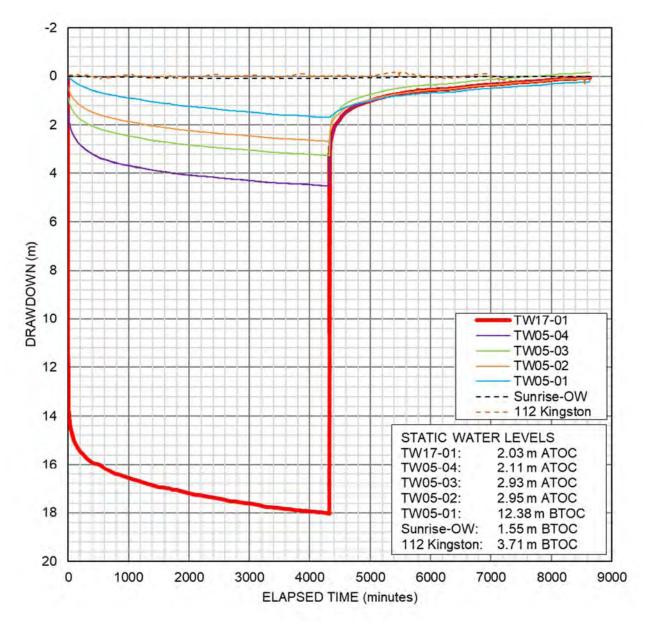


Figure 4-5. TW17-01 constant-rate pumping test – Drawdown vs. Linear Time.

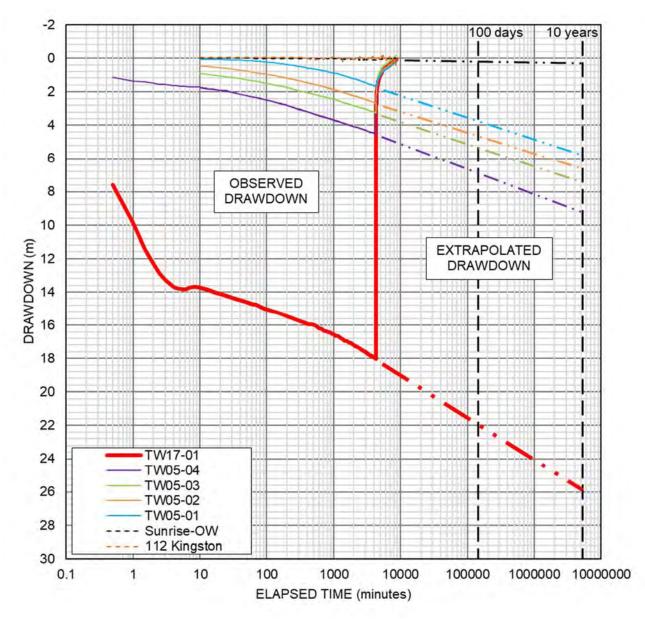


Figure 4-6. TW17-01 constant-rate pumping test – Drawdown vs. Log Time.

After 72 hours (4,320 minutes) of continuous pumping at 1,635 m³/d (300 usgpm), the drawdown in the pumped well (TW17-01) was 18.025 m (59.14 feet), with an associated specific capacity of 91 m³/d/m. From the slope of the drawdown versus log-time plot (Figure 4-6), it appears that an impermeable boundary was encountered within the first day of pumping (at approximately 500 minutes). These data also suggest an aquifer transmissivity (T) of approximately 230 m²/d (19,000 usgpd/ft) and a storativity (S) of 6 x 10⁻⁴, applying the analytical methods of Cooper-Jacob (1946) and Theis (1935), the latter indicating a response similar to that of a confined aquifer, supported by the presence of artesian pressure and overflow conditions.

The drawdown in the TW05-series of observation wells after 72 hours was 4.523 m in TW05-04, 3.254 m in TW05-03, 2.669 m in TW05-02, and 1.683 m in TW05-01 (refer to Table 4-6). These data are plotted versus their respective distances from the pumped well in the distance-drawdown plot as presented in Figure 4-7, from which an aquifer transmissivity of 300 m²/d (24,000 usgpd/ft), and a well efficiency of approximately 50% for TW17-01, are inferred⁴.

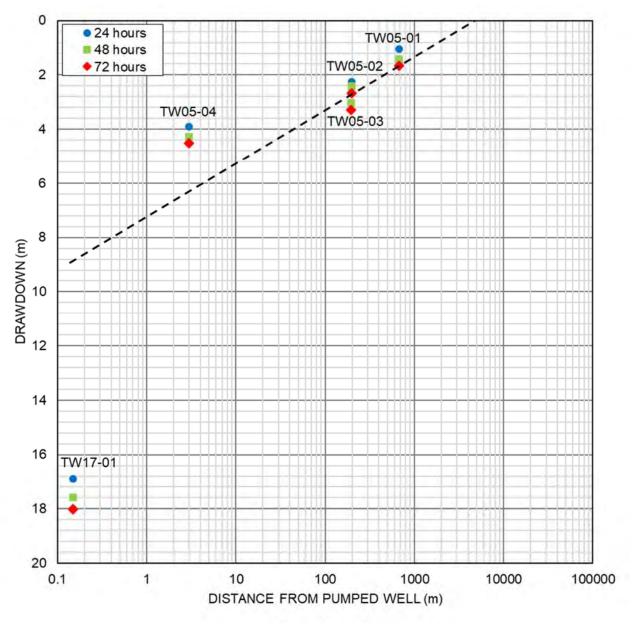


Figure 4-7. TW17-01 constant-rate pumping test – Distance-Drawdown.

20180409_VoNM_17-01_Investigation

⁴ Actual drawdown of 18 m (59 feet) compared to expected drawdown of 9 m (29.5 feet).

The Sunrise-OW well is located 489 m from the pumped well, in the southeastern end of the Sunrise Estates subdivision, and showed 0.103 m of drawdown after 72 hours of continuous pumping from TW17-01. The Kingston well is located 879 m from the pumped well, near the middle of the Sunrise Estates subdivision, and showed a very minor response to the constant-rate pumping test. Well Kingston varied by up to 0.20 m per day due to its use as a residential supply well, thus the hydraulic response to the constant-rate pumping test was not observed to be significant in comparison. Both of these wells are shallower than any of the other test wells on the Property and appear to be poorly connected to the pumped well, as they experienced significantly less drawdown than was expected. It is also possible that the 30.5 m (100 ft) of protective steel casing installed at TW17-01, and/or anisotropy in the aquifer itself, may have resulted in less hydraulic connection to these wells, and the less-than-anticipated drawdowns in Sunrise Estates.

4.2.2. Recovery

Recovery began at 12:30 pm on January 12, 2018, 72 hours after pumping began. A 35 cm gradual decline in the groundwater level in this aquifer was observed for an 18-day period leading up to the pumping test, as monitored via the dedicated pressure transducer at TW05-01 (Figure 4-4). A similar declining water level trend was generally noticed in the North Branch Oromocto River (also Figure 4-4). However, there was also approximately 60 mm of precipitation from January 12 to 13, and warm temperatures that caused the bulk of the snow cover to melt. Using an average time lag response of 5 days in this aquifer for the peak groundwater elevation to occur following a precipitation event, the full effects of the precipitation and snow melt event were likely not felt within 72 hours of the end of pumping. Therefore, the static groundwater levels prior to pumping began were used for recovery calculations.

Refer to Table 4-7 and Figure 4-8 for a summary of the recovery results. Note that the x-axis of Figure 4-8 is normalized to time since pumping started (t) over time since pumping ended (t'), resulting in time increasing to the left of the plot.

WELL ID	RESIDUAL DRAWDOWN AFTER 72 HOURS (m)	PERCENT RECOVERED AFTER 72 HOURS (%)	TIME TO REACH 100% RECOVERY TO PRE- PUMPING WATER LEVEL (hours)
TW17-01	0.056	99.7	83.5
TW05-04	0.051	98.9	81.8
TW05-03	-0.151	104.6	57.8
TW05-02	0.071	97.3	83.7
TW05-01	0.228	86.3	99.8
Sunrise-OW	0.018	81.4	101
112 Kingston ¹			

 Table 4-7.
 TW17-01 constant-rate pumping test (January 2018) – Recovery.

20180409_VoNM_17-01_Investigation

Note: 1. The recovery results are not shown, as they are not representative of the response to the constant-rate pumping test.

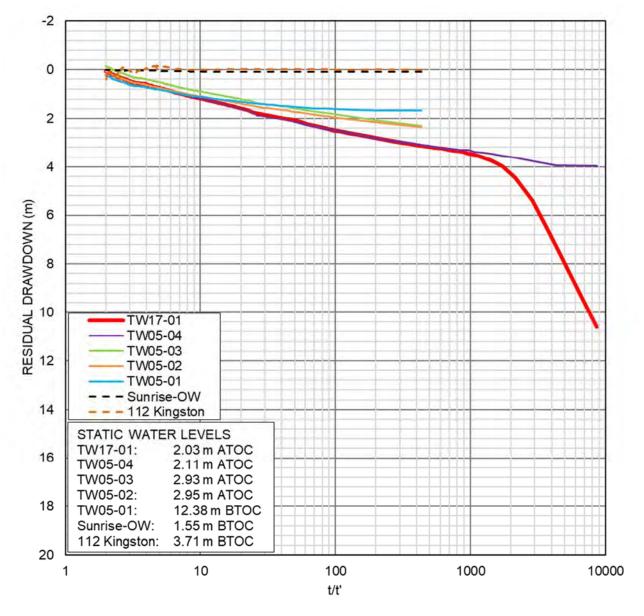


Figure 4-8. TW17-01 constant-rate pumping test – Recovery.

It appears that, based solely on the pre-pumping water levels, 100% recovery was not achieved in most wells within 72 hours from the end of pumping. As shown in Table 4-7, the time to 100% recovery ranged from 58 to 101 hours after pumping ceased (2.4 to 4.2 days).⁵

⁵ If the observed decline in the pre-pumping static water level in TW05-01 were applied to each well at the end of the pumping period, 100% recovery occurred at each monitoring well between 2 and 3 days into the recovery period.

4.2.3. Potential Impacts

The development of a new wellfield in the Village could result in interference drawdown in nearby residential wells (particularly the Sunrise Estates subdivision). Although the results from observation wells Sunrise-OW and Kingston suggest that there is likely little connectivity between these wells and test wells on the Property at the rates tested, any marginal wells that are hydraulically connected to this aquifer could potentially be adversely affected, and mitigation (e.g., well deepening, well replacement, or connection to a municipal supply) may be required. Water quality in these nearby domestic wells may also be altered, but not necessarily degraded, by the operation of new higher capacity production wells on the Property. Baseline and longer-term monitoring of water levels and water quality at selected domestic wells should be undertaken by the Village to address this possibility. Streamflow in nearby water courses could also be affected, through a reduction in the component of baseflow (i.e., the amount of groundwater seepage being received by streams).

For this area to be considered a viable wellfield warranting the construction of piping to the community system, a second production well should be constructed in this aquifer, to provide redundancy. This second production well could be constructed at the previously tested TW05-02 location (BGC 2017), by modifying TW05-02 to include 30.5 m (100 feet) of protective steel casing with drive-shoe seated into the bedrock. This work will be difficult under significant artesian pressures (upwards of 3 m ATOC) and should, therefore, be planned during seasonally low groundwater conditions (e.g., July or August). Pumping from TW17-01 (or TW05-03) to waste may also be considered throughout a portion of the recommended well construction process, to allow further lowering of the prevailing artesian pressures, if needed.

It had been previously discussed in BGC (2017) that limiting the pumping rate from a new well at this location to 1,360 m³/d (250 usgpm) would minimize impacts to the closest domestic water wells. Well interference at TW05-02 (potentially the second production well in a wellfield at this location) was approximately 3 m (10 feet) during the pumping test at TW17-01 and is expected to be 6.6 m (21.7 feet) after 10 years of continuous pumping (refer to Table 4-6). If both production wells are to be operated simultaneously, well interference and long-term aquifer yield would need to be evaluated and considered in the operational plans. Table 4-8 shows the estimated 10-year drawdowns caused from pumping each TW17-01 and TW05-02 at 1,360 m³/d (250 usgpm) independently, and together for a total withdrawal of 2,720 m³/d (500 usgpm). However, these cumulative yields and drawdowns have not yet been proven, and the long-term capacity of the aquifer to support these long-term withdrawals has not been evaluated. Further assessment, by means of additional testing and 3D numerical modelling, would likely be required to confirm this.

WELL ID	10-YEAR DRAWDOWN INDUCED FROM PUMPING TW17-01 (1,360 m³/d [250 usgpm]) (m)	10-YEAR DRAWDOWN INDUCED FROM PUMPING TW05-02 (1,360 m³/d [250 usgpm]) (m)	10-YEAR DRAWDOWN INDUCED BY SIMULTANEOUS PUMPING OF TW17-01 AND TW05-02 (m)
TW17-01	24.0	4.8	28.8
TW05-04	7.5	4.8	12.3
TW05-03	6.2	7.4	13.6
TW05-02	5.5	13.7	19.2
TW05-01	4.8	4.2	9.0
Sunrise-OW	0.2	0.2	0.4
Nearest potentially connected domestic wells (500 m)	5.0	4.2	9.2

Development of a new municipal wellfield will trigger the regulatory requirement for protection measures, which would be implemented within designated wellfield protection zones, as per New Brunswick's Wellfield Protected Area Designation Order (WfPADO), as released by NBDELG (2000). This is a proactive regulatory approach to protecting and maintaining both the water quality and quantity of municipal groundwater supplies and may impact current and future land use activity (e.g., gas stations, storage facilities, and farms), and can also impose restrictions on the storage and use of certain chemicals (e.g., petroleum, pesticides, and fertilizers) within the wellfield. We understand the Village's other existing municipal groundwater supply is already designated with the Province and is being managed in accordance with the WfPADO regulatory protocol.

4.2.4. Long-Term Safe Yield

Production-scale well TW17-01 is inferred to have a maximum available drawdown of 33 m (108 feet), which coincides with the bottom of the installed protective steel casing. The bottom of the casing is judged to be the minimum allowable pumping level, to help prevent the dewatering of fractures, and reduce the risk of over pumping. As groundwater levels in this aquifer have historically varied by up to 10 m, the total available drawdown could vary from approximately 27 to 37 m (89 to 121 feet), but the pumping level is recommended to remain within the casing at all times, above approximately 30.5 m (100 feet) bgs, as currently constructed, or at an elevation greater than 25.1 m (82.3 feet) asl.

To estimate the long-term safe yield of TW17-01, the pumping test data were extrapolated to estimate the drawdown that would occur after 100 days and 10 years of continuous pumping, as

shown in Table 4-6 and Figure 4-6. If no recharge or impermeable boundaries are encountered with sustained pumping, the predicted (extrapolated) drawdown after 100 days and 10 years would be approximately 22.2 m (72.8 feet) and 26.0 m (85.3 feet), respectively.

The safe yield for TW17-01 was determined using the following limitations and assumptions:

- The trajectory of the drawdown curve remains constant with sustained pumping, to an approximate drawdown of 26 m after 10 years.
- The pumping level remains within the casing at all times, and above approximately 30.5 m (100 feet) bgs, or at an elevation greater than 25.1 m asl.
- The minimum available drawdown in the well, between the static water level and bottom of casing, is at least 27 m.
- The drawdown interference when pumping from other production wells around TW17-01, including that of the nearby domestic wells, is considered.
- An engineering factor of safety (of 1.25) is added to be conservative.

Based on the factors listed above, the preliminary long-term safe yield of TW17-01 is estimated to be 1,360 m³/d (250 usgpm), with an interpolated as-built specific capacity of 130 m³/d/m. This withdrawal rate is estimated to use between 13% and 38% of the assumed available groundwater recharge in the aquifer and is based on an assumed contributing drainage area of 12 km² for the Property, and annual aquifer recharge between 330 mm and 110 mm, respectively.

Table 4-9 summarizes the estimated usage of the annual aquifer recharge, for the operation of up to two production wells (TW17-01 and TW05-02), and up to 400 domestic wells within the assumed contributing drainage area (derived from Figure 2-2). If two production wells within this aquifer are operated simultaneously, the total groundwater availability will need to be considered further, by means of additional hydraulic testing and 3D numerical modelling.

SOURCE OF	ANNUAL AQUIFER RECHARGE ¹ USAGE (%)						
WATER USAGE	ASSUMING 110 mm/year AQUIFER RECHARGE	ASSUMING 220 mm/year AQUIFER RECHARGE	ASSUMING 330 mm/year AQUIFER RECHARGE				
TW17-01 ²	38	19	13				
TW05-02 ²	38	19	13				
Domestic Wells ³	11	6	4				
Total (1 production well pumping at a time)	49	25	17				
Total (2 production wells pumping simultaneously)	87	44	30				

Table 4-9.	Estimated usage of annual	aquifer recharge for t	he subject Property.
------------	---------------------------	------------------------	----------------------

Notes:

1. Assumed as ranging between 10% and 30% of the average annual precipitation (1100 mm/year), over an estimated 12 km² potential contributing drainage area.

- 2. Water usage based on a well yield of 1,360 m³/d (250 usgpm).
- 3. Water usage based on approximately 400 domestic wells each using 1 m³/d (DeOreo et, al. 2016).

20180409_VoNM_17-01_Investigation

The percentages shown in Table 4-9 are estimates only and may change depending on the actual extraction from domestic wells, and the exact extents of the fractured bedrock aquifer. Also note that less recharge will likely be available during prolonged dry periods, which could cause increased drawdowns, and a higher risk of over pumping during those periods. However, it appears that on average, there is sufficient aquifer recharge to sustain the recommended use of TW17-01. This recommended withdrawal rate could be subject to change based on findings and confirmatory monitoring results from the subsequent longer-term operation of this well, and the broader wellfield.

4.3. Groundwater Quality

The sampled groundwater does not appear to have a dominant water type (refer to the Piper plot in Figure 4-9), ranging from "calcium-bicarbonate-type" to "sodium-chloride-type" to a mixture of both these types, as there are relatively equal percentages of sodium and calcium cations, and chloride and bicarbonate anions. The water chemistry changed slightly between pumping test #1 and pumping test #2, perhaps attributed to the additional development which removed material from the water bearing fractures. The prolonged, drier (drought-like) site conditions experienced in the area during initial testing may have also contributed to the slightly different chemistries.

In general, the water chemistry of each of the samples appears to be similar, except for the presence of elevated levels of sulfide in TW17-01. The presence of sulfide could be due to the intersection of lignite (coal) seams and pyrite at depth in the well, during the drilling process.

Analytical results were compared against the most recent GCDWQ (Health Canada 2017). Manganese concentrations averaged approximately three times the guideline, trending upward with increased time and pumping. Sulfide concentrations averaged approximately twice the guideline, trending slightly downward with increased time and pumping. Turbidity, total coliforms, total faecal coliforms, and E. coli were initially above the guideline but fell below with further development and pumping.

None of the 37 separate VOCs in the analysis suite were detected in the eight samples collected. Table 4-10 shows a summary of the exceedances observed in groundwater samples collected from well TW17-01. Refer also to Appendix C for complete tables of groundwater quality results: Table C-1 (general chemistry), Table C-2 (dissolved metals) and Table C-3 (microbiology and VOCs). Exceedances of the GCDWQ are flagged in the tables. Appendix D contains the signed laboratory certificates from the RPC analytical laboratory.

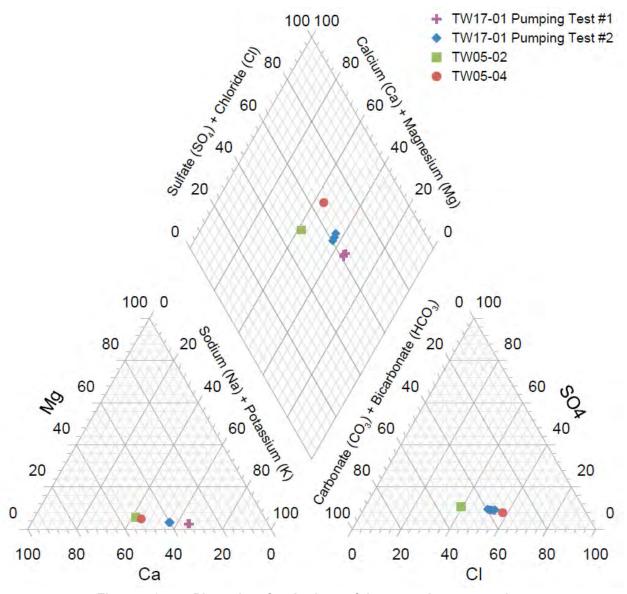


Figure 4-9. Piper plot of major ions of the groundwater samples.

Parameter	GCI	DWQ	TW17-01					
(units)	MAC	AO	26/9/17	27/9/17	28/9/17	10/1/18	11/1/18	12/1/18
Dissolved Manganese (mg/L)	-	0.05	0.132	0.134	0.138	0.171	0.168	0.168
Dissolved Sulfide (mg/L)	-	0.05	0.07	0.11	0.10	0.08	0.08	0.07
Turbidity (NTU)	0.1	-	0.2	0.1	0.1	0.2	-	-
Total Coliforms (MPN/100mL)	0	-	6	11	-	-	-	-
E. coli (MPN/100mL)	0	-	1	-	-	-	-	-
Faecal Coliforms (MPN/100mL)	0	-	1	-	-	-	-	-

Notes:

1. GCDWQ = Guidelines for Canadian Drinking Water Quality.

2. MAC = Maximum Acceptable Concentration.

3. AO = Aesthetic Objective.

Since manganese and sulfide are aesthetic objectives (AO), these guidelines are established for parameters that may impair the taste, smell, or colour of water, or that may interfere with the supply of good quality water. Such AO exceedances are, therefore, not indicative of causing adverse health effects (Health Canada 2017). Turbidity and coliform exceedances are more likely to occur in the early stages of pumping, but typically fall and remain below their respective guidelines as pumping continues, as was the case at TW17-01. However, based on the preliminary chemistry collected from the well and aquifer thus far, manganese and sulfide will require treatment if TW17-01 is to be used as a potable supply. Future confirmatory monitoring of the well and aquifer chemistry during longer-term operation will determine if the implementation of additional treatment measures become warranted.

5.0 DISCUSSION

The constant-rate pumping test completed at TW17-01 in January 2018, followed a lengthy sequence of well development and other hydraulic testing carried out to assess and improve the hydraulic efficiency of the well, given the initially poor well efficiency that was observed when compared to that from previous work in the aquifer. In the end, the hydraulic efficiency of TW17-01 is broadly in line with what was originally expected for a high-capacity production well in this fracture-dominated bedrock setting. Large seasonal changes in groundwater levels (upwards of 3 m) and associated aquifer pressures do not appear to cause a significant change in the aquifer's overall hydraulic response to pumping or the calculated aquifer properties at the test wells (including specific capacity of the wells).

An impermeable boundary was likely encountered during the pumping test, as indicated by the inflection in the drawdown versus logarithmic time plot (Figure 4-6). A 35 cm decline in groundwater levels in the weeks prior to the pumping test suggests that each of the test wells within the monitoring network had recovered completely within 72-hours of the end of pumping. The seasonal variability in groundwater levels (Figure 2-4) also appeared to have a rather large impact on how the wells in the monitoring network recovered after pumping⁶. On average, it is considered that there is sufficient recharge in the aquifer to supply the recommended withdrawals on a sustainable basis.

The available drawdown was judged to be approximately 33 m (108 feet) at the time of testing but will change seasonally with the variable static groundwater levels. Rather than basing the operating water level on drawdown, which fluctuates with the seasonally varying static water level, the pumping level in the well should be maintained above an elevation of 25.1 m (82.3 feet) asl at all times, which is the approximate elevation of the bottom of the casing, as currently constructed (refer to Figure 4-4).

Based on a number of limitations and assumptions listed above, the preliminary long-term safe yield of TW17-01 is estimated to be 1,360 m³/d (250 usgpm). This withdrawal is equal to approximately 13% to 38% of the assumed available groundwater recharge in the aquifer (derived from Figure 2-2). This recommended rate could be subject to change based on findings and confirmatory monitoring results from the subsequent operation of this well, and the broader wellfield (once one or more wells are added).

The yield of production-scale well TW17-01 is relatively high for a bedrock well developed in the Carboniferous bedrock of the New Maryland area, and appears sufficient to meet the Village's current demand. An additional production-scale well could be developed on the Property at the TW05-02 location, and in combination with TW17-01, would give the Village an additional wellfield (referred to as the Arsam Wellfield) from which to derive a water supply. The second production

⁶ Longer recovery time with possible signs of over pumping during the low (drought-like) water levels, and shorter recovery times with occasionally greater than 100% recovery during higher water levels, in relatively wetter site conditions.

well could be constructed at the test well TW05-02 location, by modifying TW05-02 to include 30.5 m (100 feet) of protective steel casing with drive-shoe seated into the bedrock.

Three challenges have been identified in developing a viable wellfield at this location:

- Water quality that exceeds the Health Canada GCDWQ with respect to the aesthetic objectives for manganese and sulfide, which will require treatment.
- Artesian pressures and overflow conditions, which bring the risk of causing leakage of water around the well casing and complicates the surface plumbing arrangements.
- Interference with nearby domestic wells, which will require long-term monitoring and may involve mitigation (e.g., well deepening, well replacement, or connection to a municipal supply).

6.0 CONCLUSIONS

- 1. The sandstone-conglomerate aquifer on the Property has a transmissivity of approximately 230 m²/d (19,000 usgpd/ft) and a storativity of approximately 6 x 10⁻⁴ (dimensionless), indicating confined aquifer conditions. Production-scale well TW17-01 has an Aquifer Loss Coefficient, B, of 2.9 x 10⁻³ days/m² (5.2 x 10⁻² feet/usgpm) and a Well Loss Coefficient, C, of 3.6 x 10⁻⁶ day/m⁵ (3.5 x 10⁻⁴ feet/usgpm²), with an interpolated as-built specific capacity of 130 m³/d/m, at a discharge rate of 1,360 m³/d (250 usgpm).
- 2. The sustainable yield of production-scale well TW17-01, as presently constructed, is estimated to be 1,360 m³/d (250 usgpm), based on highly variable seasonal groundwater levels, a minimum pumping water level elevation of 25.1 m (82.3 feet) asl to prevent dewatering fractures, well interference with TW05-02 (potentially the second production well in a wellfield at this location) of approximately 6 m, and potential interference drawdown induced in nearby domestic wells. This recommended withdrawal rate is estimated to represent between 13% and 38% of the assumed available groundwater recharge in the aquifer, based on an assumed contributing drainage area of 12 km², and annual precipitation of 1,100 mm.
- 3. Groundwater quality in TW17-01 meets the Health Canada Guidelines for Canadian Drinking Water Quality except for manganese and sulfide, which were roughly two to three times over the guideline. Though these are aesthetic objectives, treatment will likely be required if this well is to be used as a municipal supply.
- 4. Groundwater levels in this aquifer have historically varied by up to 10 m in a given year and appear susceptible to the effects of precipitation and snow-melt, with a calculated time lag response of 5 days. During relatively wet periods associated with higher amounts of aquifer recharge, there will be more available drawdown and greater than 100% percent recovery, and during relatively drier periods, with lower amounts of recharge, there will be less available drawdown, during which times the water levels will require close monitoring to prevent over pumping. On average, it is considered that there is sufficient recharge to the aquifer to supply the recommended withdrawals on a sustainable basis. This recommended rate could be subject to change based on findings and confirmatory monitoring results from the subsequent longer-term operation of this well, and the broader wellfield.
- 5. Pumping from well TW17-01 or from another production-scale well nearby will cause interference drawdowns in nearby domestic wells. At the recommended pumping rate of 1,360 m³/d (250 usgpm), the predicted long-term interference drawdown at the closest domestic wells is estimated to be 0.3 m, based on observation of wells in the Sunrise Estates subdivision, or up to 5 m for wells that are better connected to the primary water bearing fractures (or closer to TW17-01). This interference may have no adverse effect on domestic wells that have relatively high yields, but marginal domestic wells could be impacted, and require mitigation (e.g., well deepening, well replacement, or connection to a municipal supply).

6. Water quality in nearby domestic wells could be altered, but not necessarily degraded, by the operation of new higher-capacity production wells on the Property as the Arsam Wellfield is developed. Baseline and longer-term monitoring of water levels and water quality at selected domestic wells would help to address this possibility.

7.0 **RECOMMENDATIONS**

- 1. Connect production well TW17-01 to the Village of New Maryland's municipal water supply, as the primary potable supply well in the new Arsam Wellfield on the subject Property (PID 75062174 owned by **Example 1**).
- 2. Install nested monitoring wells along the municipal services easement south of the Sunrise Estates subdivision to act as sentinel monitoring points between the production wells and neighbouring domestic well users.
- 3. Monitor drawdown and water quality in the new monitoring wells and in several nearby domestic wells during operation of well TW17-01 to determine the long-term effects of well interference, and any potential changes in water quality.
- 4. Modify test well TW05-02 to also include 30.5 m (100 feet) of protective steel casing with drive-shoe seated into the bedrock, complete a 72-hour pumping test on the modified well, and submit a Hydrogeological Assessment such that it can then serve as a second production well in the Arsam Wellfield.
- 5. Complete the construction and follow-up testing of the second production well (TW05-02) during a period of relatively low groundwater elevations (e.g., July or August).
- 6. Initiate a Wellfield Protection Study for the Arsam Wellfield once the recommended work above is completed.

8.0 CLOSURE

We trust the above satisfies your requirements at this time. Should you have any questions or comments, please do not hesitate to contact us.

Yours sincerely,

BGC ENGINEERING INC. per:

Wesley Tibbet, M.Eng., EIT Hydrogeological Engineer-In-Training

Reviewed by:

Marc Hodder, P.Geo., P.Eng. Senior Hydrogeologist / Geological Engineer

KW/MH/kj/bm

Kent Wiezel, M.A.Sc., P.Eng. Senior Hydrogeological Engineer

Geoff Dickinson, M.Eng., P.Eng., FEC Principal Hydrogeologist

REFERENCES

Allard, S., and Gilmore, W.F. 2016. Surficial geology of the Fredericton area (NTS 21 G/15), New Brunswick. New Brunswick Department of Energy and Mines, Plate 2016-1.

BGC Engineering Inc. 2017. Groundwater Supply – Drilling and Test Pumping of Well TW-02, New Maryland. Report prepared for Opus International Consultants (Canada) Limited and submitted on March 24, 2017.

BGC Engineering Inc. 2016. Proposal for Groundwater Supply Exploration and Development – Village of New Maryland, NB. Prepared for Opus International Consultants (Canada) Limited and submitted on December 1, 2016.

Cooper, H.H., and Jacob, C.E. 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., 27: 526-534.

DeOreo, W.B., Mayer P., Dziegielewski, B., and Kiefer, J. 2016. Residential End Uses of Water, Version2: Executive Report. Water Research Foundation.

Environment and Climate Change Canada (ECCC). 2018. Historical Climate Data. http://climate.weather.gc.ca/historical_data/search_historic_data_e.html

Health Canada. 2017. Guidelines for Canadian Drinking Water Quality (GCDWQ). https://www.canada.ca/en/health-canada/services/environmental-workplace-health/waterquality/drinking-water/canadian-drinking-water-guidelines.html

New Brunswick Department of Environment and Local Government (NBDELG). 2018. Water Quantity Information. http://www2.gnb.ca/content/gnb/en/departments/elg/environment/ content/water_quantity.html

New Brunswick Department of Environment and Local Government. 2017. Water Supply Source Assessment Guidelines. Environmental Impact Assessment Branch, latest revision April 2017.

New Brunswick Department of Environment and Local Government. 2000. Wellfield Protected Area Designation Order – Clean Water Act. New Brunswick Regulation 2000-47, filed September 12, 2000.

New Brunswick Department of Environment and Local Government. Groundwater Supply Sources Well Construction and Water Well Testing, Development Officer's Reference Manual on Environmental Issues. http://www2.gnb.ca/content/gnb/en/departments/elg/environment/ content/land_waste/content/reference_manual/well_construction_well_water_testing.html

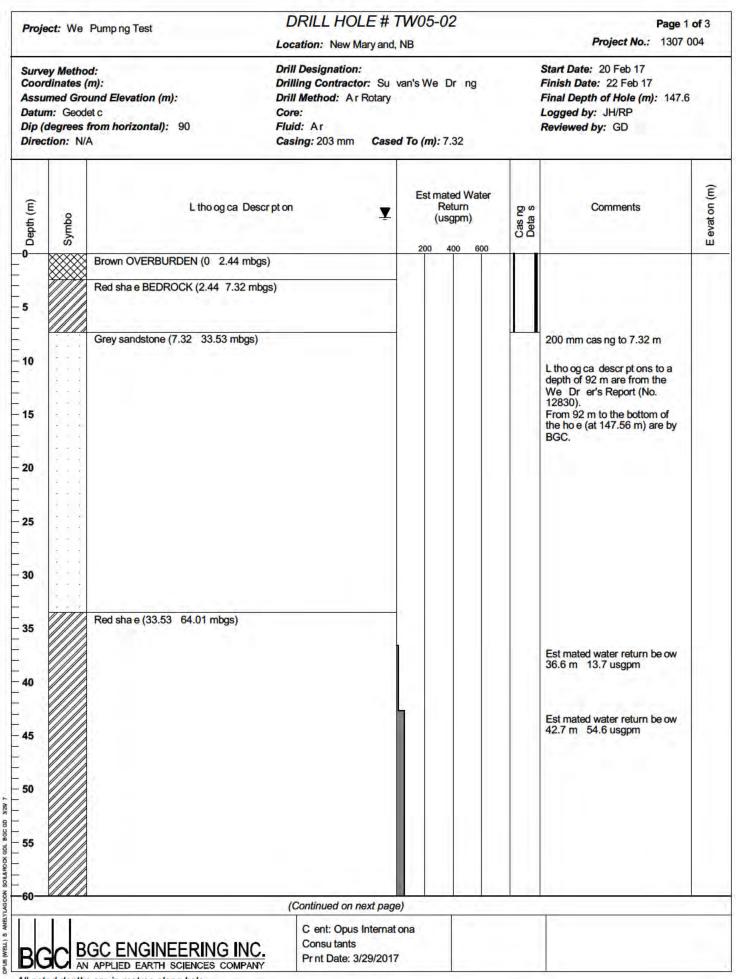
Opus International Consultants. 2018. Current consumption data for the existing Village of New Maryland water supply system. Pers. comm. with Mr. Stephen Pyke, April 5, 2018.

Service New Brunswick. 2018. GeoNB Data Catalogue. http://www.snb.ca/ geonb1/ e/DC/catalogue-E.asp St. Peter, C.J. and Fyffe, L.R. 2005. Bedrock geology of the Fredericton area (NTS 21 G/15), York and Sunbury counties, New Brunswick. New Brunswick Department of Natural Resources, Minerals, Policy and Planning Division, Plate 2005-38.

Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Transactions of the American Geophysical Union, 16(2): 519-524.

Water Survey of Canada (WSC). 2018. Historical Hydrometric Data. https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html

APPENDIX A WELL LOGS


Report Number 12829

Well Driller's Report

Date pr	inted	2/7/2018	3								
Drilled	by										
Well Us	se			Work ⁻	Гуре	Drill Method			١	Nork Com	pleted
Drinkir	ng Water,	Other		New V		Rotary				06/01/2	-
	Casing	Informati	on		Casing abov	ove ground 0.61m			ve Shoe Us	ed? Yes	
	Well Log	Casing Ty	rpe	Dia	ameter	From I		SI	otted?		
	12829	Steel		15	.24cm	0m	6.10r	n			
Aquife	r Test/Yi	eld					Га	timated			
Method		Initial W Level (B		Pumping Rate	Duration	Final Water Level (BTC)		ife Yield	Flowi Well		Rate
Air		6.10r <i>(BTC - B</i>		273 lpm of casina)	1hr 40min	6.10m		0 lpm	No		0 lpm
Well Gr	outing			Dr	illing Fluids Us	ed	Disin	fectant	Pum	p Installed	
-	There is no	Grout info	ormatior	No	None 12% NaC				N/A Intake Setting (BTC)		
							Qty	0L	0m		,
Driller's	Log								Overall W	ell Depth	
Nell Log	From	End	Colou	ır	R	ock Type			109.73m	on Doput	
12829	0m	0.30m	Brown		о	verburden			Bedrock L	evel	
12829	0.30m	6.10m	Grey			hale			0m		
12829	6.10m	17.68m	Red			hale			5		
12829 12829	17.68m 42.67m	42.67m 60.96m	Grey		-	hale andstone					
12829	42.67m 60.96m	92.96m	Grey Grey			andstone hale					
12829	92.96m	100.58m	Grey		_	andstone					
12829	100.58m	109.73m	Grey			andstone					

Depth	Rate	
42.67m	18.2 lpm	
55.78m	27.3 lpm	
65.53m	54.6 lpm	
73.15m	68.25 lpm	
91.44m	91 lpm	
	42.67m 55.78m 65.53m 73.15m	42.67m 18.2 lpm 55.78m 27.3 lpm 65.53m 54.6 lpm 73.15m 68.25 lpm

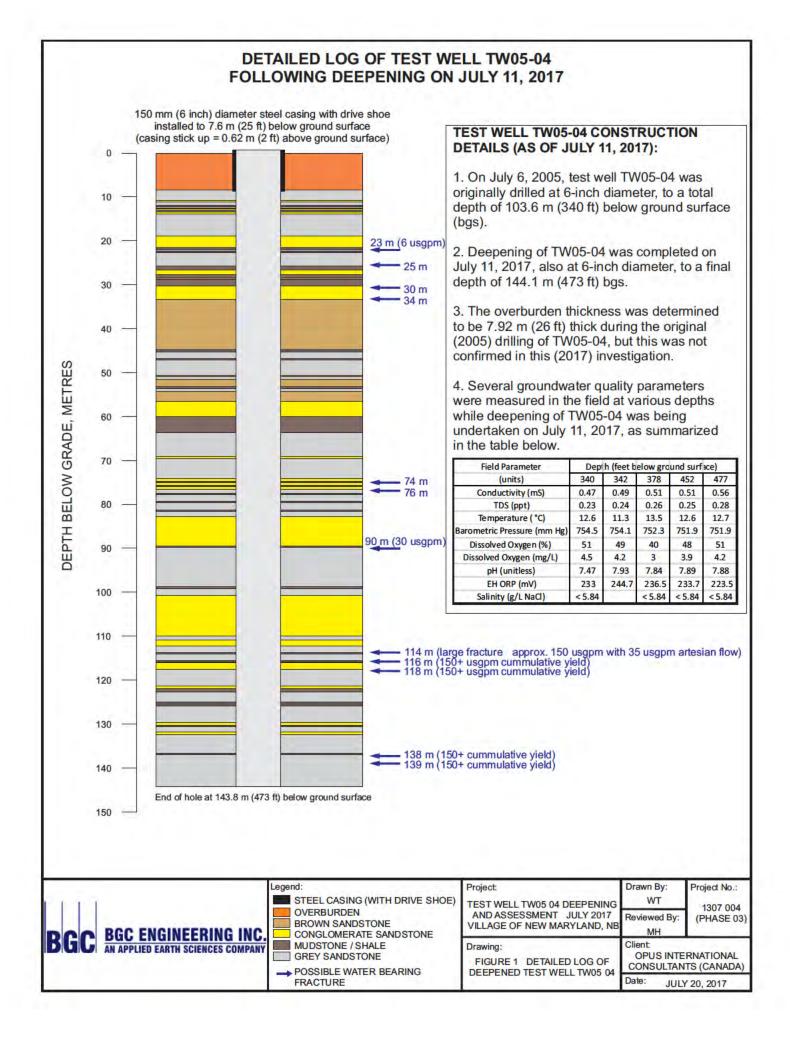
Setbacks	\$		
Well Log	Distance	Setback From	
12829	762.00m	Right of any Public Way Road	

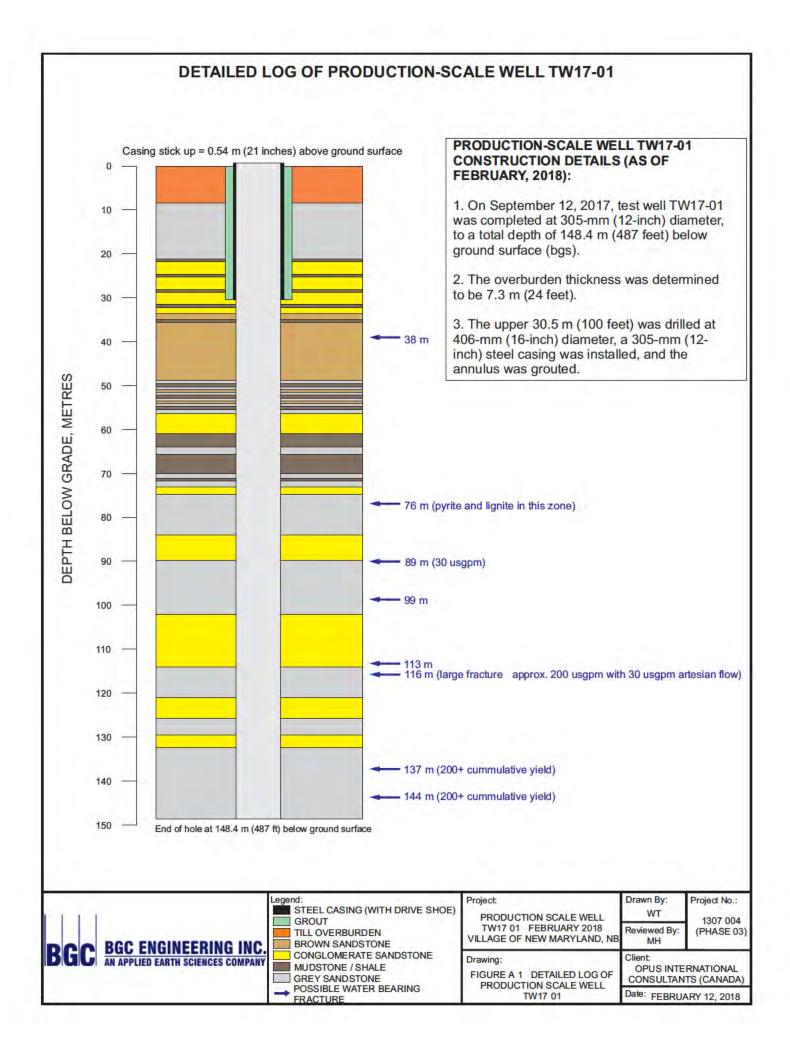
All noted depths are in metres along hole

Proje	ect: We	Pump ng Test	DRILL HOLE #		-02		Page 2			
		LUC 245-246	Location: New Mary and,	NB			Project No.: 1307 (004		
Coon Assu Datur Dip (d	m: Geod	(m): ound Elevation (m): let c from horizontal): 90	Drill Designation: Drilling Contractor: Su Drill Method: Ar Rotary Core: Fluid: Ar Casing: 203 mm Case							
Depth (m)	Symbo	L tho og ca	Descr pt on	Est mated Water Return (usgpm) 200 400 600		Cas ng Deta s	Comments	E evation (m)		
60—		Red Sha e (cont nued)		200						
65		Grey sha e (64.01 69.49 mbgs					Est mated water return be ow 42.7 m 54.6 usgpm			
70 75		Grey sandstone (69.49 77.72 r	nbgs)				L tho og ca descr pt ons to a depth of 92 m are from the We Dr er's Report (No. 12830). From 92 m to the bottom of			
80 85		Grey sha e (77.72 92.05 mbgs					the ho e (at 147.56 m) are by BGC.			
90 95		Grey quartz sandstone (92.05	111.28 mbgs)	L			Est mated water return be ow 91.4 m 164 usgpm Est mated water return be ow 92.1 m > 550 usgpm			
100		98.97 99.22 mbgs quartz san	dstone w th coa							
105		107.93 111.28 mbgs grey qua								
115	<u>,,,,,</u> ,	Grey cong omerate (111.28 11 Grey quartz sandstone (111.89 115.24 115.85 mbgs grey qua	127.13 mbgs)							
120-	*		(Continued on next pag	e)						
	P	GC ENGINEERING I	C ent: Opus Internat	1.11		-				

All noted depths are in metres along hole

Datum: Geo	od: (m): ound Elevation (m): det c \$ from horizontal): 90	Location: New Mary and, Drill Designation: Drilling Contractor: Su M Drill Method: Ar Rotary Core: Fluid: Ar Casing: 203 mm Cased	Sec. Sec.	Project No.: 1307 004 Start Date: 20 Feb 17 Finish Date: 22 Feb 17 Final Depth of Hole (m): 147.6 Logged by: JH/RP Reviewed by: GD			
Depth (m) Symbo	L tho og ca Descr p	ton	Est mated Water Return (usgpm) 200 400 600	Cas ng Deta s	Comments	1	
20 25					Est mated water return be ow 92.1 m > 550 usgpm		
30 35	Grey quartz sandstone (129.57 139.63	mbgs)			L tho og ca descr pt ons to a depth of 92 m are from the We Dr er's Report (No. 12830). From 92 m to the bottom of the ho e (at 147.56 m) are by BGC.		
40	Red brown coarse sandstone (139.63 143.59 147.56 mbgs poor y cemented sandstone END OF TEST WELL 147.56 mbgs						


Report Number 12831


Well Driller's Report

Date pri	nted	2/7/2018	3						
Drilled by Well Use Drinking Water, Domestic					k Type Well	Drill Methoo Rotary	t		Completed 06/2005
	Casing Information				Casing abov	m Dri	ve Shoe Used? Y	es	
					There is no casi	ng information.			
Method Air Well Gro	5	Initial W Level (B 0m	elow top	r	g Duration 1hr 20min Drilling Fluids Us None	Final Water Level (BTC) 0m	Estimated Safe Yield 91 lpm Disinfectant 12% NaOCI Qty 0L		
Driller's	Ιοα]	
Well Log	From	End	Color	ur	R	ock Type		Overall Well De 91.44m	ptn
12831 12831 12831 12831 12831 12831 12831 12831	0m 2.44m 4.57m 16.15m 21.03m 31.09m 65.53m	2.44m 4.57m 16.15m 21.03m 31.09m 65.53m 91.44m	Brown Grey Red Grey Red Grey Grey		S S S S S S	verburden hale hale hale hale hale andstone			

Water Bearing Fracture Zone									
Well Log	Depth	Rate							
12831	30.48m	18.2 lpm							
12831	60.96m	22.75 lpm							
12831	91.44m	45.5 lpm							
12831	68.58m	91 lpm							

Well Log 12831	Distance 762.00m	Setback From Right of any Public Way Road	
Setbacks			

	a sense in a sense in a se	NAMTARY				L'HO IN AWIH		19:53AM P3
ACALE AND DATE OF			- Arterante					an a
Brunswi	CK	LOCAL GOVE			ing de		<u>.</u>	
FICE USE ONLY DOUNTY DODA		the second se		TECEIVI	10	WATER WE	(Eac)	
LO NO.	EVENT NO.			m.	1	DRILLER'S	3	000082
EC VR SEQ		- i	78	De l	DAY	REPORT		
ESTING YOUCHER INFORMATIO		ELL OWNER		D. NO),	WELL I.	D. NO.	
E BACK FOR DETAILS PLEASE PRI FORMATION INCLUDED HERSIN SHOULD	BE THE WELLOWNER AT TIME	ON OR		54	0742	9. 309	526	
ST NAME	FIRST NAME		W	ELL O	WNER INFO	RMATION		WNER AT TIME OF DRILLIN
D. BOX NO, CIVIC NO,	STREET NAME		the second s	STNAME				T NAME
the second se	triat that	OSTAL CODE	1		WELADE	: : .	; ;	VINCE POSTAL CODE
TY/TOWN/VILLAGE	PROV. P			1	UVILI AGE			SVINCE FORMECODE
L NO.	FAX NO.	1. 1. 1.	3. · · · · · · · · · · · · · · · · · · ·	21:	<u> </u>	<u> </u>		
<u>LIFILLES</u>			1.		TION CALL	· · ·		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MARL	SAMPLE COLLECTED	HR MIN	ALL CI		DER STREET	A5 ABOVE OR NAME		
O YOU NEED & SAMPLE FOR Y	OUR MORTGAGE?	INSTITUTION	01-1 O	YTOWN	WILLAGE	<u> </u>	WELLP	TO FOR BY PROVINCIAL DE
YOU WISH THE RESULTS TO BE BE LEASE INCLUDE THE FOLLOWING C		1.0		1.4	1	S. 1. S. 10	or	
STITUTION	4		2.4 010 1	S	RESERVE?	WELL ALREADY	_	CLD WELL I.D.
<u>1 1 1 1 1 1 1 1 1 1 </u>	FIRET NAME		5. Y	the state of the s	NO			
			1 4 1 A		-	DRILLER	'S LOG	2
X NO.	E-MAIL		11.18	OM_(FT.)	<u>TO (FT,</u>)	COLOUR		ROOK TYPE
GNATURE OF WELL OWNER				iqund qvai	20	Brown		overburk
		· · · · · · · · · · · · · · · · · · ·		ð	42	Grey	_	Sundstone
AS THE COST OF THIS WELL FINA	NCED BY NB HOUSING?		1	7	200	Red	_	Shale
ES NO		1 195						
ABAND								
XPLOBATORY D MUNIC		TORING		N .				
	VATION LI		沿出	1				
		DEEPENED				· · · · · · · · · · · · · · · · · · ·		
				8				4
AETHOD:	i		上路计	AL.				
ABLE TOOL D ROTARY				A	1	1		
ENGTH OF CASING ABOVE GROUN	0			ine	į ; ;		-	
ENGTH OF CASING ABOVE GROUN	ID; <u> </u>			3		•		
STEEL: IN DIAM, FRO								
IN DIAM. FRO	M FI. 10				1			
SLOTTED IN DIAM. FRO	M			1	·			
SCREENS: TYPE: SLOT S	ZE					1		
IN DIAM. FROM FT.	TO FT.		Si Star					
PETRACKS. REE BACK FOR DET	ALS SEPTIC TANK	(1)	50 A 10	1				
ET FIEL	D (2) FT, FIELD	(1)	979) 12 9 1 29			1		
1. The state of	Dr. Dr	na na ina ina ina ina ina ina ina ina in	A 1 1 1 1 1	a .		+	<u></u>	
AIGHT OF WAY OF ANY PUBLIC RO SETBACKS MEASURED	INEW CONSTRUCTO	INF - ASPESS	10.00	2.7	1F INSU F	FICIENT SPACE PLE	ASE USF	ADDITIONAL SHEETS
APPROVINATE SETBACKS AS INDICAT	ED BA HOWFOMMEN	- ICVID I II DATE	1.1.1.24	LI - 1	11 1143011	0 160		20
FLOWING WELL? YES NO		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	** 7-1 558-2			Line -		E 170
AQUIFER TEST: METHOD:	AIR D BAILER	PUMP	10 5	WATER	BEARING 1	igpm AT .	Doo FT	2 igpm AT
INITIAL WATER LEVEL:	FT BELOW TOP OF CA	SING		FRACTI	URE ZONES:	S S Igpm AT	There are	4 kopm AT
PUMPING PATE 25 Igpm I	URATION:hre	sino il		UMP	INSTALLAT	ION: INSTALLED	-	NOT INSTALLED
FINAL WATER LEVEL	- FI. BELOW TOP OF CA	UNITO NOT		UMPI	NTAKE SETT	ING:	_ FT, BEL	OW TOP OF CASING
AQUIFER TEST: METHOD: INITIAL WATER LEVEL: PUMPING RATE 2_5 Igom T FINAL WATER LEVEL: ESTIMATED SAFE YIELD: WELL GROUTED? YES	NO			PUMP	TYPE: S		- јет [
FROM FT. TO	FT. GROUT TYPE:			OTHER	·			
DRILLING FLUIDS USED: YES				VELL	SINFECTED	YES -NO		
DRILLING FLUIDS USED: YES	11			YPE		4		
DRILLER'S COMMENTS THE	Has E by V	Acados	18-34	PRILLI	NG COMPAN	Y: Capital IN	U P	there
Construction.				COMP1	ETION DATE	0408		LICENSE NO. 32
edt in sat at a				COMPL	ETION DATE	YH, MO.	DAVI	
				\$1. 				
		1.1.5.5	ST LOFFIE	1.	199			WHITE - NB DELG
		10.00		10.		£ .		YELLOW - Homeowner

APPENDIX B RIVER STAGE PLOTS

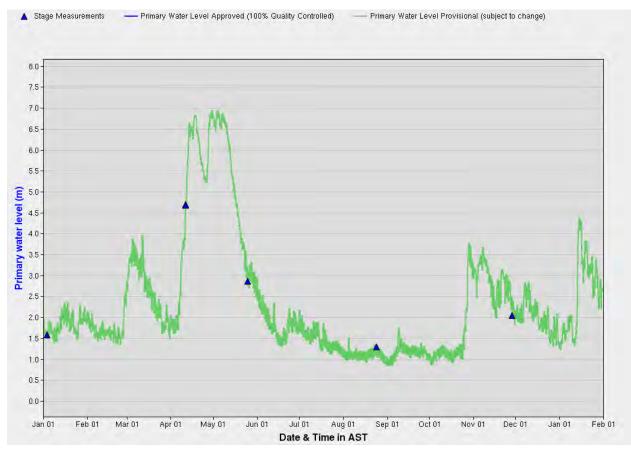


Figure B-1. St. John River level for January 2017 to January 2018 at the Fredericton monitoring station (WSC 2018).

Opus International, Groundwater Supply for the Village of New Maryland Hydrogeological Assessment Report for TW17-01



Figure B-2. North Branch Oromocto River level for January 2017 to January 2018 at the Tracy monitoring station (WSC 2018).

APPENDIX C WATER QUALITY RESULTS

		RL	G	CDWQ		TW17-01		TW05-02	TW05-04		TW17-01	
PARAMETER	UNITS	KL	MAC	AO	26/9/17	27/9/17	28/9/17	20/10/17	21/10/17	10/1/18	11/1/18	12/1/18
Sodium	mg/L	0.05	-	200	67.3	67 0	67.0	34.6	47.4	57.5	56.6	56.6
Potassium	mg/L	0.02	-	-	0.40	0.40	0.40	0.44	0.47	0.43	0.42	0.42
Calcium	mg/L	0.05	-	-	29.1	28 9	29.7	38.8	47.9	36	34.7	34.9
Magnesium	mg/L	0.01	-	-	1.45	1.39	1.43	2 52	2.83	1.75	1.72	1.72
Iron	mg/L	0.02	-	0.3	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Manganese	mg/L	0.001	-	0.05	0.132	0.134	0.138	0.372	0.284	0.171	0.168	0.168
Copper	mg/L	0.001	-	1	< 0 001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Zinc	mg/L	0.001		5	0.004	0.004	0.002	0.003	< 0.001	0.009	0 003	0.001
Ammonia (as N)	mg/L	0.05	-	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
pН	units	-	-	7.0 - 10.5	8.1	8.1	8.1	8.1	8.1	8.2	7.7	78
Alkalinity (as CaCo3)	mg/L	2	-	-	100	100	100	100	93	94	100	95
Chloride	mg/L	1.5	-	250	78.5	85 2	80.1	46.3	92.4	81.7	75	76.7
Fluoride	mg/L	0.05	1.5	-	0.41	0.42	0.43	0 36	0.29	0.35	0.37	0.37
Sulfate	mg/L	1	-	500	19	19	19	17	17	19	19	18
Sulfide	mg/L	0.05	-	0.05	0.07	0.11	0.10	< 0.05	< 0.05	0.08	0.08	0.07
Nitrate (as N)	mg/L	0.05	10.00	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrite (as N)		0.05	1	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
ortho-Phosphate (as P)	mg/L	0.01	-	-	< 0.01	< 0.01	0.01	0 02	0.01	0.01	0.02	0.01
r-Silica (as SiO2)	mg/L	0.1	-	-	12.2	12 5	12.1	13.6	13.8	12.1	12.5	12.1
Carbon - Total Organic	mg/L	0.5	-	-	< 0.5	0.5	0.5	0.6	< 0 5	1.1	< 0.5	< 0.5
Turbidity	NTU	0.1	0.1	-	02	0.1	0.1	< 0.1	< 0.1	0.2	< 0.1	< 0.1
Conductivity	uS/cm	1	-	-	490	489	498	384	515	469	470	457
Bicarbonate (as CaCO3)	mg/L	-	-	-	98.8	98 8	98.8	98.8	91.9	92.5	99.5	94.4
Carbonate (as CaCo3)	mg/L	-	-	-	1.17	1.17	1.17	1.17	1.09	1.38	0.469	0.56
Hydroxide (as CaCO3)	mg/L	-	-	-	0.063	0.063	0.063	0.063	0.063	0.079	0 025	0.032
Cation Sum	meq/L	-	-	-	4.51	4.49	4.53	3.67	4.71	4.46	4.35	4.36
Anion Sum	meq/L	-	-	-	4.61	4.80	4.65	3.66	4.82	4.58	4.51	4.44
Percent Difference	%	-	-	-	-1.03	-3.35	-1.35	0.19	-1.18	-1.33	-1.79	-0.85
Theoretical Conductivity	uS/cm	-	-	-	454	465	458	363	483	455	442	441
Hardness (as CaCO3)	mg/L	0.2	-	-	78.6	77 9	80.0	107	131	97.1	93.7	94.2
lon Sum	mg/L	-	-	-	269	276	271	215	279	266	261	259
Saturation pH (5 degs C)	units	-	-	-	82	8.2	8.2	8.0	8.0	8.1	8.1	8.1
Langelier Index (5 degs C)	-	-	-	-	-0.07	-0.07	-0.06	0.07	0.11	0.1	-0.39	-0.31

Table C-1. General chemistry analytical results.

Notes:

1. RL = Reporting Limit.

2. GCDWQ = Guidelines for Canadian Drinking Water Quality.

3. MAC = Maximum Acceptable Concentration.

4. AO = Aesthetic Objective.

5. Values highlighted in red are above the GCDWQ.

			GC	CDWQ		TW17-01		TW05-02	TW05-04		TW17-01	
PARAMETER	UNITS	RL	MAC	AO	26/9/17	27/9/17	28/9/17	20/10/17	21/10/17	10/1/18	11/1/18	12/1/18
Aluminum	ug/L	1	-	100	3	2	2	1	3	3	2	2
Antimony	ug/L	0.1	6	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Arsenic	ug/L	1	10	-	<1	<1	<1	<1	<1	<1	<1	<1
Barium	ug/L	1	1000	-	210	209	215	157	213	206	206	205
Beryllium	ug/L	0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bismuth	ug/L	1	-	-	<1	<1	<1	<1	<1	<1	<1	<1
Boron	ug/L	1	5000	-	32	31	31	22	26	29	30	30
Cadmium	ug/L	0.01	5	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Calcium	ug/L	50	-	-	29100	28900	29700	38800	47900	36000	34700	34900
Chromium	ug/L	1	50	-	<1	<1	<1	<1	<1	<1	<1	<1
Cobalt	ug/L	0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Copper	ug/L	1	-	1000	<1	<1	<1	<1	<1	<1	<1	<1
Iron	ug/L	20	-	300	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Lead	ug/L	0.1	10	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.30	< 0.1	< 0.1
Lithium	ug/L	0.1	-	-	57.8	57 2	57.7	36.3	46.6	51.00	50.50	51.20
Magnesium	ug/L	10	-	-	1450	1390	1430	2520	2830	1750	1720	1720
Manganese	ug/L	1	-	50	132	134	138	372	284	171	168	168
Mercury	ug/L	0.025	1	-	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Molybdenum	ug/L	0.1	-	-	03	0.3	0.4	0.4	0.2	0.3	0.4	03
Nickel	ug/L	1	-	-	<1	1	1	1	<1	2	1	1
Potassium	ug/L	20	-	-	400	400	400	440	470	430	420	420
Rubidium	ug/L	0.1	-	-	05	0.5	0.5	0.6	0.6	0.5	0.5	05
Selenium	ug/L	1	50	-	<1	<1	<1	<1	<1	<1	<1	< 1
Silver	ug/L	0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sodium	ug/L	50	-	200000	67300	67000	67000	34600	47400	57500	56600	56600
Strontium	ug/L	1	-	-	874	871	897	866	1340	1000	988	988
Tellurium	ug/L	0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Thallium	ug/L	0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Tin	ug/L	0.1	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Uranium	ug/L	0.1	20	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Vanadium	ug/L	1	-	-	<1	<1	<1	<1	<1	<1	<1	<1
Zinc	ug/L	1	-	5000	4	4	2	3	<1	9	3	1

Table C-2. Dissolved trace metals analytical results.

Notes:

- 1. RL = Reporting Limit.
- 2. GCDWQ = Guidelines for Canadian Drinking Water Quality.
- 3. MAC = Maximum Acceptable Concentration.
- AO = Aesthetic Objective.
 Values highlighted in red are above the GCDWQ.

PARAMETER	UNITS	RL	GC	CDWQ		TW17-01		TW05-02	TW05-04		TW17-01	
PARAIVIETER	UNITS	KL	MAC	AO	26/9/17	27/9/17	28/9/17	20/10/17	21/10/17	10/1/18	11/1/18	12/1/18
Total Coliforms	MPN/100mL	-	0	-	6	11	0	0	2	0	0	0
E. coli	MPN/100mL	-	0	-	1	0	0	0	0	0	0	0
Faecal Coliforms	MPN/100mL	1	0	-	1	0	0	0	0	0	0	0
Chloromethane	μg/L	5.0	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0
Vinyl Chloride	μg/L	0.5	0.002	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Bromomethane	μg/L	5.0	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0
Chloroethane	μg/L	5.0	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0
Trichlorofluoromethane	μg/L	5.0	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethylene	μg/L	0.5	0.014	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Methylene Chloride	μg/L	5.0	-	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5 0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethylene (trans)	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,1-Dichloroethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,2-Dichloroethylene (cis)	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Bromochloromethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Chloroform	µg/L	0.5	0.1		< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,1,1-Trichloroethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	μg/L	0.5	0.002	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Benzene	μg/L	0.5	0.005	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,2-Dichloroethane	μg/L	0.5	0.005	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Trichloroethylene	μg/L	0.5	0.005	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,2-Dichloropropane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Bromodichloromethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,3-Dichloropropylene (trans)	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Toluene	μg/L	0.5	0.06	0.024	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,3-Dichloropropylene (cis)	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	0.01	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Dibromochloromethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,2-Dibromoethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Chlorobenzene	μg/L	0.5	0.005	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Ethylbenzene	μg/L	0.5	0.14	0 0016	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
m,p-Xylenes	μg/L	0.5	0.09	0.02	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
o-Xylene	μg/L	0.5	0.05	0.02	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Styrene	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
Bromoform	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,1,1,2-Tetrachloroethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,1,2,2-Tetrachloroethane	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,3-Dichlorobenzene	μg/L	0.5	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	μg/L	0.5	0.005	0.001	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,2-Dichlorobenzene	μg/L	0.5	0.2	0.003	< 0.5	< 0.5	< 0.5	< 0.5	< 0 5	< 0.5	< 0.5	< 0.5
1,2-Dichloroethane-d4	%				109	103	103	116	116	104	108	105
Toluene-d8	%				98	95	100	101	102	100	98	100
4-Bromofluorobenzene	%				104	105	103	108	108	102	100	99

Table C-3.	Microbiology and volatile organic carbon analytical results.
------------	--

Notes:

1. RL = Reporting Limit.

C = Reporting Emil.
 GCDWQ = Guidelines for Canadian Drinking Water Quality.
 MAC = Maximum Acceptable Concentration.
 AO = Aesthetic Objective.

5. Values highlighted in red are above the GCDWQ.

APPENDIX D RPC CERTIFICATES

20180409_VoNM_17-01_Investigation

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Marc Hodder **Project #: 1307004** Location: New Maryland **Analysis of Water**

RPC Sample ID:			250425-1
Client Sample ID:			TW17-01 25hr
Data Compledi			00.0 17
Date Sampled: Analytes	Units	RL	26-Sep-17
Sodium	mg/L	0.05	67.3
Potassium	mg/L	0.03	0.40
Calcium	mg/L	0.02	29.1
Magnesium	mg/L	0.01	1.45
Iron	mg/L	0.02	< 0.02
Manganese	mg/L	0.001	0.132
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.004
Ammonia (as N)	mg/L	0.05	< 0.05
pH	units	-	8.1
Alkalinity (as CaCO ₃)	mg/L	2	100
Chloride	mg/L	0.5	78.5
Fluoride	mg/L	0.05	0.41
Sulfate	mg/L	1	19
Sulfide	mg/L	0.05	0.07
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	12.2
Carbon - Total Organic	mg/L	0.5	< 0.5
Turbidity	NTU	0.1	0.2
Conductivity	µS/cm	1	490
Calculated Parameters Bicarbonate (as CaCO ₃)	mg/L		98.8
Carbonate (as CaCO ₃)	-		
	mg/L		1.17
Hydroxide (as CaCO ₃)	mg/L	-	0.063
Cation Sum	meq/L	-	4.51
Anion Sum	meq/L		4.61
Percent Difference	%	-	-1.03
Theoretical Conductivity	μS/cm		454
Hardness (as CaCO ₃)	mg/L	0.2	78.6
Ion Sum	mg/L	-	269
Saturation pH (5°C)	units	-	8.2
Langelier Index (5°C)	-	-	-0.07

This report relates only to the sample(s) and information provided to he laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

WATER CHEMISTRY

Page 1 of 3

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

CERTIFICATE OF ANALYSIS

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Location: New Maryland			
Analysis of Metals in W	/ater		
RPC Sample ID:			250425-1
Client Sample ID:			TW17-01 25hr
Data Compledy			00 Con 47
Date Sampled:	Units	RL	26-Sep-17
Analytes			0
Aluminum	μg/L	1	3
Antimony	µg/L	0.1	< 0.1
Arsenic	μg/L	1	< 1
Barium	µg/L	1	210
Beryllium	µg/L	0.1	< 0.1
Bismuth	μg/L	1	< 1
Boron	µg/L	1	32
Cadmium	µg/L	0.01	< 0.01
Calcium	µg/L	50	29100
Chromium	μg/L	1	< 1
Cobalt	µg/L	0.1	< 0.1
Copper	µg/L	1	< 1
Iron	μg/L	20	< 20
Lead	μg/L	0.1	< 0.1
Lithium	μg/L	0.1	57.8
Magnesium	μg/L	10	1450
Manganese	μg/L	1	132
Mercury	μg/L	0.025	< 0.025
Molybdenum	μg/L	0.1	0.3
Nickel	µg/L	1	< 1
Potassium	μg/L	20	400
Rubidium	µg/L	0.1	0.5
Selenium	μg/L	1	< 1
Silver	µg/L	0.1	< 0.1
Sodium	μg/L	50	67300
Strontium	μg/L	1	874
Tellurium	µg/L	0.1	< 0.1
Thallium	µg/L	0.1	< 0.1
Tin	µg/L	0.1	< 0.1
Uranium	μg/L	0.1	< 0.1
Vanadium	µg/L	1	< 1
Zinc	μg/L	1	4

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia	4.M47	APHA 4500-NH ₃ G	Phenate Colourimetry
pH	4.M03	APHA 4500-H ⁺ B	pH Electrode - Electrometric
Alkalinity (as CaCO₃)	4.M43	EPA 310.2	Methyl Orange Colourimetry
Chloride	4.M44	APHA 4500-CL E	Ferricyanide Colourimetry
Fluoride	4.M30	APHA 4500-F- D	SPADNS Colourimetry
Sulfate	4.M45	APHA 4500-SO ₄ E	Turbidimetry
Sulfide	-	АРНА 4500-S2- D	Methylene Blue Colourimetry
Nitrate + Nitrite (as N)	4.M48	АРНА 4500-NO ₃ Н	Hydrazine Red., Derivitization, Colourimetry
o-Phosphate (as P)	4.M50	APHA 4500-P F	Molybdate/Ascorbic Acid Colourimetry
r-Silica (as SiO ₂)	4.M46	APHA 4500-SI F	Heteropoly Blue Colourimetry
Carbon - Total Organic	4.M38	APHA 5310 C	UV-Persulfate Digestion, NDIR Detection
Turbidity	4.M06	APHA 2130 B	Nephelometry
Conductivity	4.M04	APHA 2510 B	Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES
Mercury	4.M52	EPA 245.1	Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395 www.rpc.ca

Attention: Marc Hodder / Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R		250425-1		
Client Sample ID/ID d'échantillon du cli		TW17-01 25hr		
Date collected/Date du prélèvement				26-Sep-17
Time sampled/Heure du prélèvement	8:30:00 AM			
		Date Analyzed		
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	26-Sep-17	MPN/100mL	6
E. coli	FFA01	26-Sep-17	MPN/100mL	1
Faecal Coliforms/Coliformes fécaux	FFA01	26-Sep-17	MPN/100mL	1

This report relates only to the sample(s) and information provided to the laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection

Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'information transmis au laboratoire.

Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analytical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

alicia Schneder

Alicia Schroeder Microbiology Technician Food, Fisheries & Aquaculture

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Marc Hodder

Location: New MarylandVolatile Organic Compounds in WaterRPC Sample ID:250425-1Client Sample ID:TW17-01 25hrDate Sampled:26-Sep-17Matrix:waterAnalytesUnitsRLChloromethane $\mu g/L$ 5.0Somomethane $\mu g/L$ 0.5Somomethane $\mu g/L$ 5.0Chloroethane $\mu g/L$ 5.0Chloroethane $\mu g/L$ 5.0Somomethane $\mu g/L$ 5.0Somomethane $\mu g/L$ 5.0Chloroethane $\mu g/L$ 5.0Somomethane $\mu g/L$ 5.0Somomethane $\mu g/L$ 0.5Somomethane $\mu g/L$ 0.5Somomethan				
Volatile Organic Compounds in WaterRPC Sample ID:250425-1Client Sample ID:TW17-01 25hrDate Sampled:26-Sep-17Matrix:waterAnalytesUnitsRLChloromethane $\mu g/L$ 5.0< 5.0	Project #: 1307004			
RPC Sample ID: 250425-1 Client Sample ID: TW17-01 25hr Date Sampled: 26-Sep-17 Matrix: water Analytes Units RL Chloromethane $\mu g/L$ 5.0 < 5.0				
Client Sample ID:TW17-01 25hrDate Sampled:26-Sep-17 waterMatrix:26-Sep-17 waterAnalytesUnitsChloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ Bromomethane $\mu g/L$ $\mu g/L$ 5.0 Chloroethane $\mu g/L$ $\mu g/L$ 5.0 Somomethane $\mu g/L$ $\mu g/L$ 5.0 Chloroethane $\mu g/L$ $\mu g/L$ 5.0 Somomethane $\mu g/L$ $\mu g/L$ 5.0 1.1 -Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ $\mu g/L$ 0.5 1.2 -Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1.2 -Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Chloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1.2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1.2-Dichloroethane $\mu g/L$ 0.5 < 0.5 1.2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 0.5 <		ds in Water		
Date Sampled: 26 -Sep-17 waterMatrix:UnitsRLChloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 1,1,1-Trichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ <t< td=""><td></td><td></td><td></td><td></td></t<>				
Matrix:waterAnalytesUnitsRLChloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 1,1-Trichloroethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 I,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 J,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5	Client Sample ID:			TW17-01 25hr
Matrix:waterAnalytesUnitsRLChloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 1,1-Trichloroethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 I,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 J,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5				
Matrix:waterAnalytesUnitsRLChloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 1,1-Trichloroethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 I,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 J,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5				
AnalytesUnitsRLChloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 I,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Dioroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 J,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 I,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 J,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 J,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5				26-Sep-17
Chloromethane $\mu g/L$ 5.0 < 5.0 Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Japplichloroethane $\mu g/L$ 0.5 < 0.5	Matrix:	-	-	water
Vinyl Chloride $\mu g/L$ 0.5 < 0.5 Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 </td <td></td> <td></td> <td></td> <td></td>				
Bromomethane $\mu g/L$ 5.0 < 5.0 Chloroethane $\mu g/L$ 5.0 < 5.0 Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,1-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5		µg/L		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Trichlorofluoromethane $\mu g/L$ 5.0 < 5.0 1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 5.0 < 5.0 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,1-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5	Bromomethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene $\mu g/L$ 0.5 < 0.5 Methylene Chloride $\mu g/L$ 5.0 < 5.0	Chloroethane	µg/L	5.0	< 5.0
Methylene Chloride $\mu g/L$ 5.0 < 5.0 1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5 1,1-Dichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethylene (cis) $\mu g/L$ 0.5 < 0.5 Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ 0.5 < 0.5 1,1,1-Trichloroethane $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 1,2-Dichloropthane $\mu g/L$ 0.5 < 0.5 Trichloroethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5		µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5	1,1-Dichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloroethylene (trans) $\mu g/L$ 0.5 < 0.5	Methylene Chloride	µg/L	5.0	< 5.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
Bromochloromethane $\mu g/L$ 0.5 < 0.5 Chloroform $\mu g/L$ $u.s$ $< u.s$ 1,1,1-Trichloroethane $\mu g/L$ 0.5 < 0.5 Carbon Tetrachloride $\mu g/L$ 0.5 < 0.5 Benzene $\mu g/L$ 0.5 < 0.5 1,2-Dichloroethane $\mu g/L$ 0.5 < 0.5 Trichloroethylene $\mu g/L$ 0.5 < 0.5 1,2-Dichloropropane $\mu g/L$ 0.5 < 0.5 Bromodichloromethane $\mu g/L$ 0.5 < 0.5	1,1-Dichloroethane		0.5	< 0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5
$\begin{array}{c ccccc} 1,1,1-Trichloroethane & \mu g/L & 0.5 & < 0.5 \\ \hline Carbon Tetrachloride & \mu g/L & 0.5 & < 0.5 \\ \hline Benzene & \mu g/L & 0.5 & < 0.5 \\ 1,2-Dichloroethane & \mu g/L & 0.5 & < 0.5 \\ \hline Trichloroethylene & \mu g/L & 0.5 & < 0.5 \\ \hline 1,2-Dichloropropane & \mu g/L & 0.5 & < 0.5 \\ \hline Bromodichloromethane & \mu g/L & 0.5 & < 0.5 \\ \hline \end{array}$	Bromochloromethane	µg/L	0.5	< 0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		µg/L	U.D	< U.D
Benzene $\mu g/L$ 0.5< 0.51,2-Dichloroethane $\mu g/L$ 0.5< 0.5	1,1,1-Trichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethane $\mu g/L$ 0.5< 0.5Trichloroethylene $\mu g/L$ 0.5< 0.5	Carbon Tetrachloride	µg/L	0.5	< 0.5
Trichloroethylene $\mu g/L$ 0.5< 0.51,2-Dichloropropane $\mu g/L$ 0.5< 0.5	Benzene	µg/L	0.5	< 0.5
1,2-Dichloropropaneµg/L0.5< 0.5Bromodichloromethaneµg/L0.5< 0.5	1,2-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloropropane $\mu g/L$ 0.5< 0.5Bromodichloromethane $\mu g/L$ 0.5< 0.5		µg/L		
Bromodichloromethane µg/L 0.5 < 0.5	1,2-Dichloropropane		0.5	< 0.5
	Bromodichloromethane	µg/L		< 0.5
1,3-Dicnioropropyiene (trans) $\mu g/L$ 0.5 < 0.5	1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory. RL = Reporting Limit

Brue Dhillips

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.462.0594 www.rpc.ca

VOC WATER Page 1 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Marc Hodder			
Project #: 1307004			
Location: New Maryland			
Volatile Organic Compoun	ds in Water		
RPC Sample ID:			2504
Client Sample ID:			TW17-0
Date Sampled:			26-Se
Matrix:			wat
Analytes	Units	RL	
Toluene	µg/L	0.5	< 0
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0
1,1,2-Trichloroethane	µg/L	0.5	< 0
Tetrachloroethylene	µg/L	0.5	< 0
	//	0 5	

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

RPC Sample ID:			250425-1
Client Sample ID:			TW17-01 25hr
Date Sampled:			26-Sep-17
Matrix:			water
Analytes	Units	RL	
Toluene	µg/L	0.5	< 0.5
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5
1,1,2-Trichloroethane	µg/L	0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	< 0.5
Dibromochloromethane	µg/L	0.5	< 0.5
1,2-Dibromoethane	µg/L	0.5	< 0.5
Chlorobenzene	µg/L	0.5	< 0.5
Ethylbenzene	µg/L	0.5	< 0.5
m,p-Xylenes	µg/L	0.5	< 0.5
o-Xylene	µg/L	0.5	< 0.5
Styrene	µg/L	0.5	< 0.5
Bromoform	µg/L	U.5	< U.D
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,3-Dichlorobenzene	µg/L	0.5	< 0.5
1,4-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichloroethane-d4	%		109
Toluene-d8	%		98
4-Bromofluorobenzene	%		104

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E38 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC1352	SPIKEC1352
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	µg/L	5.0	< 5.0	95%
Vinyl Chloride	µg/L	0.5	< 0.5	81%
Bromomethane	µg/L	5.0	< 5.0	84%
Chloroethane	µg/L	5.0	< 5.0	97%
Trichlorofluoromethane	µg/L	5.0	< 5.0	90%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	89%
Methylene Chloride	µg/L	5.0	< 5.0	97%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	97%
1,1-Dichloroethane	µg/L	0.5	< 0.5	96%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	101%
Bromochloromethane	µg/L	0.5	< 0.5	97%
Chloroform	µg/L	0.5	< 0.5	97%
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	93%
Carbon Tetrachloride	µg/L	0.5	< 0.5	88%
Benzene	µg/L	0.5	< 0.5	109%
1,2-Dichloroethane	µg/L	0.5	< 0.5	95%
Trichloroethylene	µg/L	0.5	< 0.5	97%
1,2-Dichloropropane	µg/L	0.5	< 0.5	97%
Bromodichloromethane	µg/L	0.5	< 0.5	88%
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5	92%

RL = Reporting Limit

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland QA/QC Report				
RPC Sample ID:			BLANKC1352	SPIKEC1352
Matrix:			water	water
Analytes	Units	RL		% Recovery
Toluene	µg/L	0.5	< 0.5	100%
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5	89%
1,1,2-Trichloroethane	µg/L	0.5	< 0.5	98%
Tetrachloroethylene	µg/L	0.5	< 0.5	102%
Dibromochloromethane	µg/L	0.5	< 0.5	91%
1,2-Dibromoethane	µg/L	0.5	< 0.5	92%
Chlorobenzene	µg/L	0.5	< 0.5	101%
Ethylbenzene	µg/L	0.5	< 0.5	106%
m,p-Xylenes	µg/L	0.5	< 0.5	105%
o-Xylene	µg/L	0.5	< 0.5	111%
Styrene	µg/L	0.5	< 0.5	107%
Bromoform	µg/L	0.5	< 0.5	82%
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5	100%
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5	92%
1,3-Dichlorobenzene	μg/L	0.5	< 0.5	104%
1,4-Dichlorobenzene	μg/L	0.5	< 0.5	97%
1,2-Dichlorobenzene	µg/L	0.5	< 0.5	96%

RL = Reporting Limit

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
250425-1	26-Sep-17	26-Sep-17

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Marc Hodder

Allention. Marchouder			
Project #: 1307004			
Location: New Maryland			
Analysis of Water			
RPC Sample ID:			250576-1
Client Sample ID:			TW17-01 48-hr
Date Sampled:			27-Sep-17
Analytes	Units	RL	
Sodium	mg/L	0.05	67.0
Potassium	mg/L	0.02	0.40
Calcium	mg/L	0.05	28.9
Magnesium	mg/L	0.01	1.39
Iron	mg/L	0.02	< 0.02
Manganese	mg/L	0.001	0.134
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.004
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	8.1
Alkalinity (as $CaCO_3$)	mg/L	2	100
Chloride	mg/L	0.5	85.2
Fluoride	mg/L	0.05	0.42
Sulfate	mg/L	1	19
Sulfide	mg/L	0.05	0.11
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	< 0.01
r-Silica (as SiO ₂)	mg/L	0.1	12.5
Carbon - Total Organic	mg/L	0.5	0.5
Turbidity	NTU	0.1	0.1
Conductivity	µS/cm	1	489
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	98.8
Carbonate (as CaCO ₃)	mg/L	-	1.17
Hydroxide (as CaCO ₃)	mg/L	-	0.063
Cation Sum	meq/L	-	4.49
Anion Sum	meq/L	-	4.80
Percent Difference	%	-	-3.35
Theoretical Conductivity	µS/cm	-	465
Hardness (as CaCO ₃)	mg/L	0.2	77.9
Ion Sum	mg/L	-	276
Saturation pH (5°C)	units	-	8.2
Langelier Index (5°C)	-	-	-0.07

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

WATER CHEMISTRY Page 1 of 3

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594

www.rpc.ca

Attention: Marc Hodder			
Project #: 1307004			
Location: New Maryland			
Analysis of Metals in Wa	ater		
RPC Sample ID:			250576-1
Client Sample ID:			TW17-01 48-hr
Date Sampled:			27-Sep-17
Analytes	Units	RL	
Aluminum	µg/L	1	2
Antimony	μg/L	0.1	< 0.1
Arsenic	μg/L	1	< 1
Barium	μg/L	1	209
Beryllium	μg/L	0.1	< 0.1
Bismuth	μg/L	1	< 1
Boron	µg/L	1	31
Cadmium	µg/L	0.01	< 0.01
Calcium	µg/L	50	28900
Chromium	µg/L	1	< 1
Cobalt	µg/L	0.1	< 0.1
Copper	µg/L	1	< 1
Iron	µg/L	20	< 20
Lead	μg/L	0.1	< 0.1
Lithium	μg/L	0.1	57.2
Magnesium	μg/L	10	1390
Manganese	µg/L	1	134
Mercury	μg/L	0.025	< 0.025
Molybdenum	µg/L	0.1	0.3
Nickel	μg/L	1	1
Potassium	μg/L	20	400
Rubidium	µg/L	0.1	0.5
Selenium	μg/L	1	< 1
Silver	μg/L	0.1	< 0.1
Sodium	µg/L	50	67000
Strontium	μg/L	1	871
Tellurium	μg/L	0.1	< 0.1
Thallium	µg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	µg/L	0.1	< 0.1
Vanadium	μg/L	1	< 1
Zinc	μg/L	1	4

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Fluoride Sulfate Sulfide Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M30 4.M45 - 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-F- D APHA 4500-SO ₄ E APHA 4500-S2- D APHA 4500-NO ₃ H APHA 4500-P F APHA 5310 C APHA 2130 B APHA 2510 B	Phenate Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry SPADNS Colourimetry Turbidimetry Methylene Blue Colourimetry Hydrazine Red., Derivitization, Colourimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals Mercury	4.M01/4.M29 4.M52	EPA 200.8/EPA 200.7 EPA 245.1	ICP-MS/ICP-ES Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395 www.rpc.ca

Attention: Marc Hodder / Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R	PC:			250576-1
Client Sample ID/ID d'échantillon du cl	TW17-01 48-hr			
Date collected/Date du prélèvement				27-Sep-17
		Date Analyzed		
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	27-Sep-17	MPN/100mL	11
E. coli	FFA01	27-Sep-17	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	27-Sep-17	MPN/100mL	0

This report relates only to the sample(s) and information provided to the laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection

Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'information transmis au laboratoire.

Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analytical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

master

Cornelia Maston Microbiology Technician Food, Fisheries & Aquaculture

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Project #: 1307004 Location: New Maryland **Volatile Organic Compounds in Water** RPC Sample ID: 250576-1 Client Sample ID: TW17-01 48-hr Date Sampled: 27-Sep-17 Matrix: water Analvtes Units RL Chloromethane µg/L 5.0 < 5.0 Vinyl Chloride µg/L 0.5 < 0.5 Bromomethane 5.0 < 5.0 µq/L Chloroethane 5.0 < 5.0 µg/L 5.0 < 5.0 Trichlorofluoromethane µg/L 0.5 1,1-Dichloroethylene µg/L < 0.5 5.0 Methylene Chloride < 5.0 µg/L 1,2-Dichloroethylene (trans) 0.5 < 0.5 µg/L 1,1-Dichloroethane 0.5 < 0.5 µg/L 1,2-Dichloroethylene (cis) µg/L U.D < U.5 Bromochloromethane µg/L 0.5 < 0.5 Chloroform 0.5 < 0.5 µg/L 0.5 1,1,1-Trichloroethane µq/L < 0.5 Carbon Tetrachloride 0.5 < 0.5 µg/L 0.5 < 0.5 Benzene µg/L 1,2-Dichloroethane µg/L 0.5 < 0.5 Trichloroethylene 0.5 < 0.5 µg/L 0.5 < 0.5 1,2-Dichloropropane µg/L 0.5 Bromodichloromethane µg/L < 0.5 1,3-Dichloropropylene (trans) µg/L 0.5 < 0.5

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit

Attention: Marc Hodder

Brwe Dhelleps

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

VOC WATER Page 1 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Marc Hodder

921 College Hill Rd

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Volatile Organic Compound RPC Sample ID:			250576-1
Client Sample ID:			TW17-01 48-hr
Date Sampled:			27-Sep-17
Matrix:			water
Analytes	Units	RL	
Toluene	µg/L	0.5	< 0.5
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5
1,1,2-Trichloroethane	µg/L	0.5	< 0.5
Tetrachloroethylene	µg/L	0.5	< 0.5
Dibromochloromethane	µg/L	0.5	< 0.5
1,2-Dibromoethane	µg/L	0.5	< 0.5
Chlorobenzene	µg/L	0.5	< 0.5
Ethylbenzene	µg/L	0.5	< 0.5
m,p-Xylenes	µg/L	0.5	< 0.5
o-Xylene	µg/L	U.D	< U.D
Styrene	µg/L	0.5	< 0.5
Bromoform	µg/L	0.5	< 0.5
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,3-Dichlorobenzene	µg/L	0.5	< 0.5
1,4-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichloroethane-d4	%		103
Toluene-d8	%		95
4-Bromofluorobenzene	%		105

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC1352	SPIKEC1352
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	µg/L	5.0	< 5.0	95%
Vinyl Chloride	µg/L	0.5	< 0.5	81%
Bromomethane	µg/L	5.0	< 5.0	84%
Chloroethane	µg/L	5.0	< 5.0	97%
Trichlorofluoromethane	µg/L	5.0	< 5.0	90%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	89%
Methylene Chloride	µg/L	5.0	< 5.0	97%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	97%
1,1-Dichloroethane	µg/L	0.5	< 0.5	96%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	101%
Bromochloromethane	µg/L	0.5	< 0.5	97%
Chloroform	µg/L	0.5	< 0.5	97%
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	93%
Carbon Tetrachloride	µg/L	0.5	< 0.5	88%
Benzene	µg/L	0.5	< 0.5	109%
1,2-Dichloroethane	µg/L	0.5	< 0.5	95%
Trichloroethylene	µg/L	0.5	< 0.5	97%
1,2-Dichloropropane	µg/L	0.5	< 0.5	97%
Bromodichloromethane	µg/L	0.5	< 0.5	88%
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5	92%

RL = Reporting Limit

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC	Report

RPC Sample ID:	BLANKC1352	SPIKEC1352		
Matrix:			water	water
Analytes	Units	RL		% Recovery
Toluene	µg/L	0.5	< 0.5	100%
1,3-Dichloropropylene (cis)	μg/L	0.5	< 0.5	89%
1,1,2-Trichloroethane	μg/L	0.5	< 0.5	98%
Tetrachloroethylene	μg/L	0.5	< 0.5	102%
Dibromochloromethane	μg/L	0.5	< 0.5	91%
1,2-Dibromoethane	μg/L	0.5	< 0.5	92%
Chlorobenzene	µg/L	0.5	< 0.5	101%
Ethylbenzene	µg/L	0.5	< 0.5	106%
m,p-Xylenes	µg/L	0.5	< 0.5	105%
o-Xylene	µg/L	0.5	< 0.5	111%
Styrene	µg/L	0.5	< 0.5	107%
Bromoform	µg/L	0.5	< 0.5	82%
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5	100%
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5	92%
1,3-Dichlorobenzene	µg/L	0.5	< 0.5	104%
1,4-Dichlorobenzene	µg/L	0.5	< 0.5	97%
1,2-Dichlorobenzene	µg/L	0.5	< 0.5	96%

RL = Reporting Limit

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
250576-1	27-Sep-17	27-Sep-17

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Marc Hodder **Project #: 1307004** Location: New Maryland **Analysis of Water**

RPC Sample ID:			250816-1
Client Sample ID:	TW17-01 72-hr		
Date Sampled:	Unite		28-Sep-17
Analytes	Units	RL	07.0
Sodium	mg/L	0.05	67.0
Potassium	mg/L	0.02	0.40
Calcium	mg/L	0.05	29.7
Magnesium	mg/L	0.01	1.43
Iron	mg/L	0.02	< 0.02
Manganese	mg/L	0.001	0.138
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.002
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	8.1
Alkalinity (as CaCO ₃)	mg/L	2	100
Chloride	mg/L	0.5	80.1
Fluoride	mg/L	0.05	0.43
Sulfate	mg/L	1	19
Sulfide	mg/L	0.05	0.10
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	0.01
r-Silica (as SiO ₂)	mg/L	0.1	12.1
Carbon - Total Organic	mg/L	0.5	0.5
Turbidity	NŤU	0.1	0.1
Conductivity	µS/cm	1	498
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	98.8
Carbonate (as CaCO ₃)	mg/L	-	1.17
Hydroxide (as CaCO ₃)	mg/L	-	0.063
Cation Sum	meq/L	-	4.53
Anion Sum	meq/L	-	4.65
Percent Difference	%	-	-1.35
Theoretical Conductivity	µS/cm	-	458
Hardness (as CaCO ₃)	mg/L	0.2	80.0
Ion Sum	mg/L	-	271
Saturation pH (5°C)	units	-	8.2
Langelier Index (5°C)	-	-	-0.06

This report relates only to the sample(s) and information provided to he laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry Krista Skinner

WATER CHEMISTRY Page 1 of 3

Krista Skinner Chemical Technician Inorganic Analytical Chemistry

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Project #: 1307004			
Location: New Maryland Analysis of Metals in W	later		
RPC Sample ID:			250816-1
Client Sample ID:			TW17-01 72-hr
• • • • •			-
Date Sampled:			28-Sep-17
Analytes	Units	RL	·
Aluminum	µg/L	1	2
Antimony	µg/L	0.1	< 0.1
Arsenic	μg/L	1	< 1
Barium	µg/L	1	215
Beryllium	µg/L	0.1	< 0.1
Bismuth	µg/L	1	< 1
Boron	µg/L	1	31
Cadmium	µg/L	0.01	< 0.01
Calcium	µg/L	50	29700
Chromium	μg/L	1	< 1
Cobalt	µg/L	0.1	< 0.1
Copper	μg/L	1	< 1
Iron	µg/L	20	< 20
Lead	μg/L	0.1	< 0.1
Lithium	µg/L	0.1	57.7
Magnesium	μg/L	10	1430
Manganese	µg/L	1	138
Mercury	µg/L	0.025	< 0.025
Molybdenum	μg/L	0.1	0.4
Nickel	µg/L	1	1
Potassium	μg/L	20	400
Rubidium	μg/L	0.1	0.5
Selenium	μg/L	1	< 1
Silver	μg/L	0.1	< 0.1
Sodium	μg/L	50	67000
Strontium	µg/L	1	897
Tellurium	µg/L	0.1	< 0.1
Thallium	µg/L	0.1	< 0.1
Tin	µg/L	0.1	< 0.1
Uranium	µg/L	0.1	< 0.1
Vanadium	µg/L	1	< 1
Zinc	µg/L	1	2

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia	4.M47	APHA 4500-NH₃ G	Phenate Colourimetry
pH	4.M03	APHA 4500-H ⁺ B	pH Electrode - Electrometric
Alkalinity (as CaCO ₃)	4.M43	EPA 310.2	Methyl Orange Colourimetry
Chloride	4.M44	APHA 4500-CL E	Ferricyanide Colourimetry
Fluoride	4.M30	APHA 4500-F- D	SPADNS Colourimetry
Sulfate	4.M45	APHA 4500-SO₄ E	Turbidimetry
Sulfide	-	АРНА 4500-S2- D	Methylene Blue Colourimetry
Nitrate + Nitrite (as N)	4.M48	АРНА 4500-NO ₃ Н	Hydrazine Red., Derivitization, Colourimetry
o-Phosphate (as P)	4.M50	APHA 4500-P F	Molybdate/Ascorbic Acid Colourimetry
r-Silica (as SiO ₂)	4.M46	APHA 4500-SI F	Heteropoly Blue Colourimetry
Carbon - Total Organic	4.M38	APHA 5310 C	UV-Persulfate Digestion, NDIR Detection
Turbidity	4.M06	APHA 2130 B	Nephelometry
Conductivity	4.M04	APHA 2510 B	Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES
Mercury	4.M52	EPA 245.1	Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395 www.rpc.ca

Attention: Marc Hodder / Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R	250816-1			
Client Sample ID/ID d'échantillon du cli	ent:			TW17-01 72-hr
Date collected/Date du prélèvement		28-Sep-17		
Time sampled/Heure du prélèvement	7:20:00 AM			
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	28-Sep-17	MPN/100mL	0
E. coli	FFA01	28-Sep-17	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	28-Sep-17	MPN/100mL	0

This report relates only to the sample(s) and information provided to the laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection

Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'information transmis au laboratoire.

Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analytical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

Breannah Collins Micro Technician Food, Fisheries & Aquaculture

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Marc Hodder			
Project #: 1307004			
Location: New Maryland			
Volatile Organic Compound	ls in Water		
RPC Sample ID:			250816-1
Client Sample ID:			TW17-01 72-hr
Date Sampled:			28-Sep-17
Matrix:			water
Analytes	Units	RL	
Chloromethane	µg/L	5.0	< 5.0
Vinyl Chloride	µg/L	0.5	< 0.5
Bromomethane	µg/L	5.0	< 5.0
Chloroethane	µg/L	5.0	< 5.0
Trichlorofluoromethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene	µg/L	0.5	< 0.5
Methylene Chloride	µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
1,1-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethylene (cis)	µg/L	0.D	< U.5
Bromochloromethane	µg/L	0.5	< 0.5
Chloroform	µg/L	0.5	< 0.5
1,1,1-Trichloroethane	µg/L	0.5	< 0.5
Carbon Tetrachloride	µg/L	0.5	< 0.5
Benzene	µg/L	0.5	< 0.5
1,2-Dichloroethane	µg/L	0.5	< 0.5
Trichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloropropane	µg/L	0.5	< 0.5
Bromodichloromethane	µg/L	0.5	< 0.5
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit

Brue Dhelleps

Bruce Phillips Department Head **Organic Analytical Services**

Angela Colford Lab Supervisor Organic Analytical Services

VOC WATER Page 1 of 6

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Marc Hodder			
Project #: 1307004			
Location: New Maryland			
Volatile Organic Compoun	ds in Water		
RPC Sample ID:			250816-1
Client Sample ID:			TW17-01 72-hr
·			
Date Sampled:			28-Sep-17
Matrix:			water
Analytes	Units	RL	
Toluene	µg/L	0.5	< 0.5
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	< 0.5
Dibromochloromethane	μg/L	0.5	< 0.5
1,2-Dibromoethane	µg/L	0.5	< 0.5
Chlorobenzene	µg/L	0.5	< 0.5
Ethylbenzene	μg/L	0.5	< 0.5
m,p-Xylenes	μg/L	0.5	< 0.5
o-Xylene	μg/L	U.5	< U.D
Styrene	μg/L	0.5	< 0.5
Bromoform	μg/L	0.5	< 0.5
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,3-Dichlorobenzene	µg/L	0.5	< 0.5
1,4-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichloroethane-d4	%		103
Toluene-d8	%		100
4-Bromofluorobenzene	%		103

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC1386	SPIKEC1386
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	µg/L	5.0	< 5.0	91%
Vinyl Chloride	µg/L	0.5	< 0.5	76%
Bromomethane	µg/L	5.0	< 5.0	81%
Chloroethane	µg/L	5.0	< 5.0	80%
Trichlorofluoromethane	µg/L	5.0	< 5.0	98%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	91%
Methylene Chloride	µg/L	5.0	< 5.0	97%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	97%
1,1-Dichloroethane	µg/L	0.5	< 0.5	92%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	91%
Bromochloromethane	µg/L	0.5	< 0.5	92%
Chloroform	µg/L	0.5	< 0.5	96%
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	95%
Carbon Tetrachloride	µg/L	0.5	< 0.5	95%
Benzene	µg/L	0.5	< 0.5	98%
1,2-Dichloroethane	µg/L	0.5	< 0.5	92%
Trichloroethylene	µg/L	0.5	< 0.5	97%
1,2-Dichloropropane	µg/L	0.5	< 0.5	88%
Bromodichloromethane	µg/L	0.5	< 0.5	90%
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5	104%

RL = Reporting Limit

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC	Report

RPC Sample ID:			BLANKC1386	SPIKEC1386
Matrix:		water	water	
Analytes	Units	RL		% Recovery
Toluene	µg/L	0.5	< 0.5	105%
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5	98%
1,1,2-Trichloroethane	µg/L	0.5	< 0.5	97%
Tetrachloroethylene	µg/L	0.5	< 0.5	102%
Dibromochloromethane	µg/L	0.5	< 0.5	102%
1,2-Dibromoethane	µg/L	0.5	< 0.5	97%
Chlorobenzene	µg/L	0.5	< 0.5	103%
Ethylbenzene	µg/L	0.5	< 0.5	104%
m,p-Xylenes	µg/L	0.5	< 0.5	108%
o-Xylene	µg/L	0.5	< 0.5	106%
Styrene	µg/L	0.5	< 0.5	102%
Bromoform	µg/L	0.5	< 0.5	92%
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5	106%
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5	94%
1,3-Dichlorobenzene	µg/L	0.5	< 0.5	106%
1,4-Dichlorobenzene	µg/L	0.5	< 0.5	100%
1,2-Dichlorobenzene	µg/L	0.5	< 0.5	98%

RL = Reporting Limit

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
250816-1	29-Sep-17	29-Sep-17

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Wesley Tibbet

Project #: 1307004 Location: New Maryland

Analysis of Water

RPC Sample ID:			253248-1
Client Sample ID:			TW05-02
·			6hr
Date Sampled:			20-Oct-17
Analytes	Units	RL	20-001-17
Sodium	mg/L	0.05	34.6
Potassium	mg/L	0.02	0.44
Calcium	mg/L	0.02	38.8
Magnesium	mg/L	0.03	2.52
Iron	mg/L	0.02	< 0.02
Manganese	mg/L	0.001	0.372
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	0.003
Ammonia (as N)	mg/L	0.05	< 0.05
pH	units	-	8.1
Alkalinity (as CaCO ₃)	mg/L	2	100
Chloride	mg/L	0.5	46.3
Fluoride	mg/L	0.05	0.36
Sulfate	mg/L	1	17
Sulfide	mg/L	0.05	< 0.05
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	0.02
r-Silica (as SiO ₂)	mg/L	0.1	13.6
Carbon - Total Organic	mg/L	0.5	0.6
Turbidity	NŤU	0.1	< 0.1
Conductivity	μS/cm	1	384
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	98.8
Carbonate (as CaCO ₃)	mg/L	-	1.17
Hydroxide (as CaCO ₃)	mg/L	-	0.063
Cation Sum	meq/L	-	3.67
Anion Sum	meq/L	-	3.66
Percent Difference	%	- 1	0.19
Theoretical Conductivity	μS/cm	-	363
Hardness (as CaCO ₃)	mg/L	0.2	107
Ion Sum	mg/L	-	215
Saturation pH (5°C)	units	-	8.0
Langelier Index (5°C)	-	-	0.07

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

WATER CHEMISTRY Page 1 of 3

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594

www.rpc.ca

Attention: Wesley Tibbet			
Project #: 1307004			
Location: New Maryland			
Analysis of Metals in Wa	ter		
RPC Sample ID:			253248-1
Client Sample ID:			TW05-02
			6hr
			0
Date Sampled:			20-Oct-17
Analytes	Units	RL	
Aluminum	µg/L	1	1
Antimony	μg/L	0.1	< 0.1
Arsenic	μg/L	1	< 1
Barium	μg/L	1	157
Beryllium	μg/L	0.1	< 0.1
Bismuth	μg/L	1	< 1
Boron	μg/L	1	22
Cadmium	μg/L	0.01	< 0.01
Calcium	μg/L	50	38800
Chromium	µg/L	1	< 1
Cobalt	μg/L	0.1	< 0.1
Copper	µg/L	1	< 1
Iron	μg/L	20	< 20
Lead	μg/L	0.1	< 0.1
Lithium	μg/L	0.1	36.3
Magnesium	µg/L	10	2520
Manganese	μg/L	1	372
Mercury	µg/L	0.025	< 0.025
Molybdenum	μg/L	0.1	0.4
Nickel	μg/L	1	1
Potassium	μg/L	20	440
Rubidium	μg/L	0.1	0.6
Selenium	µg/L	1	< 1
Silver	µg/L	0.1	< 0.1
Sodium	μg/L	50	34600
Strontium	μg/L	1	866
Tellurium	μg/L	0.1	< 0.1
Thallium	μg/L	0.1	< 0.1
Tin	μg/L	0.1	< 0.1
Uranium	μg/L	0.1	< 0.1
Vanadium	μg/L	1	< 1
Zinc	μg/L	1	3

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Analyte Ammonia pH Alkalinity (as CaCO ₃) Chloride Fluoride Sulfate Sulfide Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	RPC SOP # 4.M47 4.M03 4.M43 4.M44 4.M30 4.M45 - 4.M48 4.M45 - 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	Method Reference APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-F- D APHA 4500-SO ₄ E APHA 4500-SO ₄ E APHA 4500-NO ₃ H APHA 4500-P F APHA 4500-SI F APHA 5310 C APHA 2510 B	Method Principle Phenate Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry SPADNS Colourimetry Turbidimetry Methylene Blue Colourimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals Mercury	4.M01/4.M29 4.M52	EPA 200.8/EPA 200.7 EPA 245.1	ICP-MS/ICP-ES Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395 www.rpc.ca

Attention: Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R	PC:			253248-1
Client Sample ID/ID d'échantillon du cl	ient:			TW05-02
				6hr
Date collected/Date du prélèvement				20-Oct-17
Time sampled/Heure du prélèvement	1:15:00 PM			
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	21-Oct-17	MPN/100mL	0
E. coli	FFA01	21-Oct-17	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	21-Oct-17	MPN/100mL	0

This report relates only to the sample(s) and information provided to the laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection

Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'information transmis au laboratoire.

Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analytical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

Caroline St. Pierre

Caroline St. Pierre Micro Technician Food, Fisheries & Aquaculture

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Project #: 1307004 Location: New Maryland Volatile Organic Compound	ds in Water		
RPC Sample ID:			253248-1
Client Sample ID:			TW05-02
			6hr
Date Sampled:			20-Oct-17
Matrix:			water
Analytes	Units	RL	
Chloromethane	µg/L	5.0	< 5.0
Vinyl Chloride	µg/L	0.5	< 0.5
Bromomethane	µg/L	5.0	< 5.0
Chloroethane	µg/L	5.0	< 5.0
Trichlorofluoromethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene	µg/L	0.5	< 0.5
Methylene Chloride	µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
1,1-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethylene (cis)	µg/L	U.D	< U.D
Bromochloromethane	µg/L	0.5	< 0.5
Chloroform	µg/L	0.5	< 0.5
1,1,1-Trichloroethane	µg/L	0.5	< 0.5
Carbon Tetrachloride	µg/L	0.5	< 0.5
Benzene	µg/L	0.5	< 0.5
1,2-Dichloroethane	µg/L	0.5	< 0.5
Trichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloropropane	µg/L	0.5	< 0.5
Bromodichloromethane	µg/L	0.5	< 0.5
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit

Attention: Wesley Tibbet

Brwe Dhelleps

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

VOC WATER Page 1 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Wesley Tibbet

Project #: 1307004 Location: New Maryland **Volatile Organic Compounds in Water** RPC Sample ID: 253248-1 Client Sample ID: TW05-02 6hr Date Sampled: 20-Oct-17 Matrix: water Analytes Units RL 0.5 Toluene µg/L < 0.5 1,3-Dichloropropylene (cis) µg/L 0.5 < 0.5 1,1,2-Trichloroethane µg/L 0.5 < 0.5 Tetrachloroethylene 0.5 < 0.5 µg/L 0.5 Dibromochloromethane < 0.5 µg/L 0.5 1,2-Dibromoethane µg/L < 0.5 0.5 Chlorobenzene < 0.5 µg/L Ethylbenzene 0.5 < 0.5 µg/L m,p-Xylenes 0.5 < 0.5 µg/L o-Xylene µg/L U.5 < U.5 0.5 Styrene µg/L < 0.5 Bromoform µg/L 0.5 < 0.5 0.5 1,1,1,2-Tetrachloroethane µg/L < 0.5 1.1.2.2-Tetrachloroethane 0.5 < 0.5 µg/L 0.5 1,3-Dichlorobenzene < 0.5 µg/L 1,4-Dichlorobenzene 0.5 < 0.5 µg/L 1,2-Dichlorobenzene µg/L 0.5 < 0.5 1,2-Dichloroethane-d4 % 116 % Toluene-d8 101 4-Bromofluorobenzene % 108

rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

rpc

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

RPC Sample ID:	BLANKC1587	SPIKEC1587 water		
Matrix:				water
Analytes	Units	RL		% Recovery
Chloromethane	µg/L	5.0	< 5.0	90%
Vinyl Chloride	µg/L	0.5	< 0.5	88%
Bromomethane	µg/L	5.0	< 5.0	77%
Chloroethane	µg/L	5.0	< 5.0	97%
Trichlorofluoromethane	µg/L	5.0	< 5.0	96%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	96%
Methylene Chloride	µg/L	5.0	< 5.0	103%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	101%
1,1-Dichloroethane	µg/L	0.5	< 0.5	99%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	103%
Bromochloromethane	µg/L	0.5	< 0.5	100%
Chloroform	µg/L	0.5	< 0.5	103%
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	99%
Carbon Tetrachloride	µg/L	0.5	< 0.5	97%
Benzene	µg/L	0.5	< 0.5	105%
1,2-Dichloroethane	µg/L	0.5	< 0.5	104%
Trichloroethylene	µg/L	0.5	< 0.5	101%
1,2-Dichloropropane	µg/L	0.5	< 0.5	106%
Bromodichloromethane	µg/L	0.5	< 0.5	94%
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5	95%

RL = Reporting Limit

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report	
--------------	--

RPC Sample ID:	BLANKC1587	SPIKEC1587		
Matrix:			water	water
Analytes	Units	RL		% Recovery
Toluene	µg/L	0.5	< 0.5	100%
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5	93%
1,1,2-Trichloroethane	µg/L	0.5	< 0.5	104%
Tetrachloroethylene	µg/L	0.5	< 0.5	93%
Dibromochloromethane	μg/L	0.5	< 0.5	95%
1,2-Dibromoethane	µg/L	0.5	< 0.5	101%
Chlorobenzene	µg/L	0.5	< 0.5	106%
Ethylbenzene	µg/L	0.5	< 0.5	99%
m,p-Xylenes	µg/L	0.5	< 0.5	106%
o-Xylene	µg/L	0.5	< 0.5	105%
Styrene	µg/L	0.5	< 0.5	99%
Bromoform	µg/L	0.5	< 0.5	82%
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5	99%
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5	95%
1,3-Dichlorobenzene	µg/L	0.5	< 0.5	107%
1,4-Dichlorobenzene	µg/L	0.5	< 0.5	99%
1,2-Dichlorobenzene	µg/L	0.5	< 0.5	98%

RL = Reporting Limit

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
253248-1	27-Oct-17	27-Oct-17

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Attention: Wesley Tibbet

Project #: 1307004 Location: New Maryland

Analysis of Water

RPC Sample ID:			253267-1
Client Sample ID:			TW05-04 6hr
Date Sampled:	21-Oct-17		
Analytes	Units	RL	
Sodium	mg/L	0.05	47.4
Potassium	mg/L	0.02	0.47
Calcium	mg/L	0.05	47.9
Magnesium	mg/L	0.01	2.83
Iron	mg/L	0.02	< 0.02
Manganese	mg/L	0.001	0.284
Copper	mg/L	0.001	< 0.001
Zinc	mg/L	0.001	< 0.001
Ammonia (as N)	mg/L	0.05	< 0.05
рН	units	-	8.1
Alkalinity (as CaCO ₃)	mg/L	2	93
Chloride	mg/L	0.5	92.4
Fluoride	mg/L	0.05	0.29
Sulfate	mg/L	1	17
Sulfide	mg/L	0.05	< 0.05
Nitrate + Nitrite (as N)	mg/L	0.05	< 0.05
o-Phosphate (as P)	mg/L	0.01	0.01
r-Silica (as SiO ₂)	mg/L	U.1	13.8
Carbon - Total Organic	mg/L	0.5	< 0.5
Turbidity	NTU	0.1	< 0.1
Conductivity	µS/cm	1	515
Calculated Parameters			
Bicarbonate (as CaCO ₃)	mg/L	-	91.9
Carbonate (as CaCO ₃)	mg/L	-	1.09
Hydroxide (as CaCO ₃)	mg/L	-	0.063
Cation Sum	meq/L	-	4.71
Anion Sum	meq/L	-	4.82
Percent Difference	%	-	-1.18
Theoretical Conductivity	μS/cm	-	483
Hardness (as CaCO ₃)	mg/L	0.2	131
Ion Sum	mg/L	-	279
Saturation pH (5°C)	units	-	8.0
Langelier Index (5°C)	-	-	0.11

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; Organic Carbon and ion chemistries for turbid samples are determined on filtered aliquots.

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

WATER CHEMISTRY Page 1 of 3

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

for

BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 6Z9

Tel: 506.452.1212 Fax: 506.452.0594

www.rpc.ca

Attention: Wesley Tibbet Project #: 1307004 Location: New Maryland Analysis of Metals in Water RPC Sample ID: 253267-1 Client Sample ID: TW05-04 6hr Date Sampled: 21-Oct-17 Analytes Units RL Aluminum µg/L 1 3 Antimony 0.1 < 0.1 µg/L Arsenic 1 µg/L < 1 1 213 Barium µg/L Beryllium µg/L 0.1 < 0.1 Bismuth µg/L 1 < 1 26 1 Boron µg/L Cadmium 0.01 < 0.01 µg/L Calcium 50 47900 µg/L Chromium µg/L 1 < 1 0.1 Cobalt µg/L < 0.1 Copper 1 µg/L < 1 20 < 20 Iron µg/L 0.1 < 0.1 Lead µg/L Lithium µg/L 0.1 46.6 Magnesium 10 2830 µg/L Manganese µg/L 1 284 Mercury < 0.025 µg/L 0.025 Molybdenum µg/L 0.2 0.1 Nickel µg/L 1 < 1 Potassium 20 470 µg/L Rubidium µg/L 0.1 0.6 Selenium 1 < 1 µg/L Silver 0.1 < 0.1 µg/L Sodium 50 47400 µg/L Strontium 1 1340 µg/L µg/L Tellurium 0.1 < 0.1 Thallium 0.1 < 0.1 µg/L Tin µg/L 0.1 < 0.1 Uranium µg/L 0.1 < 0.1 Vanadium 1 µg/L < 1 Zinc µg/L 1 < 1

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia pH Alkalinity (as CaCO ₃) Chloride Fluoride Sulfate Sulfide Nitrate + Nitrite (as N) o-Phosphate (as P) r-Silica (as SiO ₂) Carbon - Total Organic Turbidity Conductivity	4.M47 4.M03 4.M43 4.M44 4.M30 4.M45 - 4.M48 4.M50 4.M46 4.M38 4.M06 4.M04	APHA 4500-NH ₃ G APHA 4500-H ⁺ B EPA 310.2 APHA 4500-CL E APHA 4500-F- D APHA 4500-SO ₄ E APHA 4500-S2- D APHA 4500-NO ₃ H APHA 4500-P F APHA 5310 C APHA 2130 B APHA 2510 B	Phenate Colourimetry pH Electrode - Electrometric Methyl Orange Colourimetry Ferricyanide Colourimetry SPADNS Colourimetry Turbidimetry Methylene Blue Colourimetry Hydrazine Red., Derivitization, Colourimetry Hydrazine Red., Derivitization, Colourimetry Molybdate/Ascorbic Acid Colourimetry Heteropoly Blue Colourimetry UV-Persulfate Digestion, NDIR Detection Nephelometry Conductivity Meter, Pt Electrode
Trace Metals Mercury	4.M01/4.M29 4.M52	EPA 200.8/EPA 200.7 EPA 245.1	ICP-MS/ICP-ES Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395 www.rpc.ca

Attention: Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R	PC:			253267-1
Client Sample ID/ID d'échantillon du cli		TW05-04 6hr		
Date collected/Date du prélèvement	21-Oct-17			
Time sampled/Heure du prélèvement	2:45:00 PM			
		Date Analyzed		
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	22-Oct-17	MPN/100mL	2
E. coli	FFA01	22-Oct-17	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	22-Oct-17	MPN/100mL	0

This report relates only to the sample(s) and information provided to the laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection

Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'information transmis au laboratoire.

Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analytical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

master

Cornelia Maston Microbiology Technician Food, Fisheries & Aquaculture

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Wesley Tibbet

Location: New Maryland			
Volatile Organic Compound	ls in Water	•	
RPC Sample ID:			253267-1
Client Sample ID:			TW05-04 6hr
Date Sampled:			21-Oct-17
Matrix:			water
Analytes	Units	RL	
Chloromethane	µg/L	5.0	< 5.0
Vinyl Chloride	µg/L	0.5	< 0.5
Bromomethane	µg/L	5.0	< 5.0
Chloroethane	µg/L	5.0	< 5.0
Trichlorofluoromethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene	µg/L	0.5	< 0.5
Methylene Chloride	µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
1,1-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5
Bromochloromethane	µg/L	0.5	< 0.5
Chloroform	µg/L	0.D	< U.D
1,1,1-Trichloroethane	µg/L	0.5	< 0.5
Carbon Tetrachloride	µg/L	0.5	< 0.5
Benzene	µg/L	0.5	< 0.5
1,2-Dichloroethane	µg/L	0.5	< 0.5
Trichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloropropane	µg/L	0.5	< 0.5
Bromodichloromethane	µg/L	0.5	< 0.5
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory. RL = Reporting Limit

Brue Dhillips

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.462.0594 www.rpc.ca

VOC WATER Page 1 of 6

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Wesley Tibbet						
Project #: 1307004						
Location: New Maryland						
Volatile Organic Compoun	ids in Water					
RPC Sample ID:			253267-1			
Client Sample ID:			TW05-04 6hr			
Date Sampled:			21-Oct-17			
Matrix:			water			
Analytes	Units	RL				
Toluene	µg/L	0.5	< 0.5			
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5			
1,1,2-Trichloroethane	µg/L	0.5	< 0.5			
Tetrachloroethylene	µg/L	0.5	< 0.5			
Dibromochloromethane	µg/L	0.5	< 0.5			
1,2-Dibromoethane	µg/L	0.5	< 0.5			
Chlorobenzene	µg/L	0.5	< 0.5			
Ethylbenzene	µg/L	0.5	< 0.5			
m,p-Xylenes	µg/L	0.5	< 0.5			
o-Xylene	µg/L	0.5	< 0.5			
Styrene	µg/L	0.5	< 0.5			
Bromoform	µg/L	U.D	< ປ.ວ			
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5			
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5			
1,3-Dichlorobenzene	µg/L	0.5	< 0.5			
1,4-Dichlorobenzene	µg/L	0.5	< 0.5			
1,2-Dichlorobenzene	µg/L	0.5	< 0.5			
1,2-Dichloroethane-d4	%		116			

rpc

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

%

%

102

108

Toluene-d8

4-Bromofluorobenzene

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC1587	SPIKEC1587
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	μg/L	5.0	< 5.0	90%
Vinyl Chloride	μg/L	0.5	< 0.5	88%
Bromomethane	μg/L	5.0	< 5.0	77%
Chloroethane	µg/L	5.0	< 5.0	97%
Trichlorofluoromethane	μg/L	5.0	< 5.0	96%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	96%
Methylene Chloride	μg/L	5.0	< 5.0	103%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	101%
1,1-Dichloroethane	µg/L	0.5	< 0.5	99%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	103%
Bromochloromethane	μg/L	0.5	< 0.5	100%
Chloroform	µg/L	0.5	< 0.5	103%
1,1,1-Trichloroethane	μg/L	0.5	< 0.5	99%
Carbon Tetrachloride	µg/L	0.5	< 0.5	97%
Benzene	µg/L	0.5	< 0.5	105%
1,2-Dichloroethane	μg/L	0.5	< 0.5	104%
Trichloroethylene	μg/L	0.5	< 0.5	101%
1,2-Dichloropropane	μg/L	0.5	< 0.5	106%
Bromodichloromethane	μg/L	0.5	< 0.5	94%
1,3-Dichloropropylene (trans)	μg/L	0.5	< 0.5	95%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Location: New Maryland				
QA/QC Report				
RPC Sample ID:			BLANKC1587	SPIKEC1587
Matrix:			water	water
Analytes	Units	RL		% Recovery
Toluene	μg/L	0.5	< 0.5	100%
1,3-Dichloropropylene (cis)	μg/L	0.5	< 0.5	93%
1,1,2-Trichloroethane	μg/L	0.5	< 0.5	104%
Tetrachloroethylene	µg/L	0.5	< 0.5	93%
Dibromochloromethane	µg/L	0.5	< 0.5	95%
1,2-Dibromoethane	μg/L	0.5	< 0.5	101%
Chlorobenzene	µg/L	0.5	< 0.5	106%
Ethylbenzene	μg/L	0.5	< 0.5	99%
m,p-Xylenes	µg/L	0.5	< 0.5	106%
o-Xylene	μg/L	0.5	< 0.5	105%
Styrene	µg/L	0.5	< 0.5	99%
Bromoform	μg/L	0.5	< 0.5	82%
1,1,1,2-Tetrachloroethane	μg/L	0.5	< 0.5	99%
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5	95%
1,3-Dichlorobenzene	μg/L	0.5	< 0.5	107%
1,4-Dichlorobenzene	μg/L	0.5	< 0.5	99%
1,2-Dichlorobenzene	μg/L	0.5	< 0.5	98%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
253267-1	27-Oct-17	27-Oct-17

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fax: 506.452.0594

www.rpc.ca

Attention: Wesley Tibbet **Project #: 1307004** Location: New Maryland **Analysis of Water**

RPC Sample ID:					260455-1
Client Sample ID:					TW17-01 24 hr
Date Sampled:	Units	RL	MAC	AO	10-Jan-18
Analytes Sodium	mg/L	0.05	IVIAC	200	57.5
Potassium	mg/L	0.05	-	-	0.43
Calcium	mg/L	0.02	-		36.0
	0	0.05	-		1.75
Magnesium Iron	mg/L mg/L	0.01	-	0.3	< 0.02
Manganese	mg/L	0.02	-	0.05	0.171
	mg/L	0.001	-	1.0	< 0.001
Copper Zinc	mg/L mg/L	0.001	-	5.0	0.009
Ammonia (as N)	mg/L	0.001	-	5.0	< 0.05
pH	units	0.05	-	7.0 - 10.5	8.2
Alkalinity (as CaCO ₃)		2	-	7.0 - 10.5	94
3	mg/L			-	
Chloride	mg/L	0.5	-	250	81.7
Fluoride	mg/L	0.05	1.5	-	0.35
Sulfate	mg/L	1	-	500	19
Sulfide	mg/L	0.05	-	0.05	0.08
Nitrate + Nitrite (as N)	mg/L	0.05	10		< 0.05
o-Phosphate (as P)	mg/L	0.01	-		0.01
r-Silica (as SiO ₂)	mg/L	0.1	-	-	12.1
Carbon - Total Organic	mg/L	0.5	-	-	1.1
Turbidity	NTU	0.1	-	-	0.2
Conductivity	µS/cm	1	-	-	469
Calculated Parameters					
Bicarbonate (as CaCO ₃)	mg/L	-	-	-	92.5
Carbonate (as CaCO ₃)	mg/L	-	-	-	1.38
Hydroxide (as CaCO ₃)	mg/L	-	-	-	0.079
Cation Sum	meq/L	-	-	-	4.46
Anion Sum	meq/L	-	-	-	4.58
Percent Difference	%	-	-	-	-1.33
Theoretical Conductivity	µS/cm	-	-	-	455
Hardness (as CaCO ₃)	mg/L	0.2	-	-	97.1
Ion Sum	mg/L	-	-	500	266
Saturation pH (5°C)	units	-	-	-	8.1
Langelier Index (5°C)	-	-	-	-	0.10

WATER CHEMISTRY

Page 1 of 3

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; MAC = Maximum Acceptable Concentration; AO = Aesthetic Objective

Guidelines are from Guidelines for Canadian Drinking Water Quality (February 2017).

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

www.rpc.ca

Attention: Wesley Tibbet **Project #: 1307004** Location: New Maryland **Analysis of Metals in Water**

RPC Sample ID:					260455-1
Client Sample ID:					TW17-01 24 hr
Date Sampled:					10-Jan-18
Analytes	Units	RL	MAC	AO	
Aluminum	µg/L	1	-	-	3
Antimony	µg/L	0.1	6	-	< 0.1
Arsenic	μg/L	1	10	-	< 1
Barium	µg/L	1	1000	-	206
Beryllium	μg/L	0.1	-	-	< 0.1
Bismuth	μg/L	1	-	-	< 1
Boron	μg/L	1	5000	-	29
Cadmium	μg/L	0.01	5	-	< 0.01
Calcium	µg/L	50	-	-	36000
Chromium	µg/L	1	50	-	< 1
Cobalt	µg/L	0.1	-	-	< 0.1
Copper	µg/L	1	-	1000	< 1
Iron	µg/L	20	-	300	< 20
Lead	µg/L	0.1	10	-	0.3
Lithium	µg/L	0.1	-	-	51.0
Magnesium	µg/L	10	-	-	1750
Manganese	µg/L	1	-	50	171
Mercury	µg/L	0.025	1	-	< 0.025
Molybdenum	µg/L	V. I	-	-	0.0
Nickel	µg/L	1	-	-	2
Potassium	μg/L	20	-	-	430
Rubidium	μg/L	0.1	-	-	0.5
Selenium	µg/L	1	50	-	< 1
Silver	μg/L	0.1	-	-	< 0.1
Sodium	μg/L	50	-	200000	57500
Strontium	μg/L	1	-	-	1000
Tellurium	μg/L	0.1	-	-	< 0.1
Thallium	μg/L	0.1	-	-	< 0.1
Tin	μg/L	0.1	-	-	< 0.1
Uranium	μg/L	0.1	20	-	< 0.1
Vanadium	μg/L	1	-	-	< 1
Zinc	µg/L	1	-	5000	9

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia	4.M47	APHA 4500-NH ₃ G	Phenate Colourimetry
рН	4.M03	APHA 4500-H ⁺ B	pH Electrode - Electrometric
Alkalinity (as CaCO ₃)	4.M43	EPA 310.2	Methyl Orange Colourimetry
Chloride	4.M44	APHA 4500-CL E	Ferricyanide Colourimetry
Fluoride	4.M30	APHA 4500-F- D	SPADNS Colourimetry
Sulfate	4.M45	APHA 4500-SO ₄ E	Turbidimetry
Sulfide	-	APHA 4500-S2- D	Methylene Blue Colourimetry
Nitrate + Nitrite (as N)	4.M48	APHA 4500-NO ₃ H	Hydrazine Red., Derivitization, Colourimetry
o-Phosphate (as P)	4.M50	APHA 4500-P F	Molybdate/Ascorbic Acid Colourimetry
r-Silica (as SiO ₂)	4.M46	APHA 4500-SI F	Heteropoly Blue Colourimetry
Carbon - Total Organic	4.M38	APHA 5310 C	UV-Persulfate Digestion, NDIR Detection
Turbidity	4.M06	APHA 2130 B	Nephelometry
Conductivity	4.M04	APHA 2510 B	Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES
Mercury	4.M52	EPA 245.1	Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395

www.rpc.ca

Attention: Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R		260455-1		
Client Sample ID/ID d'échantillon du cl	TW17-01 24 hr			
Date collected/Date du prélèvement	10-Jan-18			
Time sampled/Heure du prélèvement		12:30:00 PM		
		Date Analyzed		
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	10-Jan-18	MPN/100mL	0
E. coli	FFA01	10-Jan-18	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	10-Jan-18	MPN/100mL	0

This report relates only to the sample(s) and information provided to he laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'informa ion transmis au laboratoire. Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analy ical Chemists (AOAC).

Gillian Travis Acting Microbiology Supervisor Food, Fisheries & Aquaculture

Alus

Breannah Collins Micro Technician Food, Fisheries & Aquaculture

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Wesley Tibbet

Volatile Organic Compound	ds in Water	•	
RPC Sample ID:			260455-1
Client Sample ID:			TW17-01 24 hr
Date Sampled:			10-Jan-18
Matrix:			water
Analytes	Units	RL	
Chloromethane	μg/L	5.0	< 5.0
Vinyl Chloride	µg/L	0.5	< 0.5
Bromomethane	µg/L	5.0	< 5.0
Chloroethane	µg/L	5.0	< 5.0
Trichlorofluoromethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene	µg/L	0.5	< 0.5
Methylene Chloride	µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
1,1-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5
Bromochloromethane	µg/L	0.5	< 0.5
Chloroform	µg/L	0.D	< U.D
1,1,1-Trichloroethane	µg/L	0.5	< 0.5
Carbon Tetrachloride	µg/L	0.5	< 0.5
Benzene	µg/L	0.5	< 0.5
1,2-Dichloroethane	µg/L	0.5	< 0.5
Trichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloropropane	µg/L	0.5	< 0.5
Bromodichloromethane	µg/L	0.5	< 0.5
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory. RL = Reporting Limit

Brue Dhellys

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.462.0594 www.rpc.ca

VOC WATER Page 1 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Volatile Organic Compound RPC Sample ID:			260455-1
Client Sample ID:			TW17-01 24 hr
Date Sampled:			10-Jan-18
Matrix:			water
Analytes	Units	RL	
Toluene	μg/L	0.5	< 0.5
1,3-Dichloropropylene (cis)	μg/L	0.5	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	< 0.5
Dibromochloromethane	μg/L	0.5	< 0.5
1,2-Dibromoethane	μg/L	0.5	< 0.5
Chlorobenzene	μg/L	0.5	< 0.5
Ethylbenzene	μg/L	0.5	< 0.5
m,p-Xylenes	μg/L	0.5	< 0.5
o-Xylene	μg/L	0.5	< 0.5
Styrene	μg/L	0.5	< 0.5
Bromoform	µg/L	U.D	< U.D
1,1,1,2-Tetrachloroethane	μg/L	0.5	< 0.5
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5
1,3-Dichlorobenzene	μg/L	0.5	< 0.5
1,4-Dichlorobenzene	μg/L	0.5	< 0.5
1,2-Dichlorobenzene	μg/L	0.5	< 0.5
1,2-Dichloroethane-d4	%		104
Toluene-d8	%		100
4-Bromofluorobenzene	%		102

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

COMMENTS Page 3 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC2093	SPIKEC2093
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	µg/L	5.0	< 5.0	117%
Vinyl Chloride	μg/L	0.5	< 0.5	103%
Bromomethane	µg/L	5.0	< 5.0	92%
Chloroethane	μg/L	5.0	< 5.0	105%
Trichlorofluoromethane	µg/L	5.0	< 5.0	103%
1,1-Dichloroethylene	μg/L	0.5	< 0.5	96%
Methylene Chloride	µg/L	5.0	< 5.0	101%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	102%
1,1-Dichloroethane	µg/L	0.5	< 0.5	99%
1,2-Dichloroethylene (cis)	μg/L	0.5	< 0.5	98%
Bromochloromethane	µg/L	0.5	< 0.5	100%
Chloroform	μg/L	0.5	< 0.5	100%
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	100%
Carbon Tetrachloride	μg/L	0.5	< 0.5	98%
Benzene	µg/L	0.5	< 0.5	110%
1,2-Dichloroethane	μg/L	0.5	< 0.5	102%
Trichloroethylene	µg/L	0.5	< 0.5	103%
1,2-Dichloropropane	μg/L	0.5	< 0.5	104%
Bromodichloromethane	µg/L	0.5	< 0.5	95%
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5	95%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland				
QA/QC Report				
RPC Sample ID:			BLANKC2093	SPIKEC2093
Matrix:			water	water
Analytes	Units	RL		% Recovery
Toluene	μg/L	0.5	< 0.5	108%
1,3-Dichloropropylene (cis)	μg/L	0.5	< 0.5	94%
1,1,2-Trichloroethane	μg/L	0.5	< 0.5	102%
Tetrachloroethylene	μg/L	0.5	< 0.5	104%
Dibromochloromethane	µg/L	0.5	< 0.5	98%
1,2-Dibromoethane	μg/L	0.5	< 0.5	97%
Chlorobenzene	µg/L	0.5	< 0.5	102%
Ethylbenzene	μg/L	0.5	< 0.5	105%
m,p-Xylenes	µg/L	0.5	< 0.5	103%
o-Xylene	µg/L	0.5	< 0.5	109%
Styrene	μg/L	0.5	< 0.5	105%
Bromoform	μg/L	0.5	< 0.5	86%
1,1,1,2-Tetrachloroethane	μg/L	0.5	< 0.5	100%
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5	97%
1,3-Dichlorobenzene	μg/L	0.5	< 0.5	104%
1,4-Dichlorobenzene	μg/L	0.5	< 0.5	100%
1,2-Dichlorobenzene	μg/L	0.5	< 0.5	100%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
260455-1	11-Jan-18	11-Jan-18

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fax: 506.452.0594

www.rpc.ca

Attention: Wesley Tibbet **Project #: 1307004** Location: New Maryland **Analysis of Water**

RPC Sample ID: 260591-1 Client Sample ID: TW17-01 48hr Date Sampled: 11-Jan-18 Units Analytes RL MAC AO Sodium mg/L 0.05 -200 56.6 Potassium mg/L 0.02 _ -0.42 0.05 -34.7 Calcium mg/L -0.01 1.72 Magnesium mg/L -0.02 0.3 Iron < 0.02 mg/L -Manganese mg/L 0.001 0.05 0.168 mg/L 0.001 -1.0 < 0.001 Copper 0.001 -5.0 Zinc mg/L 0.003 Ammonia (as N) 0.05 mg/L -< 0.05 7.0 - 10.5 pН units --7.7 Alkalinity (as CaCO₃) mg/L 2 -100 -Chloride mg/L 0.5 250 75.0 -Fluoride 0.05 1.5 0.37 mg/L -Sulfate 19 mg/L 1 -500 0.05 Sulfide 0.05 0.08 mg/L -Nitrate + Nitrite (as N) mg/L 0.05 10 -< 0.05 o-Phosphate (as P) mg/L 0.01 --0.02 r-Silica (as SiO₂) mg/L 0.1 12.5 --Carbon - Total Organic mg/L 0.5 < 0.5 -_ NTU 0.1 < 0.1 Turbidity --Conductivity 470 µS/cm 1 --**Calculated Parameters** Bicarbonate (as CaCO₃) 99.5 mg/L _ _ Carbonate (as CaCO₃) 0.469 mg/L ---Hydroxide (as CaCO₃) mg/L 0.025 _ _ _ Cation Sum meq/L 4.35 ---Anion Sum 4.51 meq/L ---Percent Difference % -1.79 ---Theoretical Conductivity 442 µS/cm _ --Hardness (as CaCO₃) 0.2 93.7 mg/L _ Ion Sum mg/L --500 261 Saturation pH (5°C) --8.1 units _ -0.39 Langelier Index (5°C) ---

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; MAC = Maximum Acceptable Concentration; AO = Aesthetic Objective

Guidelines are from Guidelines for Canadian Drinking Water Quality (February 2017).

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

WATER CHEMISTRY Page 1 of 3

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

www.rpc.ca

Attention: Wesley Tibbet **Project #: 1307004** Location: New Maryland **Analysis of Metals in Water**

RPC Sample ID:	-				260591-1
Client Sample ID:					TW17-01 48hr
Date Sampled:					11-Jan-18
Analytes	Units	RL	MAC	AO	
Aluminum	µg/L	1	-	-	2
Antimony	µg/L	0.1	6	-	< 0.1
Arsenic	µg/L	1	10	-	< 1
Barium	μg/L	1	1000	-	206
Beryllium	μg/L	0.1	-	-	< 0.1
Bismuth	μg/L	1	-	-	< 1
Boron	μg/L	1	5000	-	30
Cadmium	μg/L	0.01	5	-	< 0.01
Calcium	μg/L	50	-	-	34700
Chromium	μg/L	1	50	-	< 1
Cobalt	μg/L	0.1	-	-	< 0.1
Copper	μg/L	1	-	1000	< 1
Iron	μg/L	20	-	300	< 20
Lead	μg/L	0.1	10	-	< 0.1
Lithium	μg/L	0.1	-	-	50.5
Magnesium	μg/L	10	-	-	1720
Manganese	µg/L	1	-	50	168
Mercury	μg/L	0.025	1	-	< 0.025
Molybdenum	μg/L	V. I	-	-	V. 4
Nickel	μg/L	1	-	-	1
Potassium	µg/L	20	-	-	420
Rubidium	μg/L	0.1	-	-	0.5
Selenium	μg/L	1	50	-	< 1
Silver	μg/L	0.1	-	-	< 0.1
Sodium	µg/L	50	-	200000	56600
Strontium	µg/L	1	-	-	988
Tellurium	μg/L	0.1	-	-	< 0.1
Thallium	µg/L	0.1	-	-	< 0.1
Tin	µg/L	0.1	-	-	< 0.1
Uranium	µg/L	0.1	20	-	< 0.1
Vanadium	µg/L	1	-	-	< 1
Zinc	µg/L	1	-	5000	3

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia	4.M47	APHA 4500-NH ₃ G	Phenate Colourimetry
рН	4.M03	APHA 4500-H ⁺ B	pH Electrode - Electrometric
Alkalinity (as CaCO ₃)	4.M43	EPA 310.2	Methyl Orange Colourimetry
Chloride	4.M44	APHA 4500-CL E	Ferricyanide Colourimetry
Fluoride	4.M30	APHA 4500-F- D	SPADNS Colourimetry
Sulfate	4.M45	APHA 4500-SO ₄ E	Turbidimetry
Sulfide	-	APHA 4500-S2- D	Methylene Blue Colourimetry
Nitrate + Nitrite (as N)	4.M48	APHA 4500-NO ₃ H	Hydrazine Red., Derivitization, Colourimetry
o-Phosphate (as P)	4.M50	APHA 4500-P F	Molybdate/Ascorbic Acid Colourimetry
r-Silica (as SiO ₂)	4.M46	APHA 4500-SI F	Heteropoly Blue Colourimetry
Carbon - Total Organic	4.M38	APHA 5310 C	UV-Persulfate Digestion, NDIR Detection
Turbidity	4.M06	APHA 2130 B	Nephelometry
Conductivity	4.M04	APHA 2510 B	Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES
Mercury	4.M52	EPA 245.1	Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395

www.rpc.ca

Attention: Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R	PC:			260591-1
Client Sample ID/ID d'échantillon du cl		TW17-01 48hr		
Date collected/Date du prélèvement	11-Jan-18			
Time sampled/Heure du prélèvement		12:30:00 PM		
· · · · · ·		Date Analyzed		
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	11-Jan-18	MPN/100mL	0
E. coli	FFA01	11-Jan-18	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	11-Jan-18	MPN/100mL	0

This report relates only to the sample(s) and information provided to he laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'informa ion transmis au laboratoire. Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analy ical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

master

Cornelia Maston Microbiology Technician Food, Fisheries & Aquaculture

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Wesley Tibbet

Project #: 1307004			
Location: New Maryland			
Volatile Organic Compound	ds in Water		
RPC Sample ID:	260591-1		
Client Sample ID:	TW17-01 48hr		
Date Sampled:			11-Jan-18
Matrix:			water
Analytes	Units	RL	
Chloromethane	µg/L	5.0	< 5.0
Vinyl Chloride	µg/L	0.5	< 0.5
Bromomethane	µg/L	5.0	< 5.0
Chloroethane	µg/L	5.0	< 5.0
Trichlorofluoromethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene	µg/L	0.5	< 0.5
Methylene Chloride	µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
1,1-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5
Bromochloromethane	µg/L	0.5	< 0.5
Chloroform	μg/L	U.D	< U.D
1,1,1-Trichloroethane	µg/L	0.5	< 0.5
Carbon Tetrachloride	µg/L	0.5	< 0.5
Benzene	µg/L	0.5	< 0.5
1,2-Dichloroethane	µg/L	0.5	< 0.5
Trichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloropropane	µg/L	0.5	< 0.5
Bromodichloromethane	µg/L	0.5	< 0.5
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory. RL = Reporting Limit

Brue Dhillips

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.462.0594 www.rpc.ca

VOC WATER Page 1 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Volatile Organic Compoun RPC Sample ID:			260591-1
Client Sample ID:			TW17-01 48hr
Date Sampled:			11-Jan-18
Matrix:			water
Analytes	Units	RL	
Toluene	µg/L	0.5	< 0.5
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5
1,1,2-Trichloroethane	µg/L	0.5	< 0.5
Tetrachloroethylene	µg/L	0.5	< 0.5
Dibromochloromethane	µg/L	0.5	< 0.5
1,2-Dibromoethane	µg/L	0.5	< 0.5
Chlorobenzene	µg/L	0.5	< 0.5
Ethylbenzene	µg/L	0.5	< 0.5
m,p-Xylenes	µg/L	0.5	< 0.5
o-Xylene	µg/L	0.5	< 0.5
Styrene	µg/L	0.5	< 0.5
Bromoform	μg/L	U.D	< U.D
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5
1,3-Dichlorobenzene	µg/L	0.5	< 0.5
1,4-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichlorobenzene	µg/L	0.5	< 0.5
1,2-Dichloroethane-d4	%		108
Toluene-d8	%		98
4-Bromofluorobenzene	%		100

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC2098	SPIKEC2098
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	µg/L	5.0	< 5.0	114%
Vinyl Chloride	µg/L	0.5	< 0.5	109%
Bromomethane	µg/L	5.0	< 5.0	103%
Chloroethane	µg/L	5.0	< 5.0	109%
Trichlorofluoromethane	µg/L	5.0	< 5.0	111%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	98%
Methylene Chloride	µg/L	5.0	< 5.0	108%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	104%
1,1-Dichloroethane	µg/L	0.5	< 0.5	106%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	107%
Bromochloromethane	µg/L	0.5	< 0.5	107%
Chloroform	µg/L	0.5	< 0.5	111%
1,1,1-Trichloroethane	µg/L	0.5	< 0.5	104%
Carbon Tetrachloride	µg/L	0.5	< 0.5	102%
Benzene	µg/L	0.5	< 0.5	118%
1,2-Dichloroethane	µg/L	0.5	< 0.5	110%
Trichloroethylene	µg/L	0.5	< 0.5	106%
1,2-Dichloropropane	µg/L	0.5	< 0.5	111%
Bromodichloromethane	µg/L	0.5	< 0.5	100%
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5	92%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland				
QA/QC Report				
RPC Sample ID:			BLANKC2098	SPIKEC2098
Matrix:	water	water		
Analytes	Units	RL		% Recovery
Toluene	µg/L	0.5	< 0.5	110%
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5	90%
1,1,2-Trichloroethane	µg/L	0.5	< 0.5	105%
Tetrachloroethylene	µg/L	0.5	< 0.5	106%
Dibromochloromethane	µg/L	0.5	< 0.5	98%
1,2-Dibromoethane	µg/L	0.5	< 0.5	102%
Chlorobenzene	µg/L	0.5	< 0.5	107%
Ethylbenzene	μg/L	0.5	< 0.5	111%
m,p-Xylenes	μg/L	0.5	< 0.5	108%
o-Xylene	μg/L	0.5	< 0.5	114%
Styrene	µg/L	0.5	< 0.5	112%
Bromoform	μg/L	0.5	< 0.5	88%
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5	106%
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5	106%
1,3-Dichlorobenzene	µg/L	0.5	< 0.5	113%
1,4-Dichlorobenzene	µg/L	0.5	< 0.5	106%
1,2-Dichlorobenzene	µg/L	0.5	< 0.5	110%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
260591-1	12-Jan-18	12-Jan-18

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

www.rpc.ca

Attention: Wesley Tibbet **Project #: 1307004** Location: New Maryland **Analysis of Water**

RPC Sample ID:					260707-1
Client Sample ID:					TW17-01 72hr
Data Campledi					10 1 10
Date Sampled: Analytes	Units	RL	MAC	AO	12-Jan-18
Sodium	mg/L	0.05	IVIAC	200	56.6
Potassium	mg/L	0.05		+	0.42
Calcium		0.02	-	-	34.9
	mg/L mg/L	0.05	-	-	1.72
Magnesium Iron	Ŭ	0.01	-	- 0.3	< 0.02
	mg/L	0.02	-		0.168
Manganese	mg/L			0.05	
Copper	mg/L	0.001	-	1.0	< 0.001
Zinc Ammonia (as N)	mg/L mg/L	0.001	-	5.0	0.001 < 0.05
pH	units	0.05	-	7.0 - 10.5	7.8
1		-		7.0 - 10.5	
Alkalinity (as $CaCO_3$)	mg/L	2	-	-	95
Chloride	mg/L	0.5	-	250	76.7
Fluoride	mg/L	0.05	1.5	-	0.37
Sulfate	mg/L	1	-	500	18
Sulfide	mg/L	0.05	-	0.05	0.07
Nitrate + Nitrite (as N)	mg/L	0.05	10	-	< 0.05
o-Phosphate (as P)	mg/L	0.01	-	-	0.01
r-Silica (as SiO ₂)	mg/L	0.1	-	-	12.1
Carbon - Total Organic	mg/L	0.5	-	-	< 0.5
Turbidity	NTU	0.1	-	-	< 0.1
Conductivity	μS/cm	1	-	-	457
Calculated Parameters					
Bicarbonate (as CaCO ₃)	mg/L	-	-	-	94.4
Carbonate (as CaCO ₃)	mg/L	-	-	-	0.560
Hydroxide (as CaCO ₃)	mg/L	-	-	-	0.032
Cation Sum	meq/L	-	-	-	4.36
Anion Sum	meq/L	-	-	-	4.44
Percent Difference	%	-	-	-	-0.85
Theoretical Conductivity	µS/cm	-	-	-	441
Hardness (as CaCO ₃)	mg/L	0.2	-	-	94.2
Ion Sum	mg/L	-	-	500	259
Saturation pH (5°C)	units	-	-	-	8.1
Langelier Index (5°C)	-	-	-	-	-0.31

WATER CHEMISTRY

Page 1 of 3

This report relates only to the sample(s) and information provided to the laboratory.

RL = Reporting Limit; MAC = Maximum Acceptable Concentration; AO = Aesthetic Objective

Guidelines are from Guidelines for Canadian Drinking Water Quality (February 2017).

Ross Kean

A. Ross Kean, M.Sc. Department Head Inorganic Analytical Chemistry

Peter Crowhurst, B.Sc., C.Chem Analytical Chemist Inorganic Analytical Chemistry

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

www.rpc.ca

Attention: Wesley Tibbet **Project #: 1307004** Location: New Maryland **Analysis of Metals in Water**

RPC Sample ID:					260707-1
Client Sample ID:					TW17-01 72hr
Date Sampled:					12-Jan-18
Analytes	Units	RL	MAC	AO	
Aluminum	μg/L	1	-	-	2
Antimony	μg/L	0.1	6	-	< 0.1
Arsenic	μg/L	1	10	-	< 1
Barium	μg/L	1	1000	-	205
Beryllium	μg/L	0.1	-	-	< 0.1
Bismuth	μg/L	1	-	-	< 1
Boron	μg/L	1	5000	-	30
Cadmium	μg/L	0.01	5	-	< 0.01
Calcium	μg/L	50	-	-	34900
Chromium	μg/L	1	50	-	< 1
Cobalt	μg/L	0.1	-	-	< 0.1
Copper	μg/L	1	-	1000	< 1
Iron	μg/L	20	-	300	< 20
Lead	μg/L	0.1	10	-	< 0.1
Lithium	μg/L	0.1	-	-	51.2
Magnesium	μg/L	10	-	-	1720
Manganese	μg/L	1	-	50	168
Mercury	μg/L	0.025	1	-	< 0.025
Molybdenum	μg/L	U. I	-	-	0.0
Nickel	μg/L	1	-	-	1
Potassium	μg/L	20	-	-	420
Rubidium	μg/L	0.1	-	-	0.5
Selenium	μg/L	1	50	-	< 1
Silver	µg/L	0.1	-	-	< 0.1
Sodium	μg/L	50	-	200000	56600
Strontium	μg/L	1	-	-	988
Tellurium	µg/L	0.1	-	-	< 0.1
Thallium	μg/L	0.1	-	-	< 0.1
Tin	μg/L	0.1	-	-	< 0.1
Uranium	μg/L	0.1	20	-	< 0.1
Vanadium	μg/L	1	-	-	< 1
Zinc	μg/L	1	-	5000	1

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

P21 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1212 Fax: 506.452.0594 www.rpc.ca

Methods

Analyte	RPC SOP #	Method Reference	Method Principle
Ammonia	4.M47	APHA 4500-NH ₃ G	Phenate Colourimetry
рН	4.M03	APHA 4500-H ⁺ B	pH Electrode - Electrometric
Alkalinity (as CaCO ₃)	4.M43	EPA 310.2	Methyl Orange Colourimetry
Chloride	4.M44	APHA 4500-CL E	Ferricyanide Colourimetry
Fluoride	4.M30	APHA 4500-F- D	SPADNS Colourimetry
Sulfate	4.M45	APHA 4500-SO ₄ E	Turbidimetry
Sulfide	-	APHA 4500-S2- D	Methylene Blue Colourimetry
Nitrate + Nitrite (as N)	4.M48	APHA 4500-NO ₃ H	Hydrazine Red., Derivitization, Colourimetry
o-Phosphate (as P)	4.M50	APHA 4500-P F	Molybdate/Ascorbic Acid Colourimetry
r-Silica (as SiO ₂)	4.M46	APHA 4500-SI F	Heteropoly Blue Colourimetry
Carbon - Total Organic	4.M38	APHA 5310 C	UV-Persulfate Digestion, NDIR Detection
Turbidity	4.M06	APHA 2130 B	Nephelometry
Conductivity	4.M04	APHA 2510 B	Conductivity Meter, Pt Electrode
Trace Metals	4.M01/4.M29	EPA 200.8/EPA 200.7	ICP-MS/ICP-ES
Mercury	4.M52	EPA 245.1	Cold Vapor AAS

CERTIFICATE OF ANALYSIS / CERTIFICAT D'ANALYSE

for/pour BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 6Z9 Tel: 506.452.1368 Fax: 506.452.1395 www.rpc.ca

Attention: Wesley Tibbet

Project/Job #: 1307004

Client Location: New Maryland

Microbiological Examination of Water/Qualité microbiologique de l'eau potable

RPC Sample ID/No. d'échantillon de R		260707-1		
Client Sample ID/ID d'échantillon du cl		TW17-01 72hr		
Date collected/Date du prélèvement		12-Jan-18		
		12-Jan-10		
Time sampled/Heure du prélèvement		12:30:00 PM		
		Date Analyzed		
Analytes/Paramètre(s)	Method/Méthode	Date Analysé	Units Unités	
Total Coliforms/Coliformes totaux	FFA01	12-Jan-18	MPN/100mL	0
E. coli	FFA01	12-Jan-18	MPN/100mL	0
Faecal Coliforms/Coliformes fécaux	FFA01	12-Jan-18	MPN/100mL	0

This report relates only to the sample(s) and information provided to he laboratory.

Tests were performed according to the corresponding Compendium of Analytical Methods, Health Protection Branch and/or AOAC Official Methods.

Le présent rapport ne s'applique qu'aux échantillons et à l'informa ion transmis au laboratoire. Les analyses ont été menées conformément au Compendium de méthodes pour l'analyse correspondant ou aux méthodes officielles de la Direction générale de la protection de la santé ou de l'Association of Official Analy ical Chemists (AOAC).

athy Hay

Cathy Hay Microbiology Supervisor Food, Fisheries & Aquaculture

master

Cornelia Maston Microbiology Technician Food, Fisheries & Aquaculture

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Attention: Wesley Tibbet **Project #: 1307004**

Location: New Maryland Volatile Organic Compound	ds in Water		
RPC Sample ID:		260707-1	
Client Sample ID:			TW17-01 72hr
Dete Complet			10 Jan 10
Date Sampled:			12-Jan-18
Matrix:	Liste	DI	water
Analytes	Units	RL	
Chloromethane	µg/L	5.0	< 5.0
Vinyl Chloride	µg/L	0.5	< 0.5
Bromomethane	μg/L	5.0	< 5.0
Chloroethane	μg/L	5.0	< 5.0
Trichlorofluoromethane	µg/L	5.0	< 5.0
1,1-Dichloroethylene	µg/L	0.5	< 0.5
Methylene Chloride	µg/L	5.0	< 5.0
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5
1,1-Dichloroethane	µg/L	0.5	< 0.5
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5
Bromochloromethane	µg/L	0.5	< 0.5
Chloroform	µg/L	U.D	< U.D
1,1,1-Trichloroethane	µg/L	0.5	< 0.5
Carbon Tetrachloride	µg/L	0.5	< 0.5
Benzene	μg/L	0.5	< 0.5
1,2-Dichloroethane	µg/L	0.5	< 0.5
Trichloroethylene	µg/L	0.5	< 0.5
1,2-Dichloropropane	µg/L	0.5	< 0.5
Bromodichloromethane	µg/L	0.5	< 0.5
1,3-Dichloropropylene (trans)	µg/L	0.5	< 0.5

This report relates only to the sample(s) and information provided to the laboratory. RL = Reporting Limit

Brwe Dhelleps

Bruce Phillips Department Head Organic Analytical Services

Angela Colford Lab Supervisor Organic Analytical Services

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506.452.1212 Fax: 506.462.0594 www.rpc.ca

VOC WATER Page 1 of 6

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

Volatile Organic Compoun RPC Sample ID:			260707-1
Client Sample ID:			TW17-01 72hr
Date Sampled:			12-Jan-18
Matrix:			water
Analytes	Units	RL	
Toluene	μg/L	0.5	< 0.5
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5
1,1,2-Trichloroethane	µg/L	0.5	< 0.5
Tetrachloroethylene	μg/L	0.5	< 0.5
Dibromochloromethane	μg/L	0.5	< 0.5
1,2-Dibromoethane	μg/L	0.5	< 0.5
Chlorobenzene	μg/L	0.5	< 0.5
Ethylbenzene	μg/L	0.5	< 0.5
m,p-Xylenes	μg/L	0.5	< 0.5
o-Xylene	μg/L	0.5	< 0.5
Styrene	μg/L	0.5	< 0.5
Bromoform	μg/L	U.5	< U.D
1,1,1,2-Tetrachloroethane	μg/L	0.5	< 0.5
1,1,2,2-Tetrachloroethane	μg/L	0.5	< 0.5
1,3-Dichlorobenzene	μg/L	0.5	< 0.5
1,4-Dichlorobenzene	μg/L	0.5	< 0.5
1,2-Dichlorobenzene	μg/L	0.5	< 0.5
1,2-Dichloroethane-d4	%		105
Toluene-d8	%		100
4-Bromofluorobenzene	%		99

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6 921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Method Summary

OAS-HC02: Determination of Volatile Organic Compounds in Water.

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland

QA/QC Report				
RPC Sample ID:			BLANKC2106	SPIKEC2106
Matrix:			water	water
Analytes	Units	RL		% Recovery
Chloromethane	μg/L	5.0	< 5.0	116%
Vinyl Chloride	μg/L	0.5	< 0.5	107%
Bromomethane	μg/L	5.0	< 5.0	108%
Chloroethane	µg/L	5.0	< 5.0	109%
Trichlorofluoromethane	μg/L	5.0	< 5.0	110%
1,1-Dichloroethylene	µg/L	0.5	< 0.5	95%
Methylene Chloride	μg/L	5.0	< 5.0	102%
1,2-Dichloroethylene (trans)	µg/L	0.5	< 0.5	100%
1,1-Dichloroethane	µg/L	0.5	< 0.5	101%
1,2-Dichloroethylene (cis)	µg/L	0.5	< 0.5	100%
Bromochloromethane	μg/L	0.5	< 0.5	106%
Chloroform	µg/L	0.5	< 0.5	101%
1,1,1-Trichloroethane	μg/L	0.5	< 0.5	103%
Carbon Tetrachloride	µg/L	0.5	< 0.5	99%
Benzene	µg/L	0.5	< 0.5	109%
1,2-Dichloroethane	μg/L	0.5	< 0.5	103%
Trichloroethylene	μg/L	0.5	< 0.5	101%
1,2-Dichloropropane	μg/L	0.5	< 0.5	101%
Bromodichloromethane	μg/L	0.5	< 0.5	94%
1,3-Dichloropropylene (trans)	μg/L	0.5	< 0.5	94%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Location: New Maryland				
QA/QC Report				
RPC Sample ID:		BLANKC2106	SPIKEC2106	
Matrix:			water	water
Analytes	Units	RL		% Recovery
Toluene	µg/L	0.5	< 0.5	106%
1,3-Dichloropropylene (cis)	µg/L	0.5	< 0.5	94%
1,1,2-Trichloroethane	µg/L	0.5	< 0.5	103%
Tetrachloroethylene	µg/L	0.5	< 0.5	106%
Dibromochloromethane	µg/L	0.5	< 0.5	98%
1,2-Dibromoethane	µg/L	0.5	< 0.5	100%
Chlorobenzene	µg/L	0.5	< 0.5	103%
Ethylbenzene	µg/L	0.5	< 0.5	108%
m,p-Xylenes	µg/L	0.5	< 0.5	107%
o-Xylene	µg/L	0.5	< 0.5	110%
Styrene	µg/L	0.5	< 0.5	107%
Bromoform	µg/L	0.5	< 0.5	86%
1,1,1,2-Tetrachloroethane	µg/L	0.5	< 0.5	101%
1,1,2,2-Tetrachloroethane	µg/L	0.5	< 0.5	96%
1,3-Dichlorobenzene	µg/L	0.5	< 0.5	100%
1,4-Dichlorobenzene	µg/L	0.5	< 0.5	100%
1,2-Dichlorobenzene	μg/L	0.5	< 0.5	99%

CERTIFICATE OF ANALYSIS

for BGC Engineering Inc. 515 Beaverbrook Court Fredericton, NB E3B 1X6

921 College Hill Rd Fredericton NB Canada E3B 629 Tel: 506,452,1212 Fax: 506,452,0594 www.rpc.ca

Project #: 1307004

Summary of Date Analyzed

	VOC	
RPC Sample ID	Extracted	Analyzed
260707-1	15-Jan-18	15-Jan-18

APPENDIX

C-2 BREEDING BIRD, RARE PLANT, AND WETLAND SURVEYS

(on behalf of WSP)

BREEDING BIRD, RARE PLANT AND WETLAND SURVEY PROPOSED WELLFIELD DEVELOPMENT SITE

VILLAGE OF NEW MARYLAND, NEW BRUNSWICK

PROJECT NO. 18-0103

REPORT TO	SP Bishop Drive edericton, NB C 1B2
ON	eeding Bird, Rare Plant and Wetland Survey, oposed Wellfield Development w Maryland, NB

Biologist Derrick Mitchell, BSc.F.

August, 2018

Boreal Environmental Inc., 511 Bay Street Saint John, New Brunswick E2M 7L3

Phone: 506-651-1346

Table of Contents

1.0	INTRODUCTION		1
1.1	Regulatory Framew	ork	1
1.1.1	Plants and wildlife		1
1.1.2	Wetlands .		2
1.1.3	Migratory Birds	·	2
2.0	ANN	RARE FLORA SURVEY	
2.1	I	/le hodology	
2.2	m et	are Plant Surveys	5
3.0	DI G	RVEYS	5
3.1	i i (e lethodology	5
3.2	d a tD i	on	6
3.3	m	ı ⇒y Results	7
3.4	d ei a s	nd of Species of Conservation of Concern	9
4.0	Е	ENT	14
4.1	0	ethods	14
4.1.1	Vegetation .		14
4.1.2	Soils		15
4.1.3	Hydrology .		15
4.2	fi	essment	15
4.3	а у	esults	16
4.4	a int v	egetation	22
5.0	Е	LAIMER	22
6.0	REFERENCES.		22

List of Tables

Table 1.	d	led on J	une 13 th		r		un	еу	.7
Table 2.	Summary of bird sp	c es	da		i	h	е	Area	. 8
Table 3.	Bird Species at Ris	а	e a	e v			r o	d by the AC CDC	12
Table 4.	Summary of deline	t			а	а		PID 75349068 in	
	VIg	New M	aryland, N	B					18

List of Figures

Figure 1. Project Area location (PID 750	62174, 75064840), 75349068) in t	he Village of New
Figure 2. Map showing br n	l	nsa haa	(PID 75062174,
4 349068) in tl	he Village of New	Maryland, NB.	
Figure 3. Map showing de a	eta d t	0 0	(PID 75062174,
4 349068) in tl	he Village of New	Maryland, NB.	

List of Appendices

Appendix I	ACC DC report
Appendix II	Plant Inventory
Appendix III	Point Count Data
Appendix IV	e n ion Forms
Appendix V	WESP-CF;
Appendix VI	Site Photographs

1.0 INTRODUCTION

Boreal Environmental (Boreal) was contracted by WSP, in June of 2018 conduct wetland, bird, and rare plant survey on he site of a proposed wellfield development i i (PID 75062174, 75064840, 75349068) in e i age of New Maryland, New Brunswick (Figure 1). The purpose of the environmental constraints o elop a wellfield in p v e r supply to the Village of New Maryland. T e primary objective of these surveys was mine if rare species and/or wetlands were resent within the Project Area.

1.1 Regulatory Framework

g n ne applicable regulatory legislation and ments for plants, birds and wetlands.

1.1.1 Plants and wildlife

In 2002, SARA was created to p e species against i al c n t со a erment from human activities. Currently, the species listed in Schedule 1 of SARA are pro 2). Provisions to f t y protect and recover a species c o eff S edule 1 of SARA. d The New Brunswick e at Risk Act or NBSAR h vel of legislative protection for species at risk and vels of protection ci n o er se are afforded for species listed a s depending on the species rarity ranking. iti te CDC) and New Several agencies including the A i. а Со at r Brunswick Department of E gy and Natural Resource Development **)ERD)** contribute i s s t concern' that are not protected by legislation.

The general location of species s a d p i c v c rom the AC CDC b s of p d Project located are provided in Appendix I.

t k I cies listed in Schedule 1 of *SARA* a "xr ed", "Endangered" or "Threatened I d nd angered or regionally endangered in the NB A.

"Species of conservation conce de i te e not und r he p o ection of SARA or the NB ESA and include specie f SARA; listed in L s n Schedule 2 or 3 of SARA; or ra da S1 2 3 b A CDC; and/or ranked "May Be At es e ntly ranked Endangered or Risk" or "Sensitive" by RD a so lu Threatened by the Committee e S a ada (COSEWIC) s En n f (therefore ranked "At Risk" by NBDERD) but not added to Schedule 1 of SARA.

"Secure" species are those rank i d as "Secure" by NB DERD.

1.1.2 Wetlands

p i e he r s of a wetland delineation pursuant to the *Natercourse and* s R u under the *Clean Water Act* ct, wetlands are defined as:

(a) either periodically or permar s t t a a land's surface or that is saturated with water; and

(b) sustains aquatic processes i c d b e of h oils, hydrophytic e t i g es adapted to wet conditions.

r ins ihi a watercourse and / o w t i n th ir 30 m regulated y е buffer, requires permitting through e h Environment and W Dpt Local Government (NB DELG) λ) Program. Any С е ed 30 m buffer, must h o impact a wetland \geq 2 ha, and / е t be registered through the Envi m t uat n [7-83] of the New s n n .ct.

1.1.3 Migratory Birds

In Canada, the MBCA ov de; overarching protection for individual and pulations of birds and their nests against harm or e u o The MBCA and of associated regulations are admisred Canadian Wildlife n om t d la 1994a Service (o t MBCA include; i r c abirds; however, g o w 3, eagles, owls, song w e o n blackbirds or jays are not afforde t ınada 1991). d е (n

i I cies listed in Schedule 1 of SARA as "Extirpated", "Endangered" r n I n JB SAR as "At Risk".

"Species of Conservation Conce " n u ction of SARA or ed d h the NB SAR and include species it C ce "n of SARA; listed in e u Schedule 2 or 3 of SARA; or ra d rrnked "May Be At dа 1 Risk" or "Sensitive" by NB). "Secure" species are those rank DC r ; "Secure" by NB а s DERD.

2.0 VE A RARE FLORA SURVEY

A rare flora survey was i d out within the proposed Project Area s o e of work carried o h e r flora survey included:

- d p i k (SAR) Study;
- t I n t ed vascular vegetation within the Project Area; and
- t I n t d rare flora (vascular or non- e Project Area.

2.1 Rare Plant Survey Me odology

Derrick Mitchell a biologist cond ed s u g t on survey within the Project Area. s top revew of SAR and areas of concern a o the AC CDC was carried i t di . The AC CDC t r u i t t i i a 5 km radius of the Project Area. The AC CDC latabase search provided the following:

- ob t f rare and endangered flora and fauna;
- Expert Opinion Maps information to ide tify species h h ve not b e reported but are e stimates of habitat and wildlife distribution; and
 - o Areas such as the following:
 - o a vith some level of protection;
 - o i jical areas of interest;
 - o D areas; and
 - o as.

d AC CDC outlined by the er c 0 Committee on the Status of En ang dl f а d (Е C) Species at Risk Act (SARA), and the B unswick Species at Risk Act (NBSAR ng the site visit, comparison to habitats suited tc flora identified in f i е de ko m ed.

th s te by foot in a random meandering fashion h oughout the Project The biologist trav Area. The intent of using t nethodology was to capture unique habitats at may be present within the Project Area (i.e., ock outcrops, watercourses and wetlands). In general, these an v р initial for the occurrence of rare species. e locations of all encountered rare flora were recorded using a handheld GPS unit. i were collected if in the field. The biologist also c n entory of all plant Т n е species encountered h e ducting the field reconnaissance program.

2.2 Summary of e t e Plant Surveys

The vegetation and rare flora surveys were conducted in mid-June o + the likelihood of s hie n ower. A comple d at 0 t ncountered within t y e e the Project Area 1 Appendix II. n o pecies were found t р r during the survey.

3.0 BREEDING I D SURVEYS

Breeding bird surveys Project Area focused o and species of t re, both, federal (Species at Risk Act or conserv A) and provincial С T er i s s (Act) ection of spe ies at risk and species (New Brunswick i. 0 of conservation concern, and th ar t v s o a species within n de en in on h ecies rar r Act protects only x m chedule 1 of SARA. Special Concern" s at d cin: 32-36 of SARA b r th t provincial or regional n ro 0 ces. Al ral agencies that management plans are develope opoect e , ther re provide lists of "species of cons gislation but may 0 r p e require spe n the environmental review process ations of species 0 а at risk and species of conservat o co rn from the AC CDC da aba search are provided in Appendix I.

3.1 Breeding Bird Survey Hodology

A breeding bird survey was condu m h t r ne Breeding Bird Atlas (MBBA 2010). i n y site selection for the breeding bird survey tions were based ors om in lopment stage located within the Project Area determined from iventory data from the NBDERD. Actual s aerial photography and y locations were representative of all habitats ide 0 e p n а е east 250 m apart to avoid bird detection overlap. Point count locations can be viewed in Figure 3

conducted on June 12th, 2018 b t e d 9:00 am. Each One round of point а 5 ed for a period of 10 minutes during un i n s ur v y. The breeding status of each species was dote BA. Data were s g r i he collected for each bird detected including; eci s nd o tion in relation to r i. the survey point. Species obse v d r at were classified s ng a r d s e es exhibiting the following behaviours were also classed as probable breeders:

- t ween a male and female;
- i nest site;

- s n behaviour; and
- n em o ed together in suitable nesting habitat.

Species were confirmed as bree i f of n em e re observed:

- t irrying nesting material;
- t i l o i ury feigning;
- recently fledged young;
- pi sto d; nd
- b ood or fecal sac for young.

Incidental birds were also ded during rare plant and vegetation surveys o ensure that the a tured in the Project Area.

3.2 Bird Habitat Description

The subject property is p o nately 97 ha; however, only age of the property will be utilized for Project infras u Т 3. The dominant i l n s forested habitat tends arious stages of development due to fores vesting activities. Habitat types identified in the JB DERD r v f ed during the bird t w survey and adjusted accordingly w r t level' field survey. 'h t е Notes were taken on ient stage it o each point count speci m location.

Patches of mature contiguous orest greater than 10 ha and effects or 'Interior Forest' are important for a per of bird species that rely on this t t for foraging and r ⁱerred by some species adaptable to disturbance breeding. r t s rily fall entirely within the properties that make up than others. These patches do t the Project Area; however, they n de d t c e features within the context of bird habitat. e are no patches of interior forest located in the Project Area.

d n te h bitat type within the Project Area was shade lerant deciduous forest (YIHW, IIHW, MIHW) n ranges in age from rs old. Intolerant b hardwood e closed canopied and consists of early onal tree species е се approximately 35 e s e tree layer is predominantly made p e intolerant trees h species including; tr pen (Populus tremuloides), gray birch I populifolia), red maple (Acer rubrum) irch (Betula papyrifera) and balsam fir A es balsamea) in h descending order. c ous cover consists of wild lily-of-the- I (Maianthemum He canadense), erry (Cornus canadensis), wild sarsaparilla ralia nudicaulis), а evergreen woodfern ry s intermedia), and various sedge (Carex spp.) ecies.

Mixed forest (IMXD, MMXD)bitat type is ranges from 35 to 50 years old.The tree layer isdominated by balsam fir: balsaemea), red spruce (Picea rubens),maple, tremblingaspen, and scattered w i: (Pinus strobus).The shrublayers were very

s o i losure; however, balsam fir, bu berry, starflower (*Trientalis borealis*) and wild lily-of-the-valley w r ed t e t stands.

Mature softwood (MSWD tat type is ranges from 50 to 8 The tree layer is 0 ; balsaemea), red spruce (Picea rubens), e tern white cedar dominated by balsam fir (Thuja occidentalis) ttered eastern white pine (Pinus strobus) The shrub and herbaceous layers were very sp rse due t igh no ls re Isam fir, Canada r bunchberry, starflower е s borealis) and wild lily-of-the-valley w t 3d throughout the forest stands.

3.3 Summary of u Results

he Jun 13^h, 2018 A total of 40 bird species prising 204 individuals we d иi o t me ous species recorded overall were can crow, blacksurvey i. throated green warbler, black- apped chickadee, redd u atch, northern parula and red-eyed vireo ce di g rder. This would be expected given he pment stage and species compositio t within the Project Area. е

No raptor nests weren the vicinity of the Project Area.Observedird species werecharacteristic of earlys onal forest that are typical of the region.mmon nighthawksurveys were not conducted beciatiP ot area.

Table 1 is a summary of the
2018. Table 2 provides a summeding bird survey data collecteds
vey on June 13th,
cie de ec ed d ing
e s r e and habitat types
where they were detected.

Common Name	Latin Name	S-Rank*	NBDERD General Status *	Highest breeding status [†]	Number Recorded
American Crow	Corvus brachyrhynchos	S 5	Secure	PO	17
American Goldfinch	Spinus tristis	S 5	Secure	PO	4
American Redstart	Setophaga ruticilla	S5B	Secure	PO	6
American Robin	Furdus migratorius	S5B	Secure	PO	1
Belted Kingfisher	Vlegaceryle alcyon	S5B	Secure	PO	1
Black-and-white Warbler	Viniotilta varia	S5B	Secure	CO	6
Black-capped Chickadee	^o oecile atricapillus	S5	Secure	PO	15
Black-throated Green Warbler	Setophaga virens	S5B	Secure	PO	15
Blackburnian Warbler	Setophaga fusca	S5B	Secure	PO	7
Black-throated Blue Warbler	Setophaga caerulescens	S5B	Secure	PO	2
Blue Jay	Cyanocitta cristata	S5B	Secure	PO	3
Blue-headed Vireo	√ireo solitarius	S5B	Secure	PR	8
Canada Goose	3ranta canadensis	S5B	Secure	PO	5
Canada Warbler	Cardellina canadensis	S3B	At Risk	PO	1
Cedar waxwing	3ombycilla cedrorum	S5B	Secure	PO	3
Chestnut-sided Warbler	Setophaga pensylvanica	S5B	Secure	PO	1

 Table 1. Bird speci
 e orde
 on June 13th, 2018 during point count survey.

BORREAL VIRONMENTAL

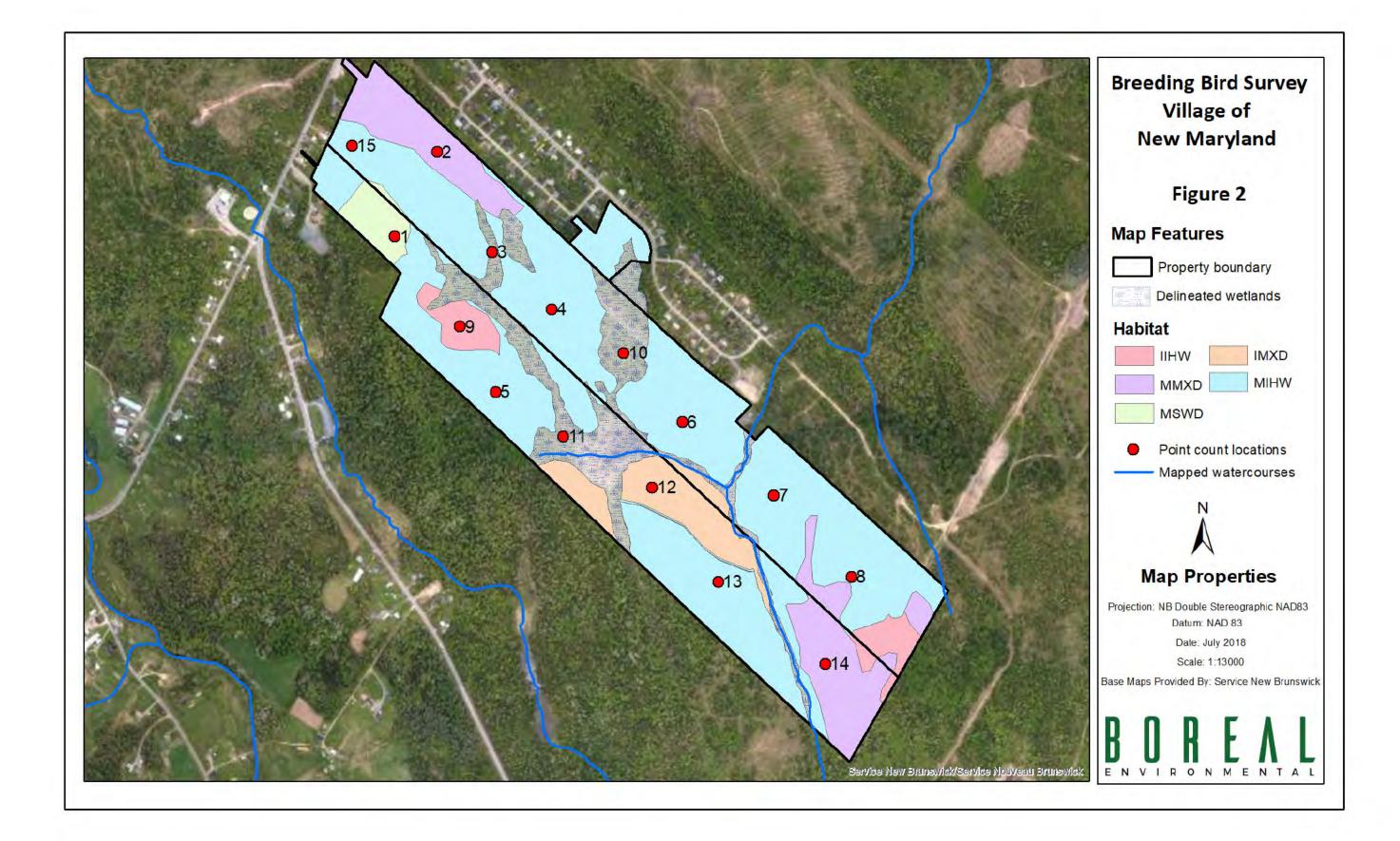
 Table 1. Bird speci
 e orde
 on June 13th, 2018 during point count survey.

eothlypis trichas prvus corax coides pubescens grannus tyrannus egulus satrapa erisoreus canadensis	S5B S5B S5B S5B S5B S5B S5B	Secure Secure Secure Sensitive	PO PO PO CO	1 4
coides pubescens vrannus tyrannus egulus satrapa erisoreus canadensis	S5B S3S4B S5B	Secure Sensitive	PO	
rrannus tyrannus egulus satrapa erisoreus canadensis	S3S4B S5B	Sensitive		1
egulus satrapa erisoreus canadensis	S5B		00	
erisoreus canadensis	and the second sec	-	00	4
		Secure	PO	2
Contraction of the second	S5B	Secure	PO	1
yobates villosus	S5	Secure	PO	4
atharus guttatus	S5B	Secure	CO	9
etophaga magnolia	S5B	Secure	PO	1
enaida macroura	S5B	Secure	PO	1
reothlypis ruficapilla	S5B	Secure	PO	1
plaptes auratus	S5B	Secure	PO	1
etophaga americana	S5B	Secure	PR	12
eiurus aurocapilla	S5B	Secure	PO	25
aemorhous purpureus	S4S5B	Secure	PO	3
tta canadensis	S5	Secure	PR	13
reo olivaceus	S5B	Secure	PO	11
onasa umbellus	S5B	Secure	CO	3
elospiza georgiana	S5B	Secure	PO	1
atharus fuscescens	S4B	Secure	PO	1
onotrichia albicollis	S5B	Secure	PO	2
oglodytes hiemalis	S5B	Secure	PO	5
phyrapicus varius	S5	Secure	со	3
etophaga coronata	S5B	Secure	PO	2
				204
	etophaga magnolia enaida macroura reothlypis ruficapilla olaptes auratus etophaga americana eiurus aurocapilla aemorhous purpureus tta canadensis reo olivaceus onasa umbellus elospiza georgiana atharus fuscescens onotrichia albicollis oglodytes hiemalis ohyrapicus varius etophaga coronata	Analda macrouraS5Breothlypis ruficapillaS5Bplaptes auratusS5Bplaptes auratusS5B <t< td=""><td>AnalysisStateenaida macrouraS5Breothlypis ruficapillaS5Bblaptes auratusS5Bblaptes auratusS5Bbetophaga americanaS5Beiurus aurocapillaS5Bbetophaga americanaS5Beiurus aurocapillaS5Baemorhous purpureusS4S5BSecuretta canadensisS5securereo olivaceusS5BSecureelospiza georgianaS5Bsecureatharus fuscescensS4BSecureoglodytes hiemalisS5BSecureohyrapicus variusS5Secure</td><td>AnalysisStatePOenaida macrouraS5BSecurePOreothlypis ruficapillaS5BSecurePOolaptes auratusS5BSecurePOetophaga americanaS5BSecurePReturus aurocapillaS5BSecurePOaemorhous purpureusS4S5BSecurePOtta canadensisS5SecurePRreo olivaceusS5BSecurePOonasa umbellusS5BSecurePOelospiza georgianaS5BSecurePOatharus fuscescensS4BSecurePOonotrichia albicollisS5BSecurePOoglodytes hiemalisS5BSecurePOohyrapicus variusS5SecureCO</td></t<>	AnalysisStateenaida macrouraS5Breothlypis ruficapillaS5Bblaptes auratusS5Bblaptes auratusS5Bbetophaga americanaS5Beiurus aurocapillaS5Bbetophaga americanaS5Beiurus aurocapillaS5Baemorhous purpureusS4S5BSecuretta canadensisS5securereo olivaceusS5BSecureelospiza georgianaS5Bsecureatharus fuscescensS4BSecureoglodytes hiemalisS5BSecureohyrapicus variusS5Secure	AnalysisStatePOenaida macrouraS5BSecurePOreothlypis ruficapillaS5BSecurePOolaptes auratusS5BSecurePOetophaga americanaS5BSecurePReturus aurocapillaS5BSecurePOaemorhous purpureusS4S5BSecurePOtta canadensisS5SecurePRreo olivaceusS5BSecurePOonasa umbellusS5BSecurePOelospiza georgianaS5BSecurePOatharus fuscescensS4BSecurePOonotrichia albicollisS5BSecurePOoglodytes hiemalisS5BSecurePOohyrapicus variusS5SecureCO

Table 2. Summary of bird sp es and associated habitat within the Project rea.

Common Name	Latin Name	Habitat i ɔn [†]		
American Crow	Corvus brachyrhynchos	IMXD, YIHW, MIHW		
American Goldfinch	Spinus tristis	YIHW, MIHW		
American Redstart	Setophaga ruticilla	YIHW, MIHW		
American Robin	Turdus migratorius	W W , MIHW		
Belted Kingfisher	Megaceryle alcyon	WL		
Black-and-white Warbler	Mniotilta varia	YIHW, MIHW		
Black-capped Chickadee	Poecile atricapillus	YIHW, MIHW		
Black-throated Green Warbler	Setophaga virens	,MIHW		
Blackburnian Warbler	Setophaga fusca	YIHW, MIHW		
Black-throated Blue Warbler	Setophaga caerulescens	ens YIHW, MIHW		
Blue Jay	Cyanocitta cristata	YIHW, MIHW		

BOREAL ENVIRONMENTAL


Common Name	Latin Name		Habitat		i on [†]
Blue-headed Vireo	Vireo soli	tarius		W	W MMXD
Canada Goose	Branta ca	nadensis	WL		
Canada Warbler	Cardellina	a canadensis	YMXD		
Cedar waxwing	Bombycill	a cedrorum	WL		
Chestnut-sided Warbler	Setophag	a pensylvanica	MIHW		
Common Yellowthroat	Geothlypi	s trichas	YIHW, M	IIHW	
Common Raven	Corvus co	orax	MIHW		
Downy Woodpecker	Picoides	oubescens	MIHW		
Eastern Kingbird	Tyrannus	tyrannus	MIHW		
Golden-crowned Kinglet	Regulus s	satrapa	IMXD, M	IHW	
Gray Jay	Perisoreu	s canadensis	MSWD		
Hairy Woodpecker	Dryobates	s villosus	YIHW, M	IIHW	and the second second
Hermit Thrush	Catharus	guttatus	W	W	W, YIHW, MMXD
Magnolia Warbler	Setophag	a magnolia	MSWD		
Mourning Dove	Zenaida macroura		YIHW		
Nashville Warbler	Oreothlyp	is ruficapilla	IMXD	-	
Northern Flicker	Colaptes auratus		MIHW		
Northern Parula	Setophag	a americana	W	W	', MIHW
Ovenbird	Seiurus a	urocapilla		W	, 1IHW, MMXD
Purple Finch	Haemorh	ous purpureus	IMXD, Y	HW	
Red-breasted Nuthatch	Sitta cana	adensis	W	W	W, MMXD
Red-eyed Vireo	Vireo oliva	aceus	YIHW, IIHW, MIHW		
Ruffed Grouse	Bonasa u	mbellus	YIHW,)
Swamp Sparrow	Melospiza	a georgiana	WL		
Veery	Catharus	fuscescens	WL		
White-throated Sparrow	Zonotrich	ia albicollis	MIHW		
Winter Wren	Troglodyt	es hiemalis	W	W	W
Yellow-bellied Sapsucker	Sphyrapic	cus varius	IMXD		
Yellow-rumped Warbler	Setophaga coronata		IMXD		
Habitat Codes: YIHW - Young intolerant hardwood IIHW - Intolerant hardwood MIHW - Mature intolerant hardwood		MSWD - Mature IMXD - Immature MMXD - Mature WL - Wetland	mixedwood		

3.4 d e i a s n of Species of Conservation of Concern

 and of Special е 0 t own occurrences of d Conservation Concern (SCC) n a ved from the AC ed n r I h i h potential h i Project Area are pe e addressed in this report. Severa e i e ifie by the AC CDC as d spe having been reported within a 5 at for some of the С a a a. species listed b exists within the Project Area. es a summary of pr

these species and habitat requi a o d t of otential for these t e h h ibitat types that exist within the Project Area.

Table 3. Bird Species at Risk and Special Conservation Concern reported by the AC CDC.

Common Name	Scientific Name	Breeding habitat	Foraging habitat	i of	SARA (Schedule 1) NB ESA	S Rank	General Status
Brown-headed Cowbird	Molothrus ater	Grasslands with low and scattered trees, forest edges, shrub thickets, fields, pastures, orchards, and residential areas.	Fields and pastures.	Low	NA	S3B,S3M	May Be At Risk
Canada warbler	Wilsonia canadensis	Moist dense thickets near wetlands .	Forages on ground or in dense understory thickets.	Recorded	Threatened	S3B,S3M	At Risk
Chimney Swift	Chaetura pelagica	Trunks of large, hollow trees, and occasionally on cave walls or in rocky crevices prior to European settlement. Post Euopean settlement house chimneys.	Same as nesting.	Low	Threatened	S2S3B,S2M	At Risk
Common Nighthawk	Chordeiles minor	Open area habitats, abandon agriculture, disturbed areas, bogs, rock outcrops and gravel roofs.	At high altitude or over open areas.	Low	Threatened	S3B	At Risk
Eastern Kingbird	Tyrannus tyrannus	Fields with scattered shrubs and trees, orchards, and forest edges. Edges of marshes and farmland.	Open habitat with scattered trees for perching.	Recorded	NA	S3S4B,S3S4 M	Sensitive
Evening Grosbeak	Coccothraustes vespertinus	Coniferous and mixed forests; often associated with spruce and fir.	Forages in trees and fruiting shrubs.	Moderate	Special concern	S3B, S3S4N, SUM	Sensitive
Great Crested Flycatcher	Myiarchus crinitus	Deciduous/mixed forests, and forest edges or abandoned orchards. Nests in natural cavity or old woodpecker holes.	Forest edge or open habitat with perches.	Moderate	NA	S2S3B, S2S3M	Sensitive
Killdeer	Charadrius vociferus	Various but prefer open habitat. Pastures, plowed fields, large lawns, mudflats, lake shores, coastal estuaries.	Forages in open areas typically near water.	Low	NA	S3B,S3M	Sensitive

Red-shouldered Hawk	Buteo lineatus	Nests in deciduous and mixed forest, with tall trees and relatively open understory, often along rivers and swamps.	Same as nesting	Low			
Scarlet Tanager	Piranga olivacea	Large undisturbed tracts of mature deciduous and mixed forests.	Same as nesting	Moderate	NA	S3B,S3M	Secure
Whip-Poor-Will	Caprimulgus vociferus	Rich moist woodlands, either deciduous or mixed forest with sparse understory, close to open areas.	Same as nesting	Moderate	Threatened	S2B, S2M	At Risk

B O R E A L

4.0 D SMENT

I o uct between June 11th and June 16th 0 y errick Mitchell, a qualified wetland delineator, of or al v ronmen I a s essm t for each wetland he ing parameters:

- Boundary delineation a d characterization of each wetland; and
- A e ment for each wetland.

4.1 o hods

Wetland delineation was cond i c or ineers Wetlands of ce w е ental Labor t y 1 recorded on NB i r d t е a Sheet which is provided in Appendix IV а xisting information (aerial photography and LiDAR) ΙΟ I e on. Munsell Soil е SS Color Charts (Kollmorgen Instru ic soils within the е t survey area. The Flora of New r s 0 s te p ant nomenclature (n and identification.

Wetland habitat was identified ng th following criteria in accordance with the Corps of g r W n n Manual:

- m t om t ation species are wetland associated species;
- r c i n that res t r f i n or saturation during the growing season; and
- Hydric soils are present

Data point locations were sampleoeehdata to support arton-wetland status. Theano nt locations wererdid GPS Unit with a ± 3 m accuracy.

4.1.1 Vegetation

The Corps of Engineers Wetlar s L at o u e i es d op yi egetation as the T life that occurs in and duration of а t inundation or soil saturation plue p o ical sat r ed soils of sufficient duration to exert a controlling infunce n he plat issify an area as ci s sen То i should be the dominant plant type. 'wetland', hydrophytic v

The "50/20 rule" was used to determine the dom na t pla t species at each data point location. Dominant plant species observe е to their indicator а 0 d r status (probability of occurrence n 0 percent) of the а а dominant vegetation with the a OBL), facultative е е а ut tive (FAC) (excluding FACs e as considered to be а А е i i v e ation.

B O R E A L

4.1.2 Soils

A hydric soil is formed when soil over an extended 0 С po period during the growing seas er layer develop. uc n n Indicators that a hydric soil is pre е i *ith bright mottles* and/or low matrix chroma), aqui onditions, sulfidic m r i i е d.ol ons, organic soils er hydric soils list, iron and manganes 0 (Histosols), histic epipedon, hig oils, and organic С t l er streaking in sandy soils.

refusal. The soil s excavated to a minimum depth of 50 (cm) at t was then examined for hydric s tix c l or (if present) of c t h d . е the soil was determined using *Junsell Soil Color Charts* lish w t er or not a soil was r i stermined using Filed Indicators of e c oils in the United r States, A Guide to Identifying an D In ti 6) (United States Hy r T r Department of Agriculture and N esou ces nevtn r ce 6 was used.

4.1.3 Hydrology

g indicators and/or corded. Primary m y w r ft lines; sediment indicators of wetland hydrology i I d i ut a e :w t deposition; drainage patterns; v a b r to f al observation of i v inundation.

In addition to the primary inc t t e etland hydrology indicators. Secondary indicators include, but are not limited to: oxidized root channels in the upper 30 cm; water-s I aves; and local soil survey data. If o ary indicators of wetland hydrology were observe a at m e on cators were used to confirm wetland hydrology.

4.2		f	i	sment
The	а		∕tem cn	i is Protocol for Atlantic Canada (WESP- C s used to assess L 1 and WL 2. WESP-AC is a rapid e ient tool used to
evaluate	the I	n	i	of non-tidal wetlands in Atlantic Canada E SP-AC generates wer, Moderate, Higher) for each of the wetland's functions and
benefits c	-	m	l th a	sessment can be t nf e i s respect to impact mpensation.

WESP- Csedrameters at a landscape and site speciand incorporatesexisting stressors. Theseestimate ayptowing functions:

- e /;
- d t o Stabilization;

- Phosphorus Retention;
- r te Re I R tention;
- Thermoregulation;
- Carbon Sequestration;
- Organic Matter Export;
- Pollinator Habitat;
- e eb e vitat;
- a o F H b it;
- Non- ou abitat;
- Re pitat;
- b at;
- b i at;
- Songbird, Raptor an ammal Habitat;
- Pollinator Habitat; and
- Native Plant Diversity.

Only hi wt t ons are summarized t unctions tend to 0 indicate the important al processes that are a particular wetland efforms within the environment. Benefit scores e not discussed as they t that the function е e pr sented and can be has been considered d v loped; however, the benefit score reviewed in the WESP- C e sheets in Appendix V.

4.3 Wetland s r ults

and WL 2, Two unmapped wetlands, WL i ed n h poerty. They were u r d b r s s ps of various types (Figure 3). WL 1 swamp omplex 13.1 ha in size consisting of forested erene swamp, forested slope lge/reed riparian swamp. I n ap ed intermittent and permanent flow through WL 1 rs which discharge to a vatercourse in the southeaste e property. WL 2 was a determ b uous treed riverene swamp. The wa e c r hat flows through WL 2 discharges to WL 1. F nta ve pho og a hs of pla t m ities within each wetland are provide in n VI.

BORREAL ENVIRONMENTAL

Wetland ID	Wetland Size within Study Area (hectares)	Wetland Characteristics	High Rated Function Attributes
1	13.1	Wetland 1 (WL 1)large wetland complex made up of three different connected intermittent and permanent watercourse channels; i u s j coniferous treed slope swamp, deciduous treed riverene swamp and sedge/reed riparian swamp. These channels are a eriz d s a al drainage channels that do not support fish or fish habitat.Three water t t I ere observed overflowing and contributing a ground water to WL 1 (Photo 1). All wells were equipped with a valve that appeared to y e g period of time. Groundwater had been flowing for a p develop a channel that discharged directly into the d e/e r p r an amp component of the WL 1.The tree layer dominated by red a (Acer rubrum), black ash (Fraxinus nigra), balsam fir n poplar (Populus balsamifera), yellow birch (Betula 	 Stream Flow Support Water Cooling Nitrate Removal & Retention Organic Nutrient Export Resident Fish Habitat Waterbird Feeding Habitat Waterbird Nesting Habitat Songbird, Raptor, & Mammal Habitat Pollinator Habitat Native Plant Habitat

BORREAL ENVIRONMENTAL

		erswamp component of the wetland complex was dge (Carex stricta) and common woolgrass (Scirpus cyperinus) (Photo 5, Aetlolitors included; high water table, soil saturation, and nese indicators are considered primary indicators of wetland hydrology. I components of the WL 1 contained depleted soils ct r z d y low chromo values.Ifmnrespect to WL 1 vegetation, hydrology and soils can d delineation field forms (Appendix IV).	
Wetland ID	Wetland Size within Study Area (hectares)	Wetland Characteristics	High Rated Function Attributes
2	0.7	 Wetland 2 (WL 2) is a nall deciduous treed riverene swamp that includes a us shannel. Although fish were not observed during the d i tercourse may be fish habitat due to observed flow ond tions, gravel substrate and size of the channel. WL 2 was partiall sed and intersected by a utility access road along the rrain vehicle (ATV) use along this road was relatively heavy; however, erosion and rutting appeared to be localized to the road right of way. In the watercourse crosses the utility road via an open a e (., a c I rt) into WL 2. The watercourse flows through WL 2 r es into WL 1. The tree layer of as dominated by black ash, red maple, balsam poplar, s b strata was similar vegetatively to the tree layer and 	 Water Cooling Organic Nutrient Export Waterbird Feeding Habitat Waterbird Nesting Habitat Songbird, Raptor, & Mammal Habitat Pollinator Habitat Native Plant Habitat

m i e of t er black ash and balsam fir, while the herbaceous layer i a d cinnamon fern, New York fern (<i>Thelypteris</i> <i>novaboracensis</i> d sedge (<i>Carex gynandra</i>), sensitive fern (Photos 7, 8 and 9, Appendix VI).
etlolitors included; high water table, soil saturation, andrnIhese indicators are considered primary indicators ofdhoIcomponents of the WL 2 contained depleted soilsct r z dy low chromo values.
I f m n respect to WL 2 vegetation, hydrology and soils can n d delineation field forms (Appendix IV).

4.4 Upland data point v ation

Dominant upland vegetation data point locations i. red maple, gray d birch (Betula populifolia / birch, white ash (Fraxinus Americana, s lily-of-the-valley, star flower (Trientalis borealis), intermediate wood fern (dia) and Canada е bunchberry. A more complete i can be viewed in n eg 0 n t а i or ndix IV).

5.0 CLOSURE D SCLAIMER

The sole purpose of this report ϵ a c B al Environmental was to conduct a rare p a eding bird and wetland survey, on behalf of Opus International Consultants, NB.

s :ts ed th e rae sed on several site visits and etween June 12th and 16th, 2018. Site site investigations t ins at the time of n е visitation / sampling are reflected t c ifirmation of this С n n 0 е information was made.

The report expresses the prof s or a E ond is based ontechnical / scientific knowledge.o aiI ac eaor responsibilityr oreof any use of or reliance upon this report or data/ any third party.

6.0 **REFERENCES**

Canadian Wetland Classification t n (9 s y Witerloo, Waterloo, ON.

Environmental Laboratory.1987ogIianual.TechnicalReport Y-87-1.U. S. Army EngirWsnikI, Mississippi.

1391. Birds protected in Cana Migratory Birds v е а d h Convention Act. Paper Numbe i W Service. Online: ht // c ol cti ns/collection_2011/ec/CW69-1-1-1991.pdf. l to s. ccessed June, 2018.

m nt	1	Migratory Birds Convention Act. Online:
// 1	а	acts/M-7.01/page-1.html. Accessed June, 2018.

Hinds, H.R. 2000. Flora of N 2 E s y e 3runswick Press, Fredericton, NB. 695 pp.

I or tre ny. n ICIrhrKI o en Corporation. Baltimore, Maryland.

	I	m r	nt				2		Species at Risk Act. Online:		
http	o://la	ws-		С	;			е	/acts/S-15.3/ Accessed June, 2018.		
-											
				r		s			2. Species at Risk. Online:		
h	//		b				f		c/cs/2012-c.6//20160809 Accessed	е	13.

Appendix I AC CDC Report

DATA REPORT 5997: New Maryland, NB

Prepared 17 January 2018 by J. Churchill, Data Manager

CONTENTS OF REPORT

1.0 Preface
1.1 Data List
1.2 Restrictions
1.3 Additional Information
Map 1: Buffered Study Area
2.0 Rare and Endangered Species
2.1 Flora
2.2 Fauna
Map 2: Flora and Fauna
3.0 Special Areas
3.1 Managed Areas
3.2 Significant Areas
Map 3: Special Areas
4.0 Rare Species Lists
4.1 Fauna
4.2 Flora
4.3 Location Sensitive Species
4.4 Source Bibliography
5.0 Rare Species within 100 km

5.1 Source Bibliography

Map 1. A 100 km buffer around the study area

1.0 PREFACE

The Atlantic Canada Conservation Data Centre (ACCDC) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A. 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The ACCDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the ACCDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees. URL: www.ACCDC.com.

Upon request and for a fee, the ACCDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the ACCDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

1.1 DATA LIST

Filename	Contents
NwMarylandNB_5997ob.xls	All Rare and legally protected Flora and Fauna in your study area
NwMarylandNB_5997ob100km.xls	A list of Rare and legally protected Flora and Fauna within 100 km of your study area
NwMarylandNB_5997ma.xls	All Managed Areas in your study area
NwMarylandNB_5997ff.xls	Rare and common Freshwater Fish in your study area (DFO database)

1.2 RESTRICTIONS

The ACCDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting ACCDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The ACCDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) ACCDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) ACCDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an ACCDC data response.

1.3 ADDITIONAL INFORMATION

The attached file DataDictionary 2.1.pdf provides metadata for the data provided.

Please direct any additional questions about ACCDC data to the following individuals:

Plants, Lichens, Ranking Methods, All other Inquiries

Sean Blancy, Senior Scientist, Executive Director Tel: (506) 364-2658

sblaney@mta.ca

Animals (Fauna) John Klymko, Zoologist Tel: (506) 364-2660 jklymko@mta.ca

Data Management, GIS James Churchill, Data Manager Tel: (902) 679-6146 jlchurchill@mta.ca Plant Communities Sarah Robinson, Community Ecologist Tel: (506) 364-2664 srobinson@mta.ca

Billing Jean Breau Tel: (506) 364-2657 jrbreau@mta.ca

Questions on the biology of Federal Species at Risk can be directed to ACCDC: (506) 364-2658, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Stewart Lusk, Natural Resources: (506) 453-7110.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Sherman Boates, NSDNR: (902) 679-6146. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NSDNR Regional Biologist:

Western: Duncan Bayne (902) 648-3536 Duncan Bayne@novascotia.ca

(902) 634-7555 Jason-Power@novascotia.ca Eastern: Terry Power (902) 563-3370

Western: Jason Power

Terrance.Power@novascotia.ca

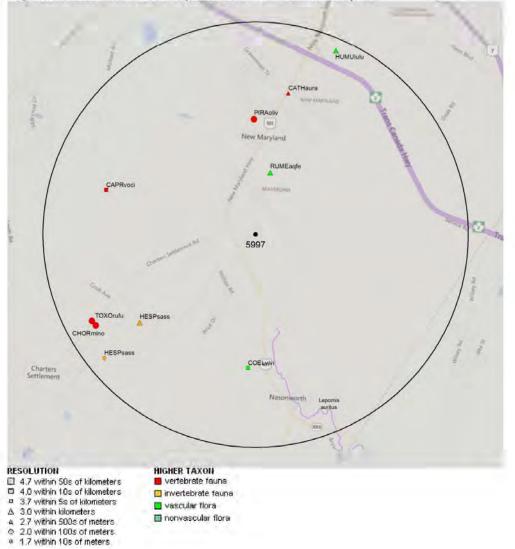
Central: Shavonne Meyer (902) 893-6353 Shavonne.Meyer@novascotia.ca Central: Kimberly George (902) 893-5630 Kimberly.George@novascotia.ca

Eastern: Lisa Doucette (902) 863-7523 Lisa Doucette@novascotia.ca

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Garry Gregory, PEI Dept. of Communities, Land and Environment: (902) 569-7595.

Page 2 of 25

2.0 RARE AND ENDANGERED SPECIES


2.1 FLORA

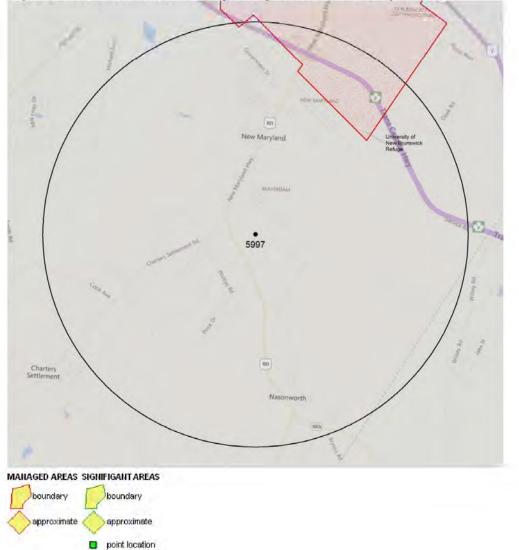
The study area contains 5 records of 3 vascular, no records of nonvascular flora (Map 2 and attached: *ob.xls).

2.2 FAUNA

The study area contains 5 records of 5 vertebrate, 2 records of 1 invertebrate fauna (Map 2 and attached data files - see 1.1 Data List). Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.

Map 2: Known observations of rare and/or protected flora and fauna within the study area.

3.0 SPECIAL AREAS


3.1 MANAGED AREAS

The GIS scan identified 1 managed area in the vicinity of the study area (Map 3 and attached file: *ma*.xls).

3.2 SIGNIFICANT AREAS

The GIS scan identified no biologically significant sites in the vicinity of the study area (Map 3).

Map 3: Boundaries and/or locations of known Managed and Significant Areas within the study area.

Page 5 of 25

4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the study area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (\pm the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community. Note: records are from attached files *ob.xls/*ob.shp only.

4.1	FLORA								
	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
P	Rumex aquaticus var. fenestratus	Western Dock				S1S2	2 May Be At Risk	1	1.5 ± 1.0
P	Coeloglossum viride var. virescens	Long-bracted Frog Orchid				S2	2 May Be At Risk	3	3.1 ± 5.0
Р	Humulus lupulus var. lupuloides	Common Hop				S2?	3 Sensitive	1	4.7 ± 0.0
4.2	FAUNA								
	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)
A	Caprimulgus vociferus	Whip-Poor-Will	Threatened	Threatened	Threatened	S2B,S2M	1 At Risk	1	3.7 ± 7.0
Α	Chordeiles minor	Common Nighthawk	Threatened	Threatened	Threatened	S3B,S4M	1 At Risk	1	4.3 ± 0.0
A	Toxostoma rufum	Brown Thrasher				S2B,S2M	3 Sensitive	1	4.4 ± 0.0
Α	Cathartes aura	Turkey Vulture				S3B,S3M	4 Secure	1	3.4 ± 0.0
Α	Piranga olivacea	Scarlet Tanager				S3B,S3M	4 Secure	1	2.7 ± 0.0
	Hannada anananya	Indian Skipper				S3	4 Secure	2	3.4 ± 2.0
	Hesperia sassacus	Indian Skipper				53	4 Secure	2	3.4 ± 2.0

4.3 LOCATION SENSITIVE SPECIES The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting your study area are indicated below with "YES".

New Brunswick Scientific Name	Common Name	SARA	Prov Legal Prot	Known within the Study Site?
Chrysemys picta picta	Eastern Painted Turtle			No
Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	No
Glyptemys insculpta	Wood Turtle	Threatened	Threatened	No
Haliaeetus leucocephalus	Bald Eagle		Endangered	No
Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius pop.	Special Concern	Endangered	No
Cicindela marginipennis	Cobblestone Tiger Beetle	Endangered	Endangered	No
Coenonympha nipisiquit	Maritime Ringlet	Endangered	Endangered	No
Bat Hibernaculum		[Endangered] ¹	[Endangered] ¹	YES

1 Myotis Jucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

Page 6 of 25

4.4 SOURCE BIBLIOGRAPHY

The recipient of these data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

- Fires CITATION
 Eenedict, B. Connell Herbarium Specimens, University New Brunswick, Frederidon, 2003,
 eBird, 2014, eBird Basic Dataset, Version: EBD_reNov-2014, Ihaca, New York, Nov 2014. Cornell Lab of Ornithology, 25036 recs.
 Lepage, D. 2014, Martime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
 ARCAD
 Benedict, B. Connell Herbarium Specimens Database Download 2004. Connell Menorial Herbarium, University of New Brunswick. 2004.
 Benedict, B. Connell Herbarium Specimens. University New Brunswick Auseum, University of New Brunswick. 2004.
 Benedict, B. Connell Herbarium Specimens. University New Brunswick Auseum, Sain John NB, 19759 recs.
 Clayden, S.R. 1998. NBM Science Collections databases. NB Museum & Nimbus Publ., Halfax, 82,125 recs.
 Houston, J.J. 1990. Status of the Redbreast Suntish (Lopomis auritus) in Canada. Can. Field-Nat. 1044-64.
 Klymko, J.J.D. 2012. Wantimes Butterfly Atlas, 2010 and 2011 records. Atlantic Canada Conservation Data Centre, 8518 recs.
 Klymko, J.J.D. 2014. Maritimes Butterfly Atlas, 2013 and 2011 records. Atlantic Canada Conservation Data Centre, 8552 records.

5.0 RARE SPECIES WITHIN 100 KM

A 100 km buffer around the study area contains 20817 records of 150 vertebrate and 1216 records of 84 invertebrate fauna; 10225 records of 379 vascular, 269 records of 113 nonvascular flora (attached: *ob100km.xls).

Taxa within 100 km of the study site that are rare and/or endangered in the province in which the study site occurs. All ranks correspond to the province in which the study site falls, even for out-of-province records. Taxa are listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation (± the precision, in km, of the record).

Taxonomic										
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
A	Myotis lucifugus	Little Brown Myotis	Endangered	Endangered	Endangered	S1	1 At Risk	62	9.8 ± 1.0	NB
A	Myotis septentrionalis	Northern Long-eared Myotis	Endangered	Endangered	Endangered	S1	1 At Risk	15	11.1 ± 1.0	NB
A	Perimyotis subflavus	Eastern Pipistrelle	Endangered	Endangered	Endangered	S1	1 At Risk	7	78.7 ± 0.0	NB
A	Eubalaena glacialis	North Atlantic Right Whale	Endangered	Endangered	Endangered	S1		1	97.4 ± 1.0	NB
A	Sterna dougallii	Roseate Tern	Endangered	Endangered	Endangered	S1?B,S1?M	1 At Risk	2	92.2 ± 5.0	NB
A	Charadrius melodus melodus	Piping Plover melodus ssp	Endangered	Endangered	Endangered	S1B,S1M	1 At Risk	7	82.8 ± 0.0	NB
A	Dermochelys coriacea (Atlantic pop.)	Leatherback Sea Turtle - Atlantic pop.	Endangered	Endangered	Endangered	S1S2N	1 At Risk	3	85.8 ± 0.0	NB
A	Salmo salar pop. 1	Atlantic Salmon - Inner Bay of Fundy pop.	Endangered	Endangered	Endangered	S2	2 May Be At Risk	430	23.3 ± 0.0	NB
A	Calidris canutus rufa	Red Knot rufa ssp	Endangered		Endangered	S2M	1 At Risk	24	82.2 ± 0.0	NB
A	Pagophila eburnea	Ivory Gull	Endangered	Endangered		SNA	8 Accidental	2	93.7 ± 14.0	NB
A	Protonotaria citrea	Prothonotary Warbler	Endangered	Endangered		SNA	8 Accidental	1	83.5 ± 2.0	NB
A	Rangifer tarandus pop. 2	Woodland Caribou (Atlantic-Gasp - sie pop.)	Endangered	Endangered	Extirpated	SX	0.1 Extirpated	4	52.3 ± 1.0	NB
A	Colinus virginianus	Northern Bobwhite	Endangered	Endangered				4	57.3 ± 0.0	NB
A	Sturnella magna	Eastern Meadowlark	Threatened		Threatened	S1B,S1M	2 May Be At Risk	49	13.0 ± 7.0	NB
A	Ixobrychus exilis	Least Bittern	Threatened	Threatened	Threatened	S1S2B,S1S2M	1 At Risk	30	11.7 ± 0.0	NB
A	Hylocichla mustelina	Wood Thrush	Threatened		Threatened	S1S2B,S1S2M	2 May Be At Risk	241	6.1 ± 7.0	NB
A	Caprimulgus vociferus	Whip-Poor-Will	Threatened	Threatened	Threatened	S2B,S2M	1 At Risk	96	3.7 ± 7.0	NB
A	Hirundo rustica	Barn Swallow	Threatened		Threatened	S2B,S2M	3 Sensitive	1089	5.4 ± 7.0	NB
A	Catharus bicknelli	Bicknell's Thrush	Threatened	Special Concern	Threatened	S2B,S2M	1 At Risk	3	84.8 ± 1.0	NB
A	Glyptemys insculpta	Wood Turtle	Threatened	Threatened	Threatened	S2S3	1 At Risk	242	6.2 ± 0.0	NB
A	Chaetura pelagica	Chimney Swift	Threatened	Threatened	Threatened	S2S3B,S2M	1 At Risk	408	5.4 ± 7.0	NB
A	Riparia riparia	Bank Swallow	Threatened			S2S3B,S2S3M	3 Sensitive	332	6.1 ± 7.0	NB

Page 7 of 25

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Ρ
	Acipenser oxvrinchus	Atlantic Sturgeon	Threatened		Threatened	S3	4 Secure	1	33.3 ± 1.0	N
	Contopus cooperi	Olive-sided Flycatcher	Threatened	Threatened	Threatened	S3B,S3M	1 At Risk	587	5.9 ± 0.0	N
	Wilsonia canadensis	Canada Warbler	Threatened	Threatened	Threatened	S3B,S3M	1 At Bisk	1203	5.4 ± 0.0	N
	Dolichonyx oryzivorus	Bobolink	Threatened	Theatened	Threatened	S3B.S3M	3 Sensitive	893	5.4 ± 7.0	Ň
	Chardeiles minor	Common Nighthawk	Threatened	Threatened	Threatened	S3B.S4M	1 At Risk	438	4.3 ± 0.0	Ň
	Anguilla rostrata	American Eel	Threatened	rifeaterieu	Threatened	S4	4 Secure	38	16.6 ± 0.0	N
	Melanerpes				rineateneu					N
	erythrocephalus	Red-headed Woodpecker	Threatened	Threatened		SNA	8 Accidental	5	10.0 ± 5.0	
	Osmerus mordax pop. 2	Lake Utopia Smelt large-bodied pop.	Threatened		Threatened			2	77.3 ± 10.0	N
	Coturnicops noveboracensis	Yellow Rail	Special Concern	Special Concern	Special Concern	S1?B,SUM	2 May Be At Risk	3	33.8 ± 7.0	N
	Histrionicus histrionicus pop. 1	Harlequin Duck - Eastern pop.	Special Concern	Special Concern	Endangered	S1B,S1S2N,S2M	1 At Risk	106	15.1 ± 0.0	N
	Falco peregrinus pop. 1	Peregrine Falcon - anatum/tundrius	Special Concern	Special Concern	Endangered	S1B,S3M	1 At Risk	186	9.0 ± 0.0	N
	Asio flammeus	Short-eared Owl	Special Concern	Special Concern	Special Concern	S2B,S2M	3 Sensitive	15	36.2 ± 0.0	N
	Bucephala islandica (Eastern pop.)	Barrow's Goldeneye - Eastern pop.	Special Concern	Special Concern	Special Concern	S2M,S2N	3 Sensitive	54	8.4 ± 0.0	N
	Balaenoptera physalus	Fin Whale - Atlantic pop.	Special Concern	Special Concern	Special Concern	S2S3		2	87.7 ± 1.0	N
	Acipenser brevirostrum	Shortnose Sturgeon	Special Concern	Special Concern	Special Concern	S3	3 Sensitive	7	15.5 ± 10.0	1
	Chelydra serpentina	Snapping Turtle	Special Concern	Special Concern	Special Concern	S3	3 Sensitive	27	12.9 ± 1.0	1
	Euphagus carolinus	Rusty Blackbird	Special Concern	Special Concern	Special Concern	S3B,S3M	2 May Be At Risk	204	5.4 ± 7.0	N
	Coccothraustes vespertinus	Evening Grosbeak	Special Concern			S3B,S3S4N,SUM	3 Sensitive	314	5.4 ± 7.0	١
	Phalaropus lobatus	Red-necked Phalarope	Special Concern			S3M	3 Sensitive	6	84.2 ± 0.0	1
	Phocoena phocoena (NW Atlantic pop.)	Harbour Porpoise - Northwest Atlantic pop.	Special Concern	Threatened		S4		73	73.4 ± 100.0	٢
	Contopus virens	Eastern Wood-Pewee	Special Concern		Special Concern	S4B,S4M	4 Secure	666	5.3 ± 0.0	1
	Podiceps auritus	Horned Grebe	Special Concern		Special Concern	S4N,S4M	4 Secure	94	17.4 ± 0.0	١
	Tryngites subruficollis	Buff-breasted Sandpiper	Special Concern			SNA	8 Accidental	16	83.8 ± 1.0	1
	Bubo scandiacus	Snowy Owl	Not At Risk			S1N,S2S3M	4 Secure	9	14.4 ± 1.0	١
	Accipiter cooperii	Cooper's Hawk	Not At Risk			S1S2B,S1S2M	2 May Be At Risk	13	12.0 ± 1.0	1
	Fulica americana	American Coot	Not At Risk			S1S2B.S1S2M	3 Sensitive	4	44.7 ± 7.0	١
	Aegolius funereus	Boreal Owl	Not At Risk			S1S2B.SUM	2 May Be At Risk	1	99.3 ± 0.0	٨
	Sorex dispar	Long-tailed Shrew	Not At Risk	Special Concern		S2	3 Sensitive	2	54.4 ± 5.0	N
	Buteo lineatus	Red-shouldered Hawk	Not At Risk	Special Concern		S2B,S2M	2 May Be At Risk	59	9.0 ± 7.0	1
	Chlidonias niger	Black Tern	Not At Bisk	opena outreen.		S2B.S2M	3 Sensitive	136	9.0 ± 7.0	- i
	Globicephala melas	Long-finned Pilot Whale	Not At Risk			S2S3	0 00101010	2	82.8 ± 1.0	Ň
	Lynx canadensis	Canadian Lynx	Not At Risk		Endangered	S3	1 At Risk	28	25.7 ± 0.0	Ň
	Desmognathus fuscus	Northern Dusky Salamander	Not At Risk		Lindungered	S3	3 Sensitive	91	11.1 ± 1.0	Ň
	Megaptera	Humpback Whale (NW Atlantic pop.)	Not At Risk	Special Concern		S3	5 Senanve	1	97.4 ± 5.0	Ň
	novaeangliae			opecial opicient						
	Sterna hirundo	Common Tern	Not At Risk			S3B,SUM	3 Sensitive	159	9.0 ± 7.0	٢
	Podiceps grisegena	Red-necked Grebe	Not At Risk			S3M,S2N	3 Sensitive	76	11.2 ± 0.0	1
	Lagenorhynchus acutus	Atlantic White-sided Dolphin	Not At Risk			S3S4		1	86.5 ± 1.0	1
	Haliaeetus leucocephalus	Bald Eagle	Not At Risk		Endangered	S4	1 At Risk	782	5.8 ± 0.0	1
	Canis lupus	Grav Wolf	Not At Risk		Extirpated	SX	0.1 Extirpated	4	28.8 ± 1.0	1
	Puma concolor pop. 1	Eastern Cougar	Data Deficient		Endangered	SU	5 Undetermined	62	8.2 ± 1.0	i
	Morone saxatilis	Striped Bass	E.E.SC		Enuangered	S3	2 May Be At Risk	10	20.0 ± 1.0	1
		Arctic Char	E,E,80			53 S1		10		
	Salvelinus alpinus						3 Sensitive		92.8 ± 1.0	
	Vireo flavifrons	Yellow-throated Vireo				S1?B,S1?M	8 Accidental	15	12.3 ± 0.0	
	Tringa melanoleuca	Greater Yellowlegs				S1?B,S5M	4 Secure	344	9.1 ± 70.0	
										1
4 4	Aythya americana Gallinula chloropus	Redhead Common Moorhen				S1B,S1M S1B,S1M	8 Accidental 3 Sensitive	4 21		53.0 ± 7.0 11.7 ± 0.0

Page 8 of 25

iroup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pr
· ·	Grus canadensis	Sandhill Crane				S1B,S1M	8 Accidental	10	55.9 ± 0.0	NE
	Bartramia longicauda	Upland Sandpiper				S1B,S1M	3 Sensitive	39	15.7 ± 7.0	NE
	Phalaropus tricolor	Wilson's Phalarope				S1B,S1M	3 Sensitive	42	6.1 ± 7.0	NE
	Leucophaeus atricilla	Laughing Gull				S1B,S1M	3 Sensitive	9	9.8 ± 1.0	NE
	Progne subis	Purple Martin				S1B,S1M	2 May Be At Risk	284	6.1 ± 7.0	NE
	Thryothorus Iudovicianus	Carolina Wren				S1B,S1M	8 Accidental	39	9.0 ± 0.0	NE
	Oxyura jamaicensis	Ruddy Duck				S1B,S2S3M	4 Secure	45	10.9 ± 5.0	NE
	Uria aalge	Common Murre				S1B,S3N,S3M	4 Secure	9	92.2 ± 0.0	NE
	Aythya affinis	Lesser Scaup				S1B,S4M	4 Secure	198	8.4 ± 0.0	NE
	Aythya marila	Greater Scaup				S1B.S4M.S2N	4 Secure	31	25.6 ± 7.0	N
	Eremophila alpestris	Horned Lark				S1B.S4N.S5M	2 May Be At Risk	34	8.8 ± 7.0	N
	Sterna paradisaea	Arctic Tern				S1B.SUM	2 May Be At Risk	7	92.2 ± 5.0	N
	Fratercula arctica	Atlantic Puffin				S1B,SUN,SUM	3 Sensitive	11	92.2 ± 0.0	N
	Branta bernicla	Brant				S1N, S2S3M	4 Secure	32	17.4 ± 0.0	Ň
	Chroicocephalus									N
	ridibundus	Black-headed Gull				S1N,S2M	3 Sensitive	9	9.8 ± 1.0	
	Butorides virescens	Green Heron				S1S2B,S1S2M	3 Sensitive	21	6.1 ± 7.0	N
	Nycticorax nycticorax	Black-crowned Night-heron				S1S2B,S1S2M	3 Sensitive	10	50.5 ± 0.0	N
	Empidonax traillii	Willow Flycatcher				S1S2B,S1S2M	3 Sensitive	81	6.1 ± 7.0	N
	Stelgidopteryx serripennis	Northern Rough-winged Swallow				S1S2B,S1S2M	2 May Be At Risk	28	6.1 ± 7.0	Ν
	Troglodytes aedon	House Wren				S1S2B.S1S2M	5 Undetermined	32	14.9 ± 7.0	N
	Rissa tridactyla	Black-legged Kittiwake				S1S2B,S4N,S5M	4 Secure	8	9.8 ± 1.0	N
	Calidris bairdii	Baird's Sandpiper				S1S2M	3 Sensitive	21	82.2 ± 0.0	N
	Cistothorus palustris	Marsh Wren				S2B,S2M	3 Sensitive	94	11.6 ± 0.0	N
	Mimus polyglottos	Northern Mockingbird				S2B,S2M	3 Sensitive	123	6.1 ± 7.0	N
	Toxostoma rufum	Brown Thrasher				S2B,S2M	3 Sensitive	109	4.4 ± 0.0	Ň
	Pooecetes gramineus	Vesper Sparrow				S2B,S2M	2 May Be At Risk	82	29.5 ± 7.0	N
	Anas strepera	Gadwall				S2B,S3M	4 Secure	78	11.0 ± 30.0	N
	Alca torda	Bazorbill				S2B,S3N,S3M	4 Secure 4 Secure	8	88.9 ± 2.0	N
	Alca Iolua	hazorolli				S2B,S4S5N,S4S5	4 Secole	0	00.9 ± 2.0	N
	Pinicola enucleator	Pine Grosbeak				528,5455N,5455 M	3 Sensitive	53	15.3 ± 7.0	
	Tringa solitaria Oceanodroma	Solitary Sandpiper				S2B,S5M	4 Secure	121	9.4 ± 0.0	N
	leucorhoa	Leach's Storm-Petrel				S2B,SUM	3 Sensitive	4	9.8 ± 1.0	
	Chen caerulescens	Snow Goose				S2M	4 Secure	6	15.8 ± 0.0	N
	Phalacrocorax carbo	Great Cormorant				S2N,S2M	4 Secure	22	16.8 ± 0.0	N
	Somateria spectabilis	King Eider				S2N,S2M	4 Secure	5	93.2 ± 0.0	N
	Larus hyperboreus	Glaucous Gull				S2N,S2M	4 Secure	102	6.5 ± 0.0	N
	Asio otus	Long-eared Owl				S2S3	5 Undetermined	15	13.6 ± 7.0	N
	Picoides dorsalis	American Three-toed Woodpecker				S2S3	3 Sensitive	26	9.8 ± 1.0	N
	Salmo salar	Atlantic Salmon				S2S3	2 May Be At Risk	218	20.0 ± 1.0	N
	Anas clypeata	Northern Shoveler				S2S3B.S2S3M	4 Secure	75	7.3 ± 0.0	N
	Myiarchus crinitus	Great Crested Flycatcher				S2S3B,S2S3M	3 Sensitive	296	5.4 ± 7.0	N
	Petrochelidon pvrrhonota	Cliff Swallow				S2S3B,S2S3M	3 Sensitive	529	6.1 ± 7.0	Ν
	Pluvialis dominica	American Golden-Plover				S2S3M	3 Sensitive	53	8.7 ± 0.0	N
	Calcarius lapponicus	Lapland Longspur				S2S3N.SUM	3 Sensitive	17	8.2 ± 0.0	N
	Cepphus arvile	Black Guillemot				S3	4 Secure	110	78.8 ± 7.0	N
	Loxia curvirostra	Red Crossbill				S3	4 Secure	108	13.6 ± 7.0	N
	Carduelis pinus	Pine Siskin				S3	4 Secure	264	5.4 ± 7.0	N
	Prosopium									N
	cylindraceum	Round Whitefish				S3	4 Secure	3	32.2 ± 0.0	
	Salvelinus namaycush	Lake Trout				S3	3 Sensitive	7	57.3 ± 0.0	N
	Sorex maritimensis	Maritime Shrew				S3	4 Secure	1	24.7 ± 1.0	N
	Eptesicus fuscus	Big Brown Bat				S3	3 Sensitive	46	7.2 ± 1.0	N

Page 9 of 25

iroup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
1	Cathartes aura	Turkey Vulture				S3B,S3M	4 Secure	290	3.4 ± 0.0	NB
۱	Rallus limicola	Virginia Rail				S3B,S3M	3 Sensitive	126	6.1 ± 7.0	NB
k	Charadrius vociferus	Killdeer				S3B,S3M	3 Sensitive	670	5.4 ± 7.0	NB
k	Tringa semipalmata	Willet				S3B,S3M	3 Sensitive	16	12.1 ± 0.0	NB
	Coccyzus erythropthalmus	Black-billed Cuckoo				S3B,S3M	4 Secure	190	11.0 ± 0.0	NB
	Vireo gilvus	Warbling Vireo				S3B,S3M	4 Secure	274	6.1 ± 7.0	NB
	Piranga olivacea	Scarlet Tanager				S3B,S3M	4 Secure	337	2.7 ± 0.0	NB
	Passerina cyanea	Indigo Bunting				S3B,S3M	4 Secure	132	6.1 ± 7.0	NB
	Molothrus ater	Brown-headed Cowbird				S3B,S3M	2 May Be At Risk	287	5.4 ± 7.0	NB
	Icterus galbula	Baltimore Oriole				S3B,S3M	4 Secure	222	5.4 ± 7.0	NB
	Somateria mollissima	Common Eider				S3B,S4M,S3N	4 Secure	455	12.4 ± 199.0	NB
	Dendroica tigrina	Cape May Warbler				S3B,S4S5M	4 Secure	162	8.6 ± 7.0	NB
	Anas acuta	Northern Pintail				S3B,S5M	3 Sensitive	49	10.5 ± 1.0	NB
	Mergus serrator	Red-breasted Merganser				S3B,S5M,S4S5N	4 Secure	74	12.6 ± 7.0	NB
	Arenaria interpres	Ruddy Turnstone				S3M	4 Secure	106	47.0 ± 0.0	NB
	Phalaropus fulicarius	Red Phalarope				S3M	3 Sensitive	2	88.1 ± 0.0	NB
	Melanitta nigra	Black Scoter				S3M.S1S2N	3 Sensitive	145	9.6 ± 0.0	NB
	Bucephala albeola	Bufflehead				S3M.S2N	3 Sensitive	627	8.4 ± 0.0	NB
	Calidris maritima	Purple Sandpiper				S3M,S3N	4 Secure	117	82.8 ± 9.0	NB
	Uria Iomvia	Thick-billed Murre				S3N,S3M	5 Undetermined	11	91.8 ± 0.0	NB
	Synaptomys cooperi	Southern Bog Lemming				S3S4	4 Secure	74	7.0 ± 1.0	NB
	Tyrannus tyrannus	Eastern Kingbird				S3S4B.S3S4M	3 Sensitive	598	5.4 ± 7.0	NB
	Actitis macularius	Spotted Sandpiper				S3S4B.S5M	4 Secure	638	6.1 ± 7.0	NB
	Gallinago delicata	Wilson's Snipe				S3S4B.S5M	4 Secure	694	6.1 ± 7.0	NB
	Larus delawarensis	Ring-billed Gull				S3S4B.S5M	4 Secure	186	9.4 ± 0.0	NB
	Dendroica striata	Blackpoll Warbler				S3S4B,S5M	4 Secure	41	13.6 ± 7.0	NB
	Pluvialis squatarola	Black-bellied Plover				S3S4D,35M S3S4M	4 Secure	213	12.1 ± 0.0	NB
	Limosa haemastica	Hudsonian Godwit				S3S4M	4 Secure	25	80.5 ± 0.0	NB
	Calidris pusilla	Semipalmated Sandpiper				S3S4M	4 Secure	362	11.2 ± 0.0	NB
	Calidris melanotos	Pectoral Sandpiper				S3S4M S3S4M	4 Secure 4 Secure	121	11.9 ± 0.0	NB
	Calidris alba	Sanderling				S3S4M.S1N	3 Sensitive	140	11.2 ± 0.0	NB
	Morus bassanus	Northern Gannet				SHB.S5M	4 Secure	41	71.6 ± 0.0	NB
A.		Northern Gannet				5HD,50M	4 Secure	41	71.6 ± 0.0	NB
	Quercus macrocarpa -	Des Oals - Ded Maria / Constitute From Marthem								NB
С	Acer rubrum / Onoclea sensibilis - Carex arcta	Bur Oak - Red Maple / Sensitive Fern - Northern Clustered Sedge Forest				S2		1	39.3 ± 0.0	
	Forest									
	Acer saccharinum /	01 M I /0 17 F 0 0 17								NB
;	Onoclea sensibilis -	Silver Maple / Sensitive Fern - Swamp Yellow				S3		1	23.3 ± 0.0	
	Lysimachia terrestris	Loosestrife Forest								
	Forest									
	Thuja occidentalis -									NB
	Picea glauca / Mitella	Eastern White Cedar - White Spruce / Naked								
	nuda - Athyrium filix-	Bishop's-Cap - Common Lady Fern / Calcareous				S3		1	85.3 ± 0.0	
	femina / Mnium spp.	Moss Forest								
	Forest									
	Acer saccharum -									NB
	Fraxinus americana /	Sugar Maple - White Ash / Common Oak Fern -								
	Gymnocarpium	Silvery Glade Fern Forest				S3		2	96.8 ± 0.0	
	dryopteris - Deparia	cirrery ciace i cirri credi								
	acrostichoides Forest									
	Acer saccharum -									NB
	Fraxinus americana /	Sugar Maple - White Ash / Christmas Fern				S3S4		1	78.0 ± 0.0	
	Polystichum	Forest				0004			/0.U ± 0.0	
	acrostichoides Forest									
	Cicindela	Cobblestone Tiger Beetle	Endangered	Endangered	Endangered	S1	1 At Risk	39	45.4 ± 0.0	NB

Page 10 of 25

oup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pro
bup	Gomphus ventricosus	Skillet Clubtail	Endangered	SANA	Endangered	S1S2	2 May Be At Risk	50	6.4 ± 1.0	NB
	Danaus plexippus	Monarch	Endangered	Special Concern	Special Concern	S3B,S3M	3 Sensitive	70	5.8 ± 0.0	NB
	Ophiogomphus howei	Pygmy Snaketail	Special Concern	Special Concern	Special Concern	S2	2 May Be At Risk	8	41.8 ± 0.0	NB
	Alasmidonta varicosa	Brook Floater	Special Concern		Special Concern	S2	3 Sensitive	1	41.8 ± 0.0	NB
	Lampsilis cariosa	Yellow Lampmussel	Special Concern	Special Concern	Special Concern	S2	3 Sensitive	103	8.4 ± 0.0	NB
	Bombus terricola	Yellow-banded Bumblebee	Special Concern			S3?	3 Sensitive	25	35.4 ± 0.0	NB
	Appalachina sayana	Spike-lip Crater	Not At Risk			S3?		2	70.4 ± 1.0	NB
	Haematopota rara	Shy Cleg				S1	5 Undetermined	1	7.0 ± 1.0	NE
	Lycaena dorcas	Dorcas Copper				S1	2 May Be At Risk	16	52.6 ± 0.0	NE
	Érora laeta	Early Hairstreak				S1	2 May Be At Risk	5	16.3 ± 7.0	NE
	Somatochiora	Muskeg Emerald				S1	2 May Be At Risk	1	34.5 ± 1.0	NE
	septentrionalis	Muskey Emerald					2 May be At hisk		34.5 ± 1.0	
	Arigomphus furcifer	Lilypad Clubtail				S1	5 Undetermined	6	20.6 ± 0.0	NB
	Polites origenes	Crossline Skipper				S1?	5 Undetermined	5	15.7 ± 0.0	NE
	Plebejus saepiolus	Greenish Blue				S1S2	4 Secure	3	8.5 ± 1.0	NB
	Ophiogomphus	Boreal Snaketail				S1S2	2 May Be At Risk	36	6.4 ± 1.0	NB
	colubrinus	Doreal Shaketali				3132	2 may be At hisk	30	0.4 1 1.0	
	Cicindela	Appalachian Tiger Beetle				S2	5 Undetermined	3	82.8 ± 0.0	NB
	ancocisconensis						o ondotonninou	-		
	Encyclops caerulea	a Longhorned Beetle				S2		1	89.2 ± 0.0	NB
	Brachyleptura	a Longhorned Beetle				S2		6	20.3 ± 0.0	NB
	circumdata									
	Satyrium calanus	Banded Hairstreak				S2	3 Sensitive	16	8.9 ± 0.0	NB
	Satyrium calanus	Banded Hairstreak				S2	4 Secure	6	10.8 ± 1.0	NB
	falacer	Oraci Usianta ali				S2	4 Secure	3	24.0 ± 1.0	
	Strymon melinus	Grey Hairstreak				52 S2	4 Secure 3 Sensitive	12		NE
	Aeshna clepsydra Somatochlora	Mottled Darner					3 Sensitive		56.4 ± 0.0	NB
	tenebrosa	Clamp-Tipped Emerald				S2	5 Undetermined	5	7.2 ± 1.0	ND
	Ladona exusta	White Corporal				S2	5 Undetermined	8	45.3 ± 0.0	NB
	Hetaerina americana	American Rubyspot				52 S2	3 Sensitive	15	40.4 ± 0.0	NB
	Coenagrion							15		NB
	interrogatum	Subarctic Bluet				S2	3 Sensitive	1	73.2 ± 0.0	ND
	Ischnura posita	Fragile Forktail				S2	2 May Be At Risk	5	6.6 ± 0.0	NB
	Callophrys henrici	Henry's Elfin				S2S3	4 Secure	13	6.1 ± 7.0	NB
	Celithemis martha	Martha's Pennant				S2S3	5 Undetermined	1	74.0 ± 0.0	NB
	Sphaeroderus									NB
	nitidicollis	a Ground Beetle				S3	4 Secure	1	32.2 ± 0.0	NU
	Lepturopsis biforis	a Longhorned Beetle				S3		1	84.7 ± 1.0	NE
	Orthosoma brunneum	a Longhorned Beetle				S3		1	41.8 ± 5.0	NE
	Elaphrus americanus	a Ground Beetle				S3	4 Secure	1	20.6 ± 0.0	NE
	Desmocerus palliatus	Elderberry Borer				S3	4 360016	4	84.7 ± 1.0	NE
	Agonum excavatum	a Ground Beetle				S3	4 Secure	1	20.6 ± 0.0	NE
	Clivina americana	a Ground Beetle				S3	4 Secure	1	20.6 ± 0.0	NE
	Olisthopus parmatus	a Ground Beetle				S3	4 Secure	1	32.2 ± 0.0	NE
	Paratachys scitulus	a Ground Beetle				53 S3	5 Undetermined	1	20.6 ± 0.0	NE
	Coccinella									NE
	hieroglyphica kirbyi	a Ladybird Beetle				S3	4 Secure	1	84.7 ± 1.0	INC
	Hippodamia									NB
	parenthesis	Parenthesis Lady Beetle				S3	4 Secure	2	84.7 ± 1.0	ALC: N
	Stenocorus vittigera	a Longhorned Beetle				S3		1	20.6 ± 0.0	NB
	Gnathacmaeops	-								NB
	pratensis	a Longhorned Beetle				S3		5	84.7 ± 1.0	140
	Poaonocherus mixtus	a Longhorned Beetle				S3		1	84.7 ± 1.0	NE
	Badister neopulchellus	a Ground Beetle				S3	4 Secure	1	20.6 ± 0.0	NE
	Saperda lateralis	a Longhorned Beetle				S3	- occure	2	20.8 ± 0.0 67.9 ± 0.0	NB

Page 11 of 25

up	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pro
up	Euphyes bimacula	Two-spotted Skipper	COSEMIC	SAIIA	Prov Logar Prot	S3	4 Secure	14	6.1 ± 7.0	NB
	Lvcaena hvlius	Bronze Copper				S3	3 Sensitive	4	45.6 ± 0.0	NB
	Satyrium acadica	Acadian Hairstreak				S3	4 Secure	25	48.0 ± 0.0	NB
	Callophrys polios	Hoary Elfin				S3	4 Secure	12	5.6 ± 0.0	NE
	Callophrys eryphon	Western Pine Elfin				S3	4 Secure	1	84.2 ± 7.0	NE
	Plebeius idas	Northern Blue				S3	4 Secure	8	77.3 ± 0.0	NE
	Plebeius idas empetri	Crowberry Blue				S3	4 Secure	6	79.7 ± 1.0	NE
	Speyeria aphrodite	Aphrodite Fritillary				S3	4 Secure	25	6.1 ± 7.0	NE
	Boloria eunomia	Bog Fritillary				S3	5 Undetermined	2	49.2 ± 0.0	NE
	Boloria bellona	Meadow Fritillary				S3	4 Secure	52	6.1 ± 7.0	NE
	Boloria chariclea	Arctic Fritillary				S3	4 Secure	1	99.7 ± 7.0	NE
	Polygonia satyrus	Satyr Comma				S3	4 Secure	21	6.1 ± 7.0	NE
	Polvaonia aracilis	Hoary Comma				S3	4 Secure	14	11.1 ± 1.0	NE
		Compton Tortoiseshell				53 53	4 Secure 4 Secure	15	6.1 ± 7.0	NE
	Nymphalis I-album	Cobra Clubtail				53 S3	3 Sensitive	58	6.4 ± 1.0	NE
	Gomphus vastus					53 53	3 Sensitive 4 Secure	58	6.4 ± 1.0 9.5 ± 0.0	NE
	Gomphus abbreviatus	Spine-crowned Clubtail				53	4 Secure	51	9.5 ± 0.0	
	Gomphaeschna furcillata	Harlequin Damer				S3	5 Undetermined	11	7.2 ± 1.0	NE
	Dorocordulia lepida	Petite Emerald				S3	4 Secure	27	11.3 ± 1.0	NE
	Somatochlora	Ringed Emerald				S3	4 Secure	1	84.2 ± 1.0	NB
	Somatochlora									NB
	cingulata	Lake Emerald				S3	4 Secure	11	24.9 ± 1.0	
	Somatochlora forcipata	Forcipate Emerald				S3	4 Secure	20	10.4 ± 1.0	NE
	Williamsonia fletcheri	Ebony Boghaunter				S3	4 Secure	17	9.0 ± 1.0	N
	Lestes eurinus	Amber-Winged Spreadwing				S3	4 Secure	9	28.3 ± 1.0	N
	Lestes vigilax	Swamp Spreadwing				S3	3 Sensitive	35	30.4 ± 0.0	N
	Enallagma geminatum	Skimming Bluet				S3	5 Undetermined	13	31.1 ± 0.0	N
	Enallagma signatum	Orange Bluet				S3	4 Secure	12	33.4 ± 0.0	NE
	Stylurus scudderi	Zebra Clubtail				S3	4 Secure	70	9.5 ± 0.0	NE
	Alasmidonta undulata	Triangle Floater				S3	3 Sensitive	51	20.7 ± 0.0	NE
	Leptodea ochracea	Tidewater Mucket				S3	4 Secure	67	8.4 ± 0.0	NE
	Striatura ferrea	Black Striate				S3		1	7.2 ± 1.0	NE
	Neohelix albolabris	Whitelip				S3		2	7.2 ± 1.0	NE
	Spurwinkia salsa	Saltmarsh Hydrobe				S3		34	52.1 ± 0.0	N
	Pantala hymenaea	Spot-Winged Glider				S3B.S3M	4 Secure	5	72.4 ± 0.0	N
	Satvrium liparops	Striped Hairstreak				S3S4	4 Secure	8	6.1 ± 7.0	N
	Satyrium liparops							-		N
	strigosum	Striped Hairstreak				S3S4	4 Secure	1	14.1 ± 10.0	
	Cupido comyntas Coccinella	Eastern Tailed Blue				S3S4	4 Secure	8	13.8 ± 0.0	NE
	transversoguttata	Transverse Lady Beetle				SH	2 May Be At Risk	2	71.4 ± 0.0	
	richardsoni									
	Pseudevernia cladonia	Ghost Antler Lichen	Not At Risk			S2S3	5 Undetermined	12	52.0 ± 0.0	NE
	Bryum muehlenbeckii	Muehlenbeck's Bryum Moss				S1	2 May Be At Risk	1	72.2 ± 1.0	NE
	Sphagnum macrophyllum	Sphagnum				S1	2 May Be At Risk	2	54.0 ± 0.0	NE
	Syntrichia ruralis	a Moss				S1	2 May Be At Risk	1	96.9 ± 0.0	NE
	Coscinodon cribrosus	Sieve-Toothed Moss				S1	2 May Be At Risk	i	83.6 ± 0.0	N
	Atrichum angustatum	Lesser Smoothcap Moss				S1?	2 May Be At Risk	1	76.2 ± 2.0	N
	Calliergon trifarium	Three-ranked Moss				S1?	2 May Be At Risk	1	77.4 ± 0.0	N
	Dichelyma falcatum	a Moss				S1?	2 May Be At Risk 2 May Be At Risk	2	12.9 ± 10.0	N
		a Moss Boniean's Broom Moss				S1?		2	9.3 ± 1.0	N
	Dicranum bonjeanii					S1? S1?	2 May Be At Risk	1		N
	Entodon brevisetus	a Moss					2 May Be At Risk		90.4 ± 10.0	
	Eurhynchium hians Homomallium adnatum	Light Beaked Moss Adnate Hairy-gray Moss				S1? S1?	2 May Be At Risk 2 May Be At Risk	2	11.1 ± 1.0 90.4 ± 10.0	N

Page 12 of 25

iroup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pro
1	latebricola Racomitrium ericoides	a Moss				S1?	2 May Be At Risk	1	33.7 ± 3.0	NB
	Splachnum	Southern Dung Moss				S1?	2 May Be At Risk	2	32.9 ± 1.0	NB
	pennsylvanicum					S1?		-		
1	Platylomella lescurii Jungermannia obovata	a Moss Egg Flapwort				S17 S1S2	5 Undetermined 6 Not Assessed	1	72.2 ± 1.0 73.5 ± 0.0	NB NB
	Pallavicinia Ivellii	Lyell's Ribbonwort				S1S2	6 Not Assessed	2	90.4 ± 1.0	NB
	Reboulia	Purple-margined Liverwort				S1S2	6 Not Assessed	1	89.1 ± 1.0	NB
1	hemisphaerica Brachythecium	Acuminate Ragged Moss				S1S2	5 Undetermined	3	11.1 ± 10.0	NB
	acuminatum	00						-		
	Bryum salinum	a Moss				S1S2	2 May Be At Risk	1	84.2 ± 1.0	NB NB
1	Campylium radicale Ditrichum pallidum	Long-stalked Fine Wet Moss Pale Cow-hair Moss				S1S2 S1S2	5 Undetermined 2 May Be At Risk	1	11.1 ± 1.0 27.0 ± 1.0	NB
	Drummondia									NB
1	prorepens	a Moss				S1S2	2 May Be At Risk	1	87.8 ± 1.0	ND
1	Fissidens taxifolius	Yew-leaved Pocket Moss				S1S2	2 May Be At Risk	4	73.1 ± 0.0	NB
1	Seligeria brevifolia	a Moss				S1S2	3 Sensitive	1	79.3 ± 1.0	NB
1	Sphagnum platvphvllum	Flat-leaved Peat Moss				S1S2	5 Undetermined	3	27.0 ± 1.0	NB
L	Timmia norvegica	a moss				S1S2	2 May Be At Risk	1	90.3 ± 0.0	NB
1	Tomentypnum falcifolium	Sickle-leaved Golden Moss				S1S2	2 May Be At Risk	1	84.9 ± 1.0	NB
I	Pseudotaxiphyllum distichaceum	a Moss				S1S2	2 May Be At Risk	2	9.8 ± 1.0	NE
	Hamatocaulis vernicosus	a Moss				S1S2	2 May Be At Risk	1	92.9 ± 100.0	NE
1	Calypogeia neesiana	Nees' Pouchwort				S1S3	6 Not Assessed	1	78.2 ± 1.0	NE
1	Cephaloziella elachista	Spurred Threadwort				S1S3	6 Not Assessed	1	77.8 ± 5.0	NE
1	Porella pinnata	Pinnate Scalewort				S1S3	6 Not Assessed	2	67.5 ± 1.0	NE
	Amphidium mougeotii	a Moss				S2	3 Sensitive	1	84.7 ± 8.0	NE
	Anomodon viticulosus	a Moss				S2	2 May Be At Risk	5	78.2 ± 0.0	NE
1	Cirriphyllum piliferum Cvnodontium	Hair-pointed Moss				S2	3 Sensitive	2	80.0 ± 1.0	NE
	strumiferum	Strumose Dogtooth Moss				S2	3 Sensitive	1	84.7 ± 8.0	INE
1	Dicranella palustris	Drooping-Leaved Fork Moss				S2	3 Sensitive	2	57.1 ± 100.0	NE
1	Didymodon ferrugineus	a moss				S2	3 Sensitive	3	78.5 ± 0.0	N
	Anomodon tristis	a Moss				S2	2 May Be At Risk	1	36.8 ± 1.0	N
	Hypnum pratense Isoptervaiopsis	Meadow Plait Moss				S2	3 Sensitive	3	78.4 ± 0.0	N
	pulchella	Neat Silk Moss				S2	3 Sensitive	1	87.9 ± 1.0	INE
	Meesia triquetra	Three-ranked Cold Moss				S2	2 May Be At Risk	2	57.1 ± 100.0	NE
1	Physcomitrium immersum	a Moss				S2	3 Sensitive	6	11.1 ± 1.0	NE
1	Sphagnum centrale	Central Peat Moss				S2	3 Sensitive	1	81.6 ± 0.0	NE
1	Sphagnum lindbergii	Lindberg's Peat Moss				S2	3 Sensitive	7	76.6 ± 1.0	N
	Tetraplodon mnioides	Entire-leaved Nitrogen Moss				S2	3 Sensitive	3	79.9 ± 0.0	N
	Thamnobryum alleghaniense	a Moss				S2	3 Sensitive	2	90.4 ± 0.0	N
	Tortula mucronifolia	Mucronate Screw Moss				S2	3 Sensitive	1	82.5 ± 0.0	NE
	Ulota phyllantha	a Moss				S2	3 Sensitive	1	84.2 ± 1.0	N
	Anomobryum filiforme	a moss				S2	5 Undetermined	1	11.1 ± 1.0	N
1	Leptogium corticola	Blistered Jellyskin Lichen				S2	2 May Be At Risk	1	36.1 ± 0.0	N
	Andreaea rothii	a Moss				S2?	3 Sensitive	1	95.5 ± 0.0	N
	Anomodon minor	Blunt-leaved Anomodon Moss				S2?	2 May Be At Risk	1	88.6 ± 1.0	N
1	Brachythecium	a Moss				S2?	3 Sensitive	2	11.1 ± 1.0	N

Page 13 of 25

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
N	Bryum pallescens	Pale Bryum Moss			· · · · ·	S2?	5 Undetermined	2	41.6 ± 1.0	NB
N	Dichelyma capillaceum	Hairlike Dichelyma Moss				S2?	3 Sensitive	2	41.7 ± 4.0	NB
4	Dicranum spurium	Spurred Broom Moss				S2?	3 Sensitive	2	84.3 ± 0.0	NB
4	Schistostega pennata	Luminous Moss				S2?	3 Sensitive	3	11.1 ± 1.0	NB
4	Seligeria campylopoda	a Moss				S2?	3 Sensitive	2	78.5 ± 0.0	NB
4	Seligeria diversifolia	a Moss				S2?	3 Sensitive	1	46.0 ± 0.0	NB
1	Sphagnum	a Peatmoss				S2?	3 Sensitive	3	54.4 ± 1.0	NB
	angermanicum									
4	Plagiomnium rostratum	Long-beaked Leafy Moss				S2?	3 Sensitive	1	90.6 ± 0.0	NB
1	Bryum uliginosum	a Moss				S2S3	3 Sensitive	1	93.8 ± 4.0	NB
4	Buxbaumia aphylla	Brown Shield Moss				S2S3	3 Sensitive	2	76.4 ± 15.0	NB
4	Calliergonella cuspidata	Common Large Wetland Moss				S2S3	3 Sensitive	4	78.9 ± 0.0	NB
í.	cuspidata Campylium polygamum	a Moss				S2S3	3 Sensitive	1	63.4 ± 1.0	NB
4	Didvmodon riaidulus	Rigid Screw Moss				S2S3	3 Sensitive	1	25.1 ± 8.0	NB
	Ephemerum serratum	a Moss				S2S3	3 Sensitive	2	97.0 ± 0.0	NB
N	Fissidens bushii	Bush's Pocket Moss				S2S3	3 Sensitive	3	79.0 ± 1.0	NB
	Orthotrichum									NB
4	speciosum	Showy Bristle Moss				S2S3	5 Undetermined	3	28.3 ± 3.0	ND
	Racomitrium									NB
N	fasciculare	a Moss				S2S3	3 Sensitive	1	82.8 ± 0.0	140
N	Scorpidium scorpioides	Hooked Scorpion Moss				S2S3	3 Sensitive	5	77.4 ± 0.0	NB
N	Sphagnum subfulvum	a Peatmoss				S2S3	2 May Be At Risk	4	84.9 ± 1.0	NB
	Taxiphvllum									NB
N	deplanatum	Imbricate Yew-leaved Moss				S2S3	3 Sensitive	2	78.4 ± 0.0	
N	Zygodon viridissimus	a Moss				S2S3	2 May Be At Risk	2	77.8 ± 5.0	NB
N	Schistidium agassizii	Elf Bloom Moss				S2S3	3 Sensitive	2	75.4 ± 2.0	NB
N	Cynodontium tenellum	Delicate Dogtooth Moss				S3	3 Sensitive	1	84.2 ± 1.0	NB
N	Hypnum curvitolium	Curved-leaved Plait Moss				S3	3 Sensitive	1	77.8 ± 5.0	NB
N	Schistidium maritimum	a Moss				S3	4 Secure	1	84.2 ± 1.0	NB
N	Peltigera	Membranous Pelt Lichen				S3	5 Undetermined	2	94.5 ± 0.0	NB
•	membranacea	Wernuranous Feit Lichen				00	5 Ondetermined	-	34.3 1 0.0	
N	Aulacomnium	Little Groove Moss				S3?	4 Secure	2	76.3 ± 1.0	NB
	androgynum									
N	Dicranella rufescens	Red Forklet Moss				S3?	5 Undetermined	2	10.4 ± 4.0	NB
N	Sphagnum lescurii	a Peatmoss				S3?	5 Undetermined	2	77.7 ± 0.0	NB
N	Anomodon rugelii	Rugel's Anomodon Moss				S3S4	3 Sensitive	4	89.7 ± 0.0	NB
N	Barbula convoluta	Lesser Bird's-claw Beard Moss				S3S4	4 Secure		25.1 ± 8.0	NB NB
N	Brachythecium velutinum	Velvet Ragged Moss				S3S4	4 Secure	5	30.9 ± 4.0	ND
N	Dicranella cerviculata	a Moss				S3S4	3 Sensitive	3	84.2 ± 1.0	NB
N	Dicranum maius	Greater Broom Moss				S3S4	4 Secure	3	76.4 ± 15.0	NB
N	Fissidens bryoides	Lesser Pocket Moss				S3S4	4 Secure	3	38.0 ± 4.0	NB
N	Helodium blandowii	Wetland-plume Moss				S3S4	4 Secure	2	87.9 ± 1.0	NB
	Heterocladium							-		NB
N	dimorphum	Dimorphous Tangle Moss				S3S4	4 Secure	1	75.4 ± 2.0	
N	Isopterygiopsis	a Moss				S3S4	4 Secure	6	30.9 ± 4.0	NB
N	muelleriana	a woss					4 Secure	ю	30.9 ± 4.0	
N	Myurella julacea	Small Mouse-tail Moss				S3S4	4 Secure	1	84.7 ± 8.0	NB
N	Physcomitrium	Pear-shaped Urn Moss				S3S4	3 Sensitive	6	11.1 ± 0.0	NB
N	pyriforme									NB
	Pogonatum dentatum	Mountain Hair Moss				S3S4	4 Secure	1	84.2 ± 1.0	NB NB
	Sphagnum torreyanum	a Peatmoss				S3S4 S3S4	4 Secure 4 Secure	4	82.0 ± 1.0 82.3 ± 1.0	NB NB
N										
N	Sphagnum austinii	Austin's Peat Moss								
N N	Sphagnum austinii Sphagnum contortum	Twisted Peat Moss				S3S4	4 Secure	1	78.4 ± 0.0	NB
	Sphagnum austinii							1 4 1		

Page 14 of 25

iroup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
	angustatus Tomentypnum nitens	Golden Fuzzy Fen Moss				S3S4	4 Secure	1	72.1 ± 3.0	NB
	Trichostomum tenuirostre	Acid-Soil Moss				S3S4	4 Secure	3	77.8 ± 5.0	NB
	Limprichtia revolvens Rauiella scita	a Moss Smaller Fern Moss				S3S4 S3S4	4 Secure 3 Sensitive	2	76.5 ± 0.0 81.1 ± 3.0	NB NB
	Pseudocyphellaria perpetua	Gilded Specklebelly Lichen				S3S4	3 Sensitive	30	29.4 ± 0.0	NB
	Pannaria conoplea Grimmia anodon Leucodon brachypus	Mealy-rimmed Shingle Lichen Toothless Grimmia Moss a Moss				S3S4 SH SH	3 Sensitive 5 Undetermined 2 May Be At Risk	1 2 3	36.1 ± 0.0 82.0 ± 10.0 39.5 ± 10.0	NB NB
	Orthotrichum avmnostomum	a Moss				SH	2 May Be At Risk	1	41.3 ± 10.0	NB
	Thelia hirtella	a Moss				SH	2 May Be At Risk	1	57.1 ± 100.0	NB
	Cyrto-hypnum minutulum	Tiny Cedar Moss				SH	2 May Be At Risk	3	85.0 ± 10.0	NB
	Juglans cinerea	Butternut	Endangered	Endangered	Endangered	S1	1 At Risk	393	9.0 ± 1.0	NB
	Polemonium vanbruntiae	Van Brunt's Jacob's-ladder	Threatened	Threatened	Threatened	S1	1 At Risk	72	76.5 ± 1.0	NB
	Symphyotrichum anticostense	Anticosti Aster	Threatened	Threatened	Endangered	S2S3	1 At Risk	48	16.5 ± 0.0	NB
	Symphyotrichum praealtum	Willow-leaved Aster	Threatened	Threatened		SNA	7 Exotic	1	89.8 ± 1.0	NB
	Isoetes prototypus	Prototype Quillwort	Special Concern	Special Concern	Endangered	S2	1 At Risk	22	5.3 ± 0.0	NB
	Pterospora andromedea	Woodland Pinedrops			Endangered	S1	1 At Risk	24	13.7 ± 0.0	NB
	Cryptotaenia canadensis	Canada Honewort				S1	2 May Be At Risk	5	72.4 ± 1.0	NB
	Sanicula trifoliata Antennaria parlinii	Large-Fruited Sanicle a Pussytoes				S1 S1	2 May Be At Risk 2 May Be At Risk	21 7	64.6 ± 0.0 53.6 ± 1.0	NB NB
	Antennaria howellii ssp. petaloidea	Pussy-Toes				S1	2 May Be At Risk	2	70.8 ± 1.0	NB
	Bidens discoidea	Swamp Beggarticks				S1	2 May Be At Risk	3	31.2 ± 0.0	NB
	Pseudognaphalium obtusifolium	Eastern Cudweed				S1	2 May Be At Risk	2	56.7 ± 0.0	NB
	Helianthus decapetalus	Ten-rayed Sunflower				S1	2 May Be At Risk	20	14.9 ± 0.0	NB
	Hieracium kalmii	Kalm's Hawkweed				S1	2 May Be At Risk	4	9.5 ± 6.0	NB
	Hieracium kalmii var. kalmii	Kalm's Hawkweed				S1	2 May Be At Risk	4	10.1 ± 1.0	NB
	Hieracium paniculatum Hieracium robinsonii	Panicled Hawkweed Robinson's Hawkweed				S1 S1	2 May Be At Risk 3 Sensitive	4 1	15.5 ± 0.0 78.6 ± 0.0	NB NB
	Symphyotrichum laeve	Smooth Aster				S1	5 Undetermined	6	61.9 ± 1.0	NB
	Canadanthus modestus Cynoglossum	Great Northern Aster				S1	2 May Be At Risk	12	91.1 ± 0.0	NB NB
	virginianum var. boreale	Wild Comfrey				S1	2 May Be At Risk	14	81.6 ± 0.0	ND
	Cardamine parviflora var. arenicola	Small-flowered Bittercress				S1	2 May Be At Risk	4	64.6 ± 0.0	NB
	Cardamine concatenata	Cut-leaved Toothwort				S1	2 May Be At Risk	11	20.0 ± 1.0	NB
	Draba arabisans	Rock Whitlow-Grass				S1	2 May Be At Risk	3	73.8 ± 0.0	NB
	Draba breweri var.	Brewer's Whitlow-grass				S1	2 May Be At Risk	10	16.7 ± 0.0	NB
	cana Draba glabella Minuartia oroenlandica	Rock Whitlow-Grass Greenland Stitchwort				S1 S1	2 May Be At Risk 2 May Be At Risk	7	35.2 ± 1.0 64.8 ± 0.0	NB NB

Page 15 of 25

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
	capitatum					· · · · · · · · · · · · · · · · · · ·				
P	Chenopodium simplex	Maple-leaved Goosefoot				S1	2 May Be At Risk	7	10.3 ± 5.0	NB
P	Callitriche terrestris	Terrestrial Water-Starwort				S1	5 Undetermined	1	85.3 ± 0.0	NB
P	Triadenum virginicum	Virginia St John's-wort				S1	2 May Be At Risk	7	48.1 ± 0.0	NB
P	Viburnum acerifolium	Maple-leaved Viburnum				S1	2 May Be At Risk	10	96.7 ± 0.0	NB
P	Drosera anglica	English Sundew				S1	2 May Be At Risk	1	71.1 ± 0.0	NB
P	Drosera linearis	Slender-Leaved Sundew				S1	2 May Be At Risk	1	71.1 ± 0.0	NB
P	Corema conradii	Broom Crowberry				S1	2 May Be At Risk	1	83.6 ± 10.0	NB
P	Vaccinium boreale	Northern Blueberry				S1	2 May Be At Risk	1	69.3 ± 0.0	NB
Р	Vaccinium corymbosum	Highbush Blueberry				S1	3 Sensitive	9	70.1 ± 0.0	NB
Р	Desmodium glutinosum	Large Tick-Trefoil				S1	2 May Be At Risk	9	74.9 ± 1.0	NB
P	Lespedeza capitata	Round-headed Bush-clover				S1	2 May Be At Risk	7	44.7 ± 0.0	NB
P	Gentiana rubricaulis	Purple-stemmed Gentian				S1	2 May Be At Risk	14	54.6 ± 0.0	NB
P	Ribes cynosbati	Prickly Gooseberry				S1	2 May Be At Risk	1	78.1 ± 0.0	NB
P	Proserpinaca pectinata	Comb-leaved Mermaidweed				S1	2 May Be At Risk	1	72.4 ± 0.0	NB
Р	Pycnanthemum virginianum	Virginia Mountain Mint				S1	2 May Be At Risk	4	64.7 ± 0.0	NB
P	Decodon verticillatus	Swamp Loosestrife				S1	2 May Be At Risk	3	50.3 ± 0.0	NB
Р	Polygala verticillata var. verticillata	Whorled Milkwort				S1	5 Undetermined	2	79.5 ± 0.0	NB
P	Lysimachia hybrida	Lowland Yellow Loosestrife				S1	2 May Be At Risk	15	82.3 ± 0.0	NB
P	Lysimachia quadrifolia	Whorled Yellow Loosestrife				S1	2 May Be At Risk	14	61.6 ± 0.0	NB
P	Ranunculus lapponicus	Lapland Buttercup				S1	2 May Be At Risk	1	99.0 ± 1.0	NB
P	Ranunculus sceleratus	Cursed Buttercup				S1	2 May Be At Risk	6	9.6 ± 0.0	NB
P	Crataegus jonesiae	Jones' Hawthorn				S1	2 May Be At Risk	6	9.0 ± 1.0	NB
P	Potentilla canadensis	Canada Cinquefoil				S1	5 Undetermined	1	70.2 ± 0.0	NB
Р	Waldsteinia fragarioides	Barren Strawberry				S1	2 May Be At Risk	27	64.6 ± 0.0	NB
P	Galium brevipes	Limestone Swamp Bedstraw				S1	2 May Be At Risk	3	46.7 ± 5.0	NB
Р	Saxifraga paniculata ssp. neogaea	White Mountain Saxifrage				S1	2 May Be At Risk	7	73.8 ± 0.0	NB
Р	Agalinis paupercula var. borealis	Small-flowered Agalinis				S1	2 May Be At Risk	8	9.7 ± 10.0	NB
P	Agalinis tenuifolia	Slender Agalinis				S1	2 May Be At Risk	6	9.6 ± 0.0	NB
P	Gratiola aurea	Golden Hedge-Hyssop				S1	3 Sensitive	2	69.7 ± 0.0	NB
P	Pedicularis canadensis	Canada Lousewort				S1	2 May Be At Risk	20	13.7 ± 0.0	NB
P	Viola canadensis	Canada Violet				S1	2 May Be At Risk	84	78.7 ± 0.0	NB
Р	Viola sagittata var. ovata	Arrow-Leaved Violet				S1	2 May Be At Risk	10	12.4 ± 0.0	NB
P	Alisma subcordatum	Southern Water Plantain				S1	5 Undetermined	8	12.1 ± 0.0	NB
P	Carex annectens	Yellow-Fruited Sedge				S1	2 May Be At Risk	1	79.1 ± 0.0	NB
P	Carex backii	Rocky Mountain Sedge				S1	2 May Be At Risk	6	16.3 ± 1.0	NB
P	Carex blanda	Eastern Woodland Sedge				S1	2 May Be At Risk	1	78.9 ± 0.0	NB
Р	Carex cephaloidea	Thin-leaved Sedge				S1	2 May Be At Risk	22	26.9 ± 0.0	NB
P	Carex merritt-fernaldii	Merritt Fernald's Sedge				S1	2 May Be At Risk	2	88.5 ± 0.0	NB
P	Carex saxatilis	Russet Sedge				S1	2 May Be At Risk	13	72.9 ± 0.0	NB
P	Carex sterilis	Sterile Sedge				S1	2 May Be At Risk	12	18.8 ± 0.0	NB
P	Carex grisea	Inflated Narrow-leaved Sedge				S1	2 May Be At Risk	11	11.9 ± 1.0	NB
P	Cyperus diandrus	Low Flatsedge				S1	2 May Be At Risk	7	9.4 ± 1.0	NB
P	Cyperus lupulinus Cyperus lupulinus ssp.	Hop Flatsedge				S1	2 May Be At Risk	6	39.2 ± 0.0	NB NB
P	macilentus Eleocharis olivacea	Hop Flatsedge Yellow Spikerush				S1 S1	2 May Be At Risk 2 May Be At Risk	16 3	39.3 ± 1.0 84.7 ± 1.0	NB
·	Rhynchospora							-		NB
Р	capillacea	Slender Beakrush				S1	2 May Be At Risk	3	16.0 ± 0.0	1412

Page 16 of 25

Taxonomic Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
	Sisyrinchium angustifolium	Narrow-leaved Blue-eyed-grass			-	S1	2 May Be At Risk	3	65.0 ± 0.0	NB
P	Juncus greenei	Greene's Rush				S1	2 May Be At Risk	1	83.3 ± 0.0	NB
	Juncus subtilis	Creeping Rush				S1	2 May Be At Risk	1	49.1 ± 5.0	NB
	Allium canadense	Canada Garlic				S1	2 May Be At Risk	11	15.1 ± 0.0	NB
	Goodyera pubescens	Downy Rattlesnake-Plantain				S1	2 May Be At Risk	1	9.8 ± 0.0	NB
	Malaxis brachypoda	White Adder's-Mouth				S1	2 May Be At Risk	12	45.4 ± 0.0	NB
	Platanthera flava var. herbiola	Pale Green Orchid				S1	2 May Be At Risk	13	13.3 ± 10.0	NB
D	Platanthera macrophylla	Large Round-Leaved Orchid				S1	2 May Be At Risk	з	9.3 ± 1.0	NB
P	Spiranthes casei	Case's Ladies'-Tresses				S1	2 May Be At Risk	6	13.7 ± 0.0	NB
P	Bromus pubescens	Hairy Wood Brome Grass				S1	5 Undetermined	6	38.8 ± 0.0	NB
P	Cinna arundinacea	Sweet Wood Reed Grass				S1	2 May Be At Risk	22	37.5 ± 0.0	NB
P	Danthonia compressa	Flattened Oat Grass				S1	2 May Be At Risk	3	47.8 ± 0.0	NB
	Dichanthelium dichotomum	Forked Panic Grass				S1	2 May Be At Risk	19	68.8 ± 1.0	NB
	Dichanthelium	Slender Panic Grass				S1	2 May Be At Risk	6	79.4 ± 0.0	NB
	xanthophysum Elymus hystrix var.						-			NB
P	bigeloviana	Spreading Wild Rye				S1	2 May Be At Risk	26	64.5 ± 0.0	
	Festuca subverticillata	Nodding Fescue				S1	2 May Be At Risk	9	88.8 ± 0.0	NB
	Glyceria obtusa	Atlantic Manna Grass				S1	2 May Be At Risk	6	57.7 ± 0.0	NB
	Sporobolus compositus	Rough Dropseed				S1	2 May Be At Risk	17	15.0 ± 0.0	NB
	Potamogeton friesii	Fries' Pondweed				S1	2 May Be At Risk	6	11.1 ± 5.0	NB
	Potamogeton nodosus Potamogeton	Long-leaved Pondweed				S1	2 May Be At Risk	14	9.4 ± 1.0	NB NB
	strictifolius	Straight-leaved Pondweed				S1	2 May Be At Risk	2	72.7 ± 0.0	ND
	Xyris difformis Asplenium ruta-muraria	Bog Yellow-eyed-grass				S1	5 Undetermined	3	66.0 ± 0.0	NB NB
P	var. cryptolepis	Wallrue Spleenwort				S1	2 May Be At Risk	3	73.8 ± 0.0	
	Dryopteris clintoniana	Clinton's Wood Fern				S1	2 May Be At Risk	2	78.9 ± 0.0	NB
	Botrychium oneidense	Blunt-lobed Moonwort				S1	2 May Be At Risk	8	16.0 ± 0.0	NB
	Botrychium rugulosum	Rugulose Moonwort				S1	2 May Be At Risk	5	56.6 ± 1.0	NB
	Schizaea pusilla	Little Curlygrass Fern				S1	2 May Be At Risk	16	82.5 ± 0.0	NB
	Hieracium kalmii var. fasciculatum	Kalm's Hawkweed				S1?	5 Undetermined	2	10.2 ± 1.0	NB
	Cuscuta campestris	Field Dodder				S1?	2 May Be At Risk	3	47.5 ± 10.0	NB
P	Drosera rotundifolia var. comosa	Round-leaved Sundew				S1?	5 Undetermined	2	99.7 ± 1.0	NB
	Galium trifidum ssp. subbiflorum	Three-petaled Bedstraw				S1?	5 Undetermined	1	85.7 ± 1.0	NB
P	Carex laxiflora	Loose-Flowered Sedge				S1?	5 Undetermined	1	86.4 ± 0.0	NB
	Carex appalachica	Appalachian Sedge				S1?	5 Undetermined	1	85.0 ± 0.0	NB
	Sisyrinchium mucronatum	Michaux's Blue-eyed-grass				S1?	5 Undetermined	3	82.2 ± 0.0	NB
	Wolffia columbiana	Columbian Watermeal				S1?	2 May Be At Risk	5	9.8 ± 0.0	NB
P	Rumex aquaticus var. fenestratus	Western Dock				S1S2	2 May Be At Risk	1	1.5 ± 1.0	NB
	Anemone multifida var. richardsiana	Cut-leaved Anemone				S1S2	5 Undetermined	2	83.0 ± 5.0	NB
P	Saxifraga virginiensis	Early Saxifrage				S1S2	2 May Be At Risk	14	13.6 ± 0.0	NB
	Potamogeton bicupulatus	Snailseed Pondweed				S1S2	2 May Be At Risk	5	47.8 ± 0.0	NB
	Selaginella rupestris	Rock Spikemoss				S1S2	2 May Be At Risk	11	16.1 ± 1.0	NB
										A UD
	Thelypteris simulata	Bog Fern				S1S2	2 May Be At Risk	7	30.8 ± 0.0	NB NB

Page 17 of 25

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
P	Listera australis	Southern Twayblade			Endangered	S2	1 At Risk	15	28.7 ± 0.0	NB
P	Osmorhiza longistylis	Smooth Sweet Cicely Clustered Sanicle				S2 S2	3 Sensitive	8 22	21.2 ± 5.0	NB NB
	Sanicula odorata Pseudognaphalium						2 May Be At Risk		21.3 ± 0.0	NB
Р	macounii	Macoun's Cudweed				S2	3 Sensitive	12	13.6 ± 0.0	
Р	Solidago simplex var. racemosa	Sticky Goldenrod				S2	2 May Be At Risk	18	14.5 ± 0.0	NB
Р	Ionactis linariifolius	Stiff Aster				S2	3 Sensitive	15	13.6 ± 0.0	NB
Р	Symphyotrichum racemosum	Small White Aster				S2	3 Sensitive	9	15.4 ± 0.0	NB
P	Impatiens pallida	Pale Jewelweed				S2	2 May Be At Risk	5	76.6 ± 0.0	NB
P	Alnus serrulata	Smooth Alder				S2	3 Sensitive	57	39.8 ± 0.0	NB
P	Arabis drummondii Sagina nodosa	Drummond's Rockcress Knotted Pearlwort				S2 S2	3 Sensitive 3 Sensitive	12	16.1 ± 0.0 83.3 ± 1.0	NB NB
P	Sagina nodosa ssp.						0.00010			NB
P	borealis	Knotted Pearlwort				S2	3 Sensitive	1	87.4 ± 0.0	
P	Stellaria longifolia	Long-leaved Starwort				S2	3 Sensitive	12	11.1 ± 10.0	NB
P	Atriplex franktonii	Frankton's Saltbush				S2	4 Secure	1	89.8 ± 1.0	NB
Р	Chenopodium rubrum Hypericum	Red Pigweed				S2	3 Sensitive	4	73.5 ± 1.0	NB NB
Р	dissimulatum	Disguised St John's-wort				S2	3 Sensitive	3	15.0 ± 0.0	ND
P	Triosteum aurantiacum	Orange-fruited Tinker's Weed				S2	3 Sensitive	179	16.2 ± 1.0	NB
P	Viburnum lentago	Nannyberry				S2	4 Secure	130	42.8 ± 0.0	NB
P	Viburnum recognitum Astragalus eucosmus	Northern Arrow-Wood Elegant Milk-vetch				S2 S2	4 Secure 2 May Be At Risk	168 12	53.8 ± 0.0 15.8 ± 1.0	NB NB
	Astragalus eucosmus Oxytropis campestris									NB
P	var. johannensis	Field Locoweed				S2	3 Sensitive	12	15.3 ± 1.0	
P	Quercus macrocarpa	Bur Oak				S2	2 May Be At Risk	46	9.2 ± 0.0	NB
P	Gentiana linearis	Narrow-Leaved Gentian				S2	3 Sensitive	15	11.1 ± 5.0	NB
	Myriophyllum humile Proserpinaca palustris	Low Water Milfoil				S2	3 Sensitive	10	15.0 ± 1.0	NB NB
Р	var. crebra	Marsh Mermaidweed				S2	3 Sensitive	24	45.3 ± 0.0	
P	Hedeoma pulegioides	American False Pennyroyal				S2	4 Secure	15	23.0 ± 0.0	NB NB
Р	Nuphar lutea ssp. rubrodisca	Red-disked Yellow Pond-lily				S2	3 Sensitive	14	13.5 ± 10.0	
P	Orobanche uniflora	One-Flowered Broomrape				S2	3 Sensitive	15	34.4 ± 1.0	NB
P	Polygala paucifolia	Fringed Milkwort				S2	3 Sensitive	16	10.2 ± 0.0	NB
F	Polygala senega Polygonum amphibium	Seneca Snakeroot				S2	3 Sensitive	34	26.6 ± 1.0	NB NB
Р	var. emersum	Water Smartweed				S2	3 Sensitive	26	9.5 ± 1.0	
P	Polygonum careyi	Carey's Smartweed				S2	3 Sensitive	15	10.0 ± 1.0	NB
Р	Podostemum ceratophyllum	Horn-leaved Riverweed				S2	3 Sensitive	45	21.9 ± 0.0	NB
Р	Anemone multifida	Cut-leaved Anemone				S2	3 Sensitive	4	16.8 ± 0.0	NB
P	Hepatica nobilis var. obtusa	Round-lobed Hepatica				S2	3 Sensitive	54	13.7 ± 0.0	NB
P	Ranunculus flabellaris	Yellow Water Buttercup				S2	4 Secure	20	16.1 ± 1.0	NB
P	Ranunculus Iongirostris	Eastern White Water-Crowfoot				S2	5 Undetermined	8	7.8 ± 1.0	NB
P	Crataegus scabrida	Rough Hawthorn				S2	3 Sensitive	9	49.7 ± 1.0	NB
P	Crataegus succulenta	Fleshy Hawthorn				S2	3 Sensitive	1	11.1 ± 5.0	NB
Р	Rosa acicularis ssp. sayi	Prickly Rose				S2	2 May Be At Risk	35	77.0 ± 0.0	NB
Р	Cephalanthus occidentalis	Common Buttonbush				S2	3 Sensitive	66	34.7 ± 0.0	NB
P	occidentalis Salix candida	Sage Willow				S2	3 Sensitive	10	25.8 ± 1.0	NB
P	Castilleia	Northeastern Paintbrush				S2 S2	3 Sensitive	9	78.5 ± 0.0	NB

Page 18 of 25

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pro
	septentrionalis									
2	Euphrasia randii	Rand's Eyebright				S2	2 May Be At Risk	5	87.5 ± 0.0	NB
2	Scrophularia Ianceolata	Lance-leaved Figwort				S2	3 Sensitive	12	10.7 ± 100.0	NB
,	Dirca palustris	Eastern Leatherwood				S2	2 May Be At Risk	43	13.8 ± 0.0	NB
•	Phryma leptostachya	American Lopseed				S2	3 Sensitive	69	18.4 ± 1.0	NE
,	Verbena urticifolia	White Vervain				S2	2 May Be At Risk	28	13.6 ± 1.0	NE
	Viola novae-angliae	New England Violet				S2	3 Sensitive	7	58.9 ± 10.0	N
	Symplocarpus foetidus	Eastern Skunk Cabbage				S2	3 Sensitive	70	39.4 ± 0.0	N
	Carex comosa	Bearded Sedge				S2	2 May Be At Risk	7	89.9 ± 0.0	N
	Carex granularis	Limestone Meadow Sedge				S2	3 Sensitive	9	9.2 ± 0.0	N
	Carex gynocrates	Northern Bog Sedge				S2	3 Sensitive	45	69.0 ± 0.0	N
	Carex hirtifolia	Pubescent Sedge				S2	3 Sensitive	78	17.0 ± 0.0	N
	Carex livida var.	Livid Sedge				S2	3 Sensitive	5	83.6 ± 2.0	N
	radicaulis							-		
	Carex plantaginea	Plantain-Leaved Sedge				S2	3 Sensitive	101	78.6 ± 0.0	N
	Carex prairea	Prairie Sedge				S2	3 Sensitive	30	84.9 ± 0.0	N
	Carex rostrata	Narrow-leaved Beaked Sedge				S2 S2	3 Sensitive	6	85.4 ± 0.0	N
	Carex salina Carex sprengelii	Saltmarsh Sedge Longbeak Sedge				S2 S2	3 Sensitive 3 Sensitive	2 46	82.8 ± 1.0 13.6 ± 0.0	2
	Carex tenuiflora	Sparse-Flowered Sedge				52 S2	2 May Be At Risk	20	52.0 ± 0.0	N
	Carex albicans var.	Sparse-Flowered Sedge				52	2 May be At Hisk	20	52.0 ± 0.0	N
	emmonsii	White-tinged Sedge				S2	3 Sensitive	4	45.5 ± 0.0	N
	Cyperus squarrosus	Awned Flatsedge				S2	3 Sensitive	31	9.3 ± 10.0	N
	Eriophorum aracile	Slender Cottongrass				S2	2 May Be At Risk	13	35.2 ± 0.0	N
	Elodea nuttallii	Nuttall's Waterweed				S2	3 Sensitive	9	9.7 ± 0.0	N
	Juncus vasevi	Vasey Rush				S2	3 Sensitive	10	77.2 ± 0.0	N
	Allium tricoccum	Wild Leek				S2	2 May Be At Risk	22	64.6 ± 0.0	Ň
	Najas gracillima	Thread-Like Naiad				S2	3 Sensitive	11	31.6 ± 0.0	N
	Calypso bulbosa var.	Calvpso				S2	2 May Be At Risk	39	9.3 ± 1.0	N
	americana	Californi				02	E may be At that	00	0.0 1 1.0	
	Coeloglossum viride	Long-bracted Frog Orchid				S2	2 May Be At Risk	8	3.1 ± 5.0	N
	var. virescens									
	Cypripedium	Constitution in a state Office and					ON-D-AD-		00.10	N
	parviflorum var. makasin	Small Yellow Lady's-Slipper				S2	2 May Be At Risk	11	8.6 ± 1.0	
	Galearis spectabilis	Showy Orchis				S2	2 May Be At Risk	54	64.7 ± 0.0	N
	Goodvera oblonaifolia	Menzies' Rattlesnake-plantain				S2	3 Sensitive	1	52.5 ± 0.0	1
	Spiranthes lucida	Shining Ladies'-Tresses				S2	3 Sensitive	26	8.2 ± 50.0	N
	Spiranthes ochroleuca	Yellow Ladies'-tresses				S2	2 May Be At Risk	20	52.7 ± 5.0	N
	Agrostis mertensii	Northern Bent Grass				S2	2 May Be At Risk	1	78.6 ± 0.0	N
	Dichanthelium									Ň
	linearifolium	Narrow-leaved Panic Grass				S2	3 Sensitive	13	17.3 ± 0.0	
	Elymus canadensis	Canada Wild Rye				S2	2 May Be At Risk	20	8.4 ± 5.0	N
	Leersia virginica	White Cut Grass				S2	2 May Be At Risk	42	9.3 ± 1.0	N
	Piptatherum	Canada Rice Grass				S2	3 Sensitive	5	28.6 ± 0.0	N
	canadense									
	Poa glauca	Glaucous Blue Grass				S2	4 Secure	1	83.6 ± 2.0	N
	Puccinellia	Creeping Alkali Grass				S2	3 Sensitive	9	79.8 ± 0.0	N
	phryganodes	ereeping maar endee					0.001101010			
	Schizachyrium	Little Bluestern				S2	3 Sensitive	48	10.1 ± 0.0	Ν
	scoparium									
	Zizania aquatica var. aquatica	Indian Wild Rice				S2	5 Undetermined	6	11.1 ± 5.0	٨
	Piptatherum pungens	Slender Rice Grass				S2	2 May Be At Risk	5	78.4 ± 0.0	N
	Piptatnerum pungens Potamogeton vasevi	Vasev's Pondweed				52 S2	2 May Be At Risk 3 Sensitive	10	78.4 ± 0.0 36.7 ± 0.0	N
									00.7 ± 0.0	N

Page 19 of 25

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pro
2	Woodwardia virginica	Virginia Chain Fern				S2	3 Sensitive	19	5.6 ± 0.0	NB
	Woodsia alpina	Alpine Cliff Fern				S2	3 Sensitive	5	73.9 ± 0.0	NB
	Selaginella selaginoides	Low Spikemoss				S2	3 Sensitive	4	75.3 ± 6.0	NB
	Toxicodendron									NB
	radicans	Poison Ivy				S2?	3 Sensitive	16	13.6 ± 0.0	INC
	Symphyotrichum novi- belgii var. crenifolium	New York Aster				S2?	5 Undetermined	4	8.2 ± 1.0	NE
	Humulus lupulus var. Iupuloides	Common Hop				S2?	3 Sensitive	5	4.7 ± 0.0	NE
	Rubus recurvicaulis	Arching Dewberry				S2?	4 Secure	5	34.7 ± 1.0	NE
	Galium obtusum	Blunt-leaved Bedstraw				S2?	4 Secure	5	30.3 ± 1.0	N
	Salix myricoides	Bayberry Willow				S2?	3 Sensitive	14	14.9 ± 0.0	N
	Carex vacillans	Estuarine Sedge				S2?	3 Sensitive	3	83.3 ± 1.0	N
	Platanthera huronensis	Fragrant Green Orchid				S2?	5 Undetermined	3	44.2 ± 0.0	Ň
	Solidago altissima	Tall Goldenrod				S2S3	4 Secure	47	13.5 ± 0.0	N
	Barbarea orthoceras	American Yellow Bocket				S2S3	3 Sensitive	7	67.7 ± 0.0	Ň
	Ceratophyllum	American fellow Hocket					2 Genative	'	07.7 ± 0.0	N
	echinatum	Prickly Hornwort				S2S3	3 Sensitive	18	14.6 ± 0.0	
	Callitriche hermaphroditica	Northern Water-starwort				S2S3	4 Secure	6	47.3 ± 0.0	٨
	Lonicera oblongifolia	Swamp Fly Honeysuckle				S2S3	3 Sensitive	129	59.3 ± 0.0	N
	Elatine americana	American Waterwort				S2S3	3 Sensitive	8	32.2 ± 0.0	
	Bartonia paniculata	Branched Bartonia				S2S3	3 Sensitive	4	85.2 ± 0.0	٢
	Bartonia paniculata ssp. iodandra	Branched Bartonia				S2S3	3 Sensitive	12	55.0 ± 0.0	N
	Geranium robertianum	Herb Robert				S2S3	4 Secure	18	71.0 ± 1.0	٨
	Myriophyllum quitense	Andean Water Milfoil				S2S3	4 Secure	71	62.1 ± 0.0	1
	Epilobium coloratum	Purple-veined Willowherb				S2S3	3 Sensitive	8	8.0 ± 1.0	Ň
	Rumex pallidus	Seabeach Dock				S2S3	3 Sensitive	4	44.5 ± 1.0	'n
	Amelanchier						3 Sensitive	*	44.5 ± 1.0	N
	sanguinea var. gaspensis	Round-Leaved Serviceberry				S2S3	5 Undetermined	1	78.7 ± 0.0	
	Rubus pensilvanicus	Pennsvlvania Blackberry				S2S3	4 Secure	12	7.3 ± 0.0	N
	Galium labradoricum	Labrador Bedstraw				5253 S2S3	3 Sensitive	91	40.2 ± 0.0	N
						S2S3		47		h
	Valeriana uliginosa	Swamp Valerian					3 Sensitive		59.1 ± 0.0	
	Carex adusta	Lesser Brown Sedge				S2S3	4 Secure	6	28.0 ± 10.0	٢
	Juncus brachycephalus	Small-Head Rush				S2S3	3 Sensitive	6	65.6 ± 0.0	٢
	Corallorhiza maculata	Spotted Corairoot				S2S3	3 Sensitive	7	9.3 ± 1.0	٨
	var. occidentalis Corallorhiza maculata						0 001101010	,	0.0 2	N
	var. maculata	Spotted Coralroot				S2S3	3 Sensitive	3	9.0 ± 1.0	
	Listera auriculata	Auricled Twayblade				S2S3	3 Sensitive	9	13.6 ± 0.0	N
	Spiranthes cernua	Nodding Ladies'-Tresses				S2S3	3 Sensitive	13	10.6 ± 0.0	٨
	Eragrostis pectinacea	Tufted Love Grass				S2S3	4 Secure	14	9.5 ± 0.0	N
	Stuckenia filiformis ssp. alpina	Thread-leaved Pondweed				S2S3	3 Sensitive	9	78.1 ± 0.0	۸
	Potamogeton praelonous	White-stemmed Pondweed				S2S3	4 Secure	23	53.5 ± 0.0	٢
		Anadian Quillunat				S2S3	0 Constitute	10	150.110	N
	Isoetes acadiensis	Acadian Quillwort					3 Sensitive	10	15.9 ± 1.0	
	Ophioglossum pusillum	Northern Adder's-tongue				S2S3	3 Sensitive	9	31.6 ± 1.0	P.
	Panax trifolius	Dwarf Ginseng				S3	3 Sensitive	14	12.3 ± 1.0	١
	Arnica lanceolata	Lance-leaved Arnica				S3	4 Secure	27	40.3 ± 0.0	1
	Artemisia campestris	Field Wormwood				S3	4 Secure	22	14.5 ± 0.0	1
	Artemisia campestris	Field Wormwood				S3	4 Secure	80	13.6 ± 1.0	٨
	ssp. caudata	riciu wonthwood				00	4 Gecure	00	10.0 ± 1.0	

Page 20 of 25

Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Pro
P P	Erigeron hyssopifolius Prenanthes racemosa	Hyssop-leaved Fleabane Glaucous Rattlesnakeroot				S3 S3	4 Secure 4 Secure	26 59	38.0 ± 0.0 9.7 ± 100.0	NB NB
2	Tanacetum bipinnatum ssp. huronense	Lake Huron Tansy				S3	4 Secure	35	13.7 ± 5.0	NB
>	Symphyotrichum boreale	Boreal Aster				S3	3 Sensitive	148	17.8 ± 10.0	NB
2	Betula pumila Arabis glabra	Bog Birch Tower Mustard				S3 S3	4 Secure 5 Undetermined	43 10	13.9 ± 0.0 69.0 ± 0.0	NE NE
, ,	Arabis hirsuta var. pycnocarpa	Western Hairy Rockcress				S3	4 Secure	19	15.0 ± 0.0	NE
	Cardamine maxima Subularia aquatica var.	Large Toothwort				S3	4 Secure	117	9.4 ± 0.0	N
•	americana	Water Awlwort				S3	4 Secure	18	30.4 ± 0.0	
	Lobelia cardinalis	Cardinal Flower				S3	4 Secure	378	21.8 ± 0.0	N
2	Stellaria humifusa Hudsonia tomentosa	Saltmarsh Starwort Woolly Beach-heath				S3 S3	4 Secure 4 Secure	6 3	79.8 ± 0.0 65.9 ± 0.0	N
	Cornus amomum ssp. obliqua	Pale Dogwood				S3	3 Sensitive	242	39.9 ± 0.0	N
	Crassula aquatica	Water Pygmyweed				S3	4 Secure	3	32.4 ± 1.0	N
	Rhodiola rosea	Roseroot				S3	4 Secure	25	71.9 ± 5.0	N
	Penthorum sedoides	Ditch Stonecrop				S3	4 Secure	64	11.1 ± 0.0	N.
	Elatine minima Astragalus alpinus var.	Small Waterwort Alpine Milk-Vetch				S3 S3	4 Secure 4 Secure	56 13	30.6 ± 0.0 14.5 ± 0.0	N
	brunetianus Hedysarum alpinum	Alpine Sweet-vetch				\$3	4 Secure	35	78.4 ± 0.0	Ν
	Gentianella amarella ssp. acuta	Northern Gentian				S3	4 Secure	9	45.4 ± 0.0	٨
	Geranium bicknellii	Bicknell's Crane's-bill				S3	4 Secure	10	30.5 ± 5.0	N
	Myriophyllum farwellii Myriophyllum	Farwell's Water Milfoil				S3 S3	4 Secure	22 49	20.1 ± 5.0	N
	heterophyllum Myriophyllum	Variable-leaved Water Milfoil					4 Secure		28.7 ± 0.0	N
	verticillatum	Whorled Water Milfoil				S3	4 Secure	22	10.6 ± 1.0	
	Stachys tenuifolia Utricularia radiata	Smooth Hedge-Nettle Little Floating Bladderwort				S3 S3	3 Sensitive 4 Secure	14 52	13.4 ± 0.0 43.1 ± 0.0	N
	Nuphar lutea ssp.	Small Yellow Pond-lily				53 53	4 Secure	23	43.1±0.0 18.4±5.0	N
	pumila Epilobium hornemannii	Homemann's Willowherb				S3	4 Secure	4	79.9 ± 0.0	N
	Epilobium strictum	Downy Willowherb				53 53	4 Secure	55	19.4 ± 1.0	N
	Polygala sanguinea	Blood Milkwort				S3	3 Sensitive	25	10.3 ± 1.0	N
	Polygonum arifolium	Halberd-leaved Tearthumb				S3	4 Secure	23	33.9 ± 0.0	N
	Polygonum punctatum	Dotted Smartweed				S3	4 Secure	2	33.4 ± 0.0	Ň
	Polygonum punctatum var. confertiflorum	Dotted Smartweed				S3	4 Secure	10	11.1 ± 5.0	N
	Polygonum scandens	Climbing False Buckwheat				S3	4 Secure	37	9.5 ± 1.0	٨
	Littorella uniflora	American Shoreweed				S3	4 Secure	30	32.1 ± 0.0	Ň
	Primula mistassinica	Mistassini Primrose				S3	4 Secure	21	17.0 ± 1.0	N
	Pyrola minor	Lesser Pyrola				S3	4 Secure	2	74.8 ± 0.0	Ň
	Clematis occidentalis	Purple Clematis				S3	4 Secure	32	12.7 ± 0.0	N
	Ranunculus gmelinii	Gmelin's Water Buttercup				S3	4 Secure	42	28.8 ± 1.0	N
	Thalictrum venulosum Amelanchier	Northern Meadow-rue				S3	4 Secure	96	9.7 ± 0.0	1
	canadensis	Canada Serviceberry				S3	4 Secure	16	10.0 ± 1.0	
	Rosa palustris	Swamp Rose				S3	4 Secure	46	32.1 ± 0.0	٨
2	Rubus occidentalis	Black Raspberry				S3	4 Secure	119	15.2 ± 0.0	Ň
Þ	Galium boreale	Northern Bedstraw				S3	4 Secure	10	13.7 ± 0.0	N
P	Salix interior	Sandbar Willow				S3	4 Secure	38	9.4 ± 0.0	N

Page 21 of 25

aroup	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs		Pro
	Salix nigra	Black Willow	00021110	0/11/1	riet Edgarriet	S3	3 Sensitive	124	Distance (km) 7.2 ± 5.0	NB
	Salix pedicellaris	Bog Willow				S3	4 Secure	66	14.8 ± 1.0	NB
	Comandra umbellata	Bastard's Toadflax				S3	4 Secure	1	48.4 ± 10.0	NB
	Parnassia glauca	Fen Grass-of-Parnassus				S3	4 Secure	12	19.0 ± 10.0	NB
	Limosella australis	Southern Mudwort				S3	4 Secure	1	88.9 ± 5.0	NB
	Veronica serpvilifolia									NB
	ssp. humifusa	Thyme-Leaved Speedwell				S3	4 Secure	6	8.6 ± 100.0	ND
	Boehmeria cylindrica	Small-spike False-nettle				S3	3 Sensitive	148	14.2 ± 0.0	NE
	Pilea pumila	Dwarf Clearweed				S3	4 Secure	57	9.0 ± 1.0	NE
	Viola adunca	Hooked Violet				S3	4 Secure	11	44.8 ± 1.0	NE
	Viola nephrophylla	Northern Bog Violet				S3	4 Secure	68	15.3 ± 0.0	NE
	Carex aquatilis	Water Sedge				S3	4 Secure	2	92.5 ± 0.0	NE
	Carex arcta	Northern Clustered Sedge				S3	4 Secure	56	13.3 ± 0.0	NE
	Carex atratiformis	Scabrous Black Sedge				S3	4 Secure	4	81.1 ± 0.0	NE
	Carex capillaris	Hairlike Sedge				S3	4 Secure	9	78.7 ± 0.0	NE
	Carex chordorrhiza	Creeping Sedge				S3	4 Secure	79	16.0 ± 0.0	NE
	Carex conoidea	Field Sedge				S3	4 Secure	23	19.3 ± 1.0	NE
	Carex eburnea	Bristle-leaved Sedge				S3	4 Secure	7	91.1 ± 0.0	NE
	Carex exilis	Coastal Sedge				S3	4 Secure	101	39.8 ± 0.0	NE
	Carex garberi	Garber's Sedge				S3	3 Sensitive	14	34.5 ± 1.0	NE
	Carex haydenii	Hayden's Sedge				S3	4 Secure	37	10.3 ± 1.0	N
	Carex Iupulina	Hop Sedge				S3	4 Secure	117	10.9 ± 10.0	N
	Carex nichauxiana	Michaux's Sedge				S3	4 Secure 4 Secure	59	50.2 ± 0.0	N
						53 53	4 Secure 4 Secure	19	16.2 ± 1.0	N
	Carex ormostachya	Necklace Spike Sedge				53 53	4 Secure 4 Secure	237		N
	Carex rosea	Rosy Sedge							16.3 ± 0.0	
	Carex tenera	Tender Sedge				S3	4 Secure	54	18.9 ± 1.0	N
	Carex tuckermanii	Tuckerman's Sedge				S3	4 Secure	75	14.1 ± 1.0	N
	Carex vaginata	Sheathed Sedge				S3	3 Sensitive	14	58.8 ± 0.0	N
	Carex wiegandii	Wiegand's Sedge				S3	4 Secure	36	23.3 ± 0.0	N
	Carex recta	Estuary Sedge				S3	4 Secure	5	42.3 ± 0.0	N
	Cyperus dentatus	Toothed Flatsedge				S3	4 Secure	147	14.7 ± 1.0	N
	Cyperus esculentus	Perennial Yellow Nutsedge				S3	4 Secure	45	11.0 ± 5.0	N
	Eleocharis intermedia	Matted Spikerush				S3	4 Secure	6	15.3 ± 0.0	NE
	Eleocharis	Few-flowered Spikerush				S3	4 Secure	28	14.4 ± 0.0	NE
	quinqueflora	Few-liuwereu Spikerusii				33	4 Secure	20	14.4 ± 0.0	
	Rhynchospora	Small-headed Beakrush				S3	4 Secure	40	22.1 ± 0.0	NE
	capitellata	Berne Berlensk				00	4 Secure	41	25.4 ± 1.0	NE
	Rhynchospora fusca	Brown Beakrush				S3				
	Trichophorum clintonii	Clinton's Clubrush				S3	4 Secure	94	48.9 ± 1.0	NE
	Schoenoplectus fluviatilis	River Bulrush				S3	3 Sensitive	46	20.4 ± 0.0	NE
	Schoenoplectus torrevi	Torrey's Buirush				S3	4 Secure	33	24.7 ± 0.0	NE
	Lemna trisulca	Star Duckweed				S3	4 Secure	17	49.5 ± 0.0	N
	Triantha glutinosa	Sticky False-Asphodel				S3	4 Secure	85	15.2 ± 0.0	N
	Cypripedium reginae	Showy Lady's-Slipper				S3	3 Sensitive	112	59.2 ± 0.0	N
	Liparis loeselii	Loesel's Twayblade				S3	4 Secure	26	8.0 ± 0.0	N
	Platanthera					S3		50	6.4 ± 1.0	N
	blephariglottis	White Fringed Orchid					4 Secure			
	Platanthera grandiflora	Large Purple Fringed Orchid				S3	3 Sensitive	39	24.5 ± 1.0	N
	Bromus latiglumis	Broad-Glumed Brome				S3	3 Sensitive	29	16.7 ± 0.0	NE
	Calamagrostis	Pickering's Reed Grass				S3	4 Secure	104	53.3 ± 0.0	NE
	pickeringii									
	Dichanthelium	Starved Panic Grass				S3	4 Secure	26	31.7 ± 0.0	NE
	depauperatum									
	Muhlenbergia richardsonis	Mat Muhly				S3	4 Secure	34	14.9 ± 0.0	NE
	ncharosonis									
	Heteranthera dubia	Water Stargrass				S3	4 Secure	60	10.6 ± 0.0	

Page 22 of 25

Taxonomic										
Group	Scientific Name	Common Name	COSEWIC	SARA	Prov Legal Prot	Prov Rarity Rank	Prov GS Rank	# recs	Distance (km)	Prov
Р	Potamogeton obtusifolius	Blunt-leaved Pondweed				S3	4 Secure	36	35.0 ± 1.0	NB
Р	Potamogeton richardsonii	Richardson's Pondweed				S3	3 Sensitive	16	11.2 ± 5.0	NB
Р	Xyris montana	Northern Yellow-Eyed-Grass				S3	4 Secure	26	52.9 ± 0.0	NB
P	Zannichellia palustris	Horned Pondweed				S3	4 Secure	5	71.8 ± 0.0	NB
P	Adiantum pedatum	Northern Maidenhair Fern				S3	4 Secure	281	19.3 ± 5.0	NB
Р	Cryptogramma stelleri Asplenium	Steller's Rockbrake				S3	4 Secure	1	84.8 ± 1.0	NB
Р	trichomanes-ramosum	Green Spleenwort				S3	4 Secure	15	62.6 ± 0.0	
Р	Dryopteris fragrans var. remotiuscula	Fragrant Wood Fern				S3	4 Secure	18	40.5 ± 0.0	NB
P	Dryopteris goldiana	Goldie's Woodfern				S3	3 Sensitive	183	17.9 ± 5.0	NB
P	Woodsia glabella	Smooth Cliff Fern				S3	4 Secure	1	99.1 ± 1.0	NB
Р	Equisetum palustre	Marsh Horsetail				S3	4 Secure	8	10.6 ± 0.0	NB
P	Isoetes tuckermanii	Tuckerman's Quillwort				S3	4 Secure	20	26.6 ± 0.0	NB
Р	Lycopodium sabinifolium	Ground-Fir				S3	4 Secure	12	30.5 ± 10.0	NB
Р	Huperzia appalachiana	Appalachian Fir-Clubmoss				S3	3 Sensitive	2	80.7 ± 1.0	NB
P	Botrychium dissectum	Cut-leaved Moonwort				S3	4 Secure	52	10.8 ± 0.0	NB
P	Botrychium Ianceolatum var.	Lance-Leaf Grape-Fern				S3	3 Sensitive	17	10.2 ± 0.0	NB
P		Lance-Lear Grape-Fern				53	3 Sensitive	17	10.2 ± 0.0	
Р	angustisegmentum Botrychium simplex	Least Moonwort				S3	4 Secure	12	12.6 ± 0.0	NB
Р	Polypodium appalachianum	Appalachian Polypody				S3	4 Secure	25	9.0 ± 10.0	NB
Р	Utricularia resupinata	Inverted Bladderwort				S3?	4 Secure	16	39.8 ± 0.0	NB
P	Crataegus submollis	Quebec Hawthorn				S3?	3 Sensitive	19	10.3 ± 1.0	NB
P	Mertensia maritima	Sea Lungwort				S3S4	4 Secure	16	80.4 ± 1.0	NB
P	Lobelia kalmii	Brook Lobelia				S3S4	4 Secure	47	11.7 ± 1.0	NB
P	Suaeda calceoliformis	Horned Sea-blite				S3S4	4 Secure	3	9.8 ± 0.0	NB
P	Myriophyllum sibiricum	Siberian Water Milfoil				S3S4	4 Secure	30	39.9 ± 0.0	NB
P	Stachys pilosa	Hairy Hedge-Nettle				S3S4	5 Undetermined	5	14.9 ± 0.0	NB
P	Utricularia gibba	Humped Bladderwort				S3S4	4 Secure	41	17.2 ± 0.0	NB
P	Potentilla arguta	Tall Cinquefoil				S3S4	4 Secure	49	9.3 ± 1.0	NB
P	Rubus chamaemorus	Cloudberry				S3S4	4 Secure	46	75.4 ± 0.0	NB
P	Geocaulon lividum	Northern Comandra				S3S4	4 Secure	9	82.7 ± 1.0	NB
P	Juniperus horizontalis	Creeping Juniper				S3S4	4 Secure	2	84.6 ± 1.0	NB
P	Cladium mariscoides	Smooth Twigrush				S3S4	4 Secure	87	25.6 ± 0.0	NB
P	Eriophorum russeolum	Russet Cottongrass				S3S4	4 Secure	9	35.7 ± 2.0	NB
P	Triglochin gaspensis	Gasp - Arrowgrass				S3S4	4 Secure	12	83.1 ± 0.0	NB
P	Spirodela polyrrhiza	Great Duckweed				S3S4	4 Secure	39	8.7 ± 1.0	NB
P	Corallorhiza maculata	Spotted Corairoot				S3S4	3 Sensitive	12	21.2 ± 0.0	NB
P	Calamagrostis stricta	Slim-stemmed Reed Grass				S3S4	4 Secure	1	70.7 ± 2.0	NB
P	Distichlis spicata	Salt Grass				S3S4	4 Secure	3	97.7 ± 1.0	NB
Р	Potamogeton oakesianus	Oakes' Pondweed				S3S4	4 Secure	36	12.2 ± 0.0	NB
Р	Solidago caesia	Blue-stemmed Goldenrod				SX	0.1 Extirpated	2	83.5 ± 1.0	NB
P	Oligoneuron album	Upland White Goldenrod				SX	0.1 Extirpated	3	75.6 ± 1.0	NB
P	Celastrus scandens	Climbing Bittersweet				SX	0.1 Extirpated	4	16.8 ± 1.0	NB
							P			

5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a Spient of these data shall acknowledge the ACCDC and the data sources used verses and second and sources used verses and second business of the second to contribution.

Percent
Perce significant contribution.

recs

- 6708 3714 3691
- 1891

- Robitson, S.L. 2015. 2019 Here Name Speers, L. 2008. Buttoffiles of Canada database: New Brunswick 1897-1999. Agriculture & Agn-Poou Censon, Wargen Belland, R.J. Maritimes moss records from various herbarium databases. 2014. Blaney, C.S.; Spicor, C.D.; Rohtleis, C. 2004, Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs. Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs. McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.

Page 23 of 25

Page 24 of 25

 Data Report SP2: New Maryland, 39
 Pg2 4.9 df2

 Prime
 CHIND

 Prime
 CHIND

 Prime
 CHIND

 Prime
 CHIND

 Prime
 CHIND
 Prime
 Prime

 Prime
 CHIND
 Prime
 Prime
 Prime

 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prime
 Prim<</th>
 Prim<</th>
 Prim<</th>

Appendix II Plant Inventory

		S -	General
Common Name	Scientific Name	Rank	Status
Balsam Fir	Abies balsamea	S5	Secure
Red Maple	Acer rubrum	S5	Secure
Silver Maple	Acer saccharinum	S4	Secure
Speckled Alder	Alnus incana	S5	Secure
Large Sweet Vernal Grass	Anthoxanthum odoratum	SNA	Exotic
Wild Chervil	Anthriscus sylvestris	SNA	Exotic
Wild Sarsaparilla	Aralia nudicaulis	S5	Secure
Jack-in-the-pulpit	Arisaema triphyllum	S5	Secure
Common Lady Fern	Athyrium filix-femina	S5	Secure
Yellow Birch	Betula alleghaniensis	S5	Secure
Heart-leaved Birch	Betula papyrifera var. cordifolia	S5	Secure
Gray Birch	Betula populifolia	S5	Secure
Northern Shorthusk	Brachyelytrum septentrionale	S5	Secure
Bluejoint Reed Grass	Calamagrostis canadensis	S5	Secure
Black Sedge	Carex arctata	S5	Secure
Bromelike Sedge	Carex bromoides	S4	Secure
Brownish Sedge	Carex brunnescens	S5	Secure
Silvery Sedge	Carex canescens	S5	Secure
Fringed Sedge	Carex crinita	S5	Secure
Two-seeded Sedge	Carex disperma	S5	Secure
Nodding Sedge	Carex gynandra	S5	Secure
Inland Sedge	Carex interior	S5	Secure
Lenticular Sedge	Carex lenticularis var. lenticularis	S5	Secure
Bristly-stalked Sedge	Carex leptalea	S5	Secure
Chaffy Sedge	Carex paleacea	S5	Secure
Rough Sedge	Carex scabrata	S5	Secure
Broom Sedge	Carex scoparia	S5	Secure
Awl-fruited Sedge	Carex stipata	S5	Secure
Blunt Broom Sedge	Carex tribuloides	S4S5	Secure
Fox Sedge	Carex vulpinoidea	S4S5	Secure
Fireweed	Chamerion angustifolium	S5	Secure
White Turtlehead	Chelone glabra	S5	Secure
Small Enchanter's Nightshade	Circaea alpina	S5	Secure
Virginia Clematis	Clematis virginiana	S5	Secure
Goldthread	Coptis trifolia	S5	Secure
Alternate-leaved Dogwood	Cornus alternifolia	S5	Secure
Bunchberry	Cornus canadensis	S5	Secure
Beaked Hazel	Corylus cornuta	S5	Secure

Common Nome	Scientific Name	S - Rank	General Status
Common Name Dewdrop	Dalibarda repens	S5	Secure
Hairy Flat-top White Aster	Doellingeria umbellata	S5	Secure
Crested Wood Fern	Dryopteris cristata	S5	Secure
Evergreen Wood Fern	Dryopteris intermedia	S5	Secure
Needle Spikerush	Eleocharis acicularis	S5	Secure
Field Horsetail		S5	Secure
Woodland Horsetail	Equisetum arvense	S5	
Red Fescue	Equisetum sylvaticum Festuca rubra	S5	Secure
			Secure
Wild Strawberry	Fragaria virginiana	S5	Secure
Glossy Buckthorn	Frangula alnus	SNA	Exotic
White Ash	Fraxinus americana	S4S5	Secure
Black Ash	Fraxinus nigra	S4S5	Secure
Rough Bedstraw	Galium asprellum	S5	Secure
Three-petaled Bedstraw	Galium trifidum	S5	Secure
Creeping Snowberry	Gaultheria hispidula	S5	Secure
Eastern Teaberry	Gaultheria procumbens	S5	Secure
Yellow Avens	Geum aleppicum	S5	Secure
Water Avens	Geum rivale	S5	Secure
Northern Manna Grass	Glyceria borealis	S5	Secure
Slender Manna Grass	Glyceria melicaria	S5	Secure
Fowl Manna Grass	Glyceria striata	S5	Secure
Common Oak Fern	Gymnocarpium dryopteris	S5	Secure
Orange Hawkweed	Hieracium aurantiacum	SNA	Exotic
Field Hawkweed	Hieracium caespitosum	SNA	Exotic
American Marsh Pennywort	Hydrocotyle americana	S5	Secure
Northern St John's-Wort	Hypericum boreale	S5	Secure
Common St. John's-wort	Hypericum perforatum	SNA	Exotic
Spotted Jewelweed	Impatiens capensis	S5	Secure
Soft Rush	Juncus effusus	S5	Secure
Thread Rush	Juncus filiformis	S5	Secure
Slender Rush	Juncus tenuis	S5	Secure
Sheep Laurel	Kalmia angustifolia	S5	Secure
Tamarack	Larix laricina	S5	Secure
Fall Dandelion	Leontodon autumnalis	SNA	Exotic
Twinflower	Linnaea borealis	S5	Secure
Canada Fly Honeysuckle	Lonicera canadensis	S5	Secure
Common Woodrush	Luzula multiflora	S5	Secure
Round-branched Tree- clubmoss	Lycopodium dendroideum	S5	Secure
Northern Water Horehound	Lycopus uniflorus	S5	Secure
Fringed Yellow Loosestrife	Lysimachia ciliata	S5	Secure

Common Name	Scientific Name	S - Rank	General Status
Swamp Yellow Loosestrife	Lysimachia terrestris	S5	Secure
Wild Lily-of-The-Valley	Maianthemum canadense	S5	Secure
Ostrich Fern	Matteuccia struthiopteris	S5	Secure
Partridgeberry	Mitchella repens	S5	Secure
Variegated Pond-lily	Nuphar lutea	S5	Secure
Whorled Wood Aster	Oclemena acuminata	S5	Secure
Sensitive Fern	Onoclea sensibilis	S5	Secure
White-grained Mountain Rice	Oryzopsis asperifolia	S5	Secure
White-grained Mountain Rice	Oryzopsis asperifolia	S5	Secure
Cinnamon Fern	Osmunda cinnamomea	S5	Secure
Interrupted Fern	Osmunda claytoniana	S5	Secure
Royal Fern	Osmunda regalis	S5	Secure
Ironwood	Ostrya virginiana	S4S5	Secure
Common Wood Sorrel	Oxalis montana	S5	Secure
European Wood Sorrel	Oxalis stricta	S5	Secure
Northern Beech Fern	Phegopteris connectilis	S5	Secure
Red Spruce	Picea rubens	S5	Secure
Eastern White Pine	Pinus strobus	S5	Secure
Arrow-leaved Smartweed	Polygonum sagittatum	S5	Secure
Trembling Aspen	Populus tremuloides	S5	Secure
Old Field Cinquefoil	Potentilla simplex	S5	Secure
Common Self-heal	Prunella vulgaris	S5	Secure
Pin Cherry	Prunus pensylvanica	S5	Secure
Chokecherry	Prunus virginiana	S5	Secure
Bracken Fern	Pteridium aquilinum	S5	Secure
Northern Red Oak	Quercus rubra	S5	Secure
Kidney-Leaved Buttercup	Ranunculus abortivus	S5	Secure
Common Buttercup	Ranunculus acris	SNA	Exotic
Creeping Buttercup	Ranunculus repens	SNA	Exotic
Skunk Currant	Ribes glandulosum	S5	Secure
Smooth Gooseberry	Ribes hirtellum	S5	Secure
Bristly Black Currant	Ribes lacustre	S5	Secure
Swamp Red Currant	Ribes triste	S5	Secure
Alleghaney Blackberry	Rubus allegheniensis	S5	Secure
Bristly Dewberry	Rubus hispidus	S5	Secure
Red Raspberry	Rubus idaeus	S5	Secure
Dwarf Red Raspberry	Rubus pubescens	S5	Secure
Curled Dock	Rumex crispus	SNA	Exotic
Pussy Willow	Salix discolor	S5	Secure
Bebb's Willow	Salix bebbiana	S5	Secure
Common Woolly Bulrush	Scirpus cyperinus	S5	Secure

Common Norse	Colombific Norma	S-	General
Common Name	Scientific Name	Rank	Status
Small-fruited Bulrush	Scirpus microcarpus	S5	Secure
Marsh Skullcap	Scutellaria galericulata	S5	Secure
Mad-dog Skullcap	Scutellaria lateriflora	S5	Secure
Rough-stemmed Goldenrod	Solidago rugosa	S5	Secure
American Mountain Ash	Sorbus americana	S5	Secure
White Meadowsweet	Spiraea alba	S5	Secure
White Meadowsweet	Spiraea alba	S5	Secure
Steeplebush	Spiraea tomentosa	S5	Secure
New York Aster	Symphyotrichum novi-belgii	S5	Secure
Purple-stemmed Aster	Symphyotrichum puniceum	S5	Secure
Canada Yew	Taxus canadensis	S5	Secure
Tall Meadow-Rue	Thalictrum pubescens	S5	Secure
New York Fern	Thelypteris noveboracensis	S5	Secure
Eastern White Cedar	Thuja occidentalis	S5	Secure
Heart-leaved Foamflower	Tiarella cordifolia	S4	Secure
Northern Poison Oak	Toxicodendron rydbergii	S5	Secure
Fraser's Marsh St John's-wort	Triadenum fraseri	S5	Secure
Northern Starflower	Trientalis borealis	S5	Secure
White Clover	Trifolium repens	SNA	Exotic
Red Trillium	Trillium erectum	S5	Secure
Eastern Hemlock	Tsuga canadensis	S5	Secure
Broad-leaved Cattail	Typha latifolia	S5	Secure
Stinging Nettle	Urtica dioica	S4	Secure
Velvet-leaved Blueberry	Vaccinium myrtilloides	S5	Secure
Common Speedwell	Veronica officinalis	S5	Exotic
Thyme-Leaved Speedwell	Veronica serpyllifolia	SNA	Secure
Northern Wild Raisin	Viburnum nudum	S5	Secure
Highbush Cranberry	Viburnum opulus	S4	Secure
Marsh Blue Violet	Viola cucullata	S5	Secure
Small White Violet	Viola macloskeyi	S5	Secure

Appendix III Point Count Data

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breedi code
4	Point		American Dedatast	Contraction of the second statility	2405406.42	7420522.22		4	
1	count Point	AMRE	American Redstart	Setophaga ruticilla	2485186.13	7430523.22	PO	1	S
1	count	BTNW	Black -throated Green Warbler	Setophaga virens	2485225.37	7430542.15	PO	1	s
1	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2485224.20	7430525.37	PO	1	s
1	Point count	CAJA	Gray Jay	Perisoreus canadensis	2485166.42	7430510.53	PO	1	x
1	Point count	HETH	Hermit Thrush	Catharus guttatus	2485141.07	7430538.86	PO	1	s
1	Point	НЕТН	Hermit Thrush	Catharus guttatus	2485121.52	7430549.57	PO	1	s
1	Point	MAWA	Magnolia Warbler	Setophaga magnolia	2485149.63	7430535.91	PO	1	s
1	Point	NOPA	Northern Parula	Setophaga americana	2485182.43	7430501.94	PO	1	s
-	Point	Norm	Northern and	Setophaga americana	2405102.45	1450501.54		-	5
1	count	RBNU	Red-breated Nuthatch	Sitta canadensis	2485159.25	7430513.56	PO	1	S
1	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2485180.28	7430480.27	PO	2	s
1	Point count	WIWR	Winter Wren	Troglodytes hiemalis	2485226.15	7430567.92	PO	1	S
2	Point count	AMGO	American Goldfinch	Spinus tristis	2485328.50	7430650.46	РО	1	s
2	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2485256.65	7430641.82	PO	1	s
2	Point	HETH	Hermit Thrush	Catharus guttatus	2485230.18	7430644.12	PO	1	s
2	Point	НЕТН	Hermit Thrush	Catharus guttatus	2485195.82	7430635.66	PO	1	s
2	Point	MODO	Mourning Dove	Zenaida macroura	2485313.70	7430691.69	PO	1	s

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
2	Point count	NOPA	Northern Parula	Setophaga americana	2485282.09	7430662.87	PO	1	S
2	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485307.36	7430720.23	PO	1	s
2	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485281.45	7430739.26	PO	1	S
2	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485226.53	7430720.98	PO	1	S
2	Point count	RUGR	Ruffed Grouse	Bonasa umbellus	2485214.85	7430739.79	PO	1	х
3	Point count	BAWW	Black and White Warbler	Mniotilta varia	2485483.18	7430515.77	РО	1	S
3	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2485496.67	7430491.47	PO	1	S
3	Point count	NOPA	Northern Parula	Setophaga americana	2485460.69	7430477.08	PR	1	s
3	Point count	NOPA	Northern Parula	Setophaga americana	2485530.86	7430481.58	PO	1	S
3	Point count	NOPA	Northern Parula	Setophaga americana	2485444.49	7430572.45	PO	1	S
3	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485579.07	7430483.79	PO	1	S
3	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485426.82	7430537.23	PO	1	S
3	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485528.17	7430500.47	PO	1	S
3	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485376.56	7430517.12	PO	1	s
3	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485474.73	7430547.78	PO	1	S
4	Point count	AMCR	American Crow	Corvus brachyrhynchos	2485667.26	7430267.81	PO	3	х

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breedi code
-	Point		2.0.00	Corvus			1.7		
4	count	AMCR	American Crow	brachyrhynchos	2485619.38	7430461.19	PO	3	Х
	Point		Such that the second		Constant Re-	0.11.11.11.11.11.11.11.11.11.11.11.11.11			
4	count	BAWW	Black and White Warbler	Mniotilta varia	2485605.40	7430376.59	PO	1	S
1.2	Point	15.250.5		Same and a stress of	States and	STUSSES 20		6.3	1.1.1.2
4	count	BTNW	Black -throated Green Warbler	Setophaga virens	2485516.53	7430379.67	PO	1	S
	Point	DTABA		C. A. L.	2405502.55	7420474.20			
4	count Point	BTNW	Black -throated Green Warbler	Setophaga virens	2485593.55	7430471.38	PO	1	S
4	count	BTNW	Black -throated Green Warbler	Setophaga virens	2485517.95	7430318.52	PO	1	S
4	Point	DIIVV	black -throated Green warbler	Secopriaga virens	2465517.55	7430318.32	FU	-	3
4	count	вссн	Black-capped Chickadee	Poecile atricapillus	2485560.13	7430334.64	PO	1	x
-	Point	Deen			2100000120	/ 10000 110 /		-	~
4	count	BCCH	Black-capped Chickadee	Poecile atricapillus	2485599.95	7430383.46	PO	2	х
	Point							-	
4	count	BLJA	Blue Jay	Cyanocitta cristata	2485512.74	7430292.93	PO	1	Х
	Point	1000			1.	Post Color	1.4.1		1 mar 1
4	count	HETH	Hermit Thrush	Catharus guttatus	2485548.76	7430354.07	PO	1	Х
	Point	1.2.1			Contraction of	53.000	1.2.31		
4	count	OVEN	Ovenbird	Seiurus aurocapilla	2485602.75	7430302.74	PO	1	S
1.2	Point			Construction of the	2000	contractor.			11-2
4	count	OVEN	Ovenbird	Seiurus aurocapilla	2485585.49	7430398.39	PO	1	S
	Point	DEV/	Ded. and Mines	Vireo olivaceus	2405704 70	7420201 52	PO	1	
4	count Point	REVI	Red-eyed Vireo	vireo olivaceus	2485704.70	7430391.52	PU	1	S
4	count	REVI	Red-eyed Vireo	Vireo olivaceus	2485551.37	7430376.11	PO	1	s
-	Point	IL VI	Ned-eyed vireo	Corvus	2405551.57	7450570.11	FU	-	5
5	count	AMCR	American Crow	brachyrhynchos	2485524.62	7430167.77	PO	1	х
	Point			Corvus				_	
5	count	AMCR	American Crow	brachyrhynchos	2485505.57	7430103.91	PO	1	х
	Point	100		Corvus				_	
5	count	AMCR	American Crow	brachyrhynchos	2485585.49	7430237.11	PO	2	Х

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
	Point	- and the	te a designation and a second	Salar see	and and and	AND STORAGE	100	-	
5	count	BTNW	Black -throated Green Warbler	Setophaga virens	2485433.61	7430164.25	PO	1	S
5	Point count	BCCH	Black-capped Chickadee	Poecile atricapillus	2485460.30	7430185.96	PO	1	х
5	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2485447.03	7430197.95	PO	1	х
5	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2485497.97	7430145.30	PO	2	х
5	Point count	NOPA	Northern Parula	Setophaga americana	2485479.56	7430251.87	PO	1	х
5	Point count	NOPA	Northern Parula	Setophaga americana	2485459.02	7430205.22	PO	1	s
5	Point count	NOPA	Northern Parula	Setophaga americana	2485415.41	7430203.00	PO	1	s
5	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485472.71	7430105.93	PO	1	s
5	Point count	PUFI	Purple Finch	Haemorhous purpureus	2485439.76	7430180.40	PO	1	s
5	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485421.78	7430139.74	PO	1	s
5	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485398.24	7430155.15	PO	1	S
5	Point count	WIWR	Winter Wren	Troglodytes hiemalis	2485442.75	7430113.63	PO	1	S
6	Point count	AMRE	American Redstart	Setophaga ruticilla	2485894.87	7430036.32	PO	1	s
6	Point count	BLWA	Blackburnian Warbler	Setophaga fusca	2485930.15	7430066.00	PO	1	s
6	Point count	BLJA	Blue Jay	Cyanocitta cristata	2485933.51	7430081.68	PO	1	x
6	Point count	BHVI	Blue-headed Vireo	Vireo solitarius	2485936.87	7430067.12	PR	2	PR A

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
6	Point count	BHVI	Blue-headed Vireo	Vireo solitarius	2485931.27	7430016.15	PO	1	S
6	Point count	NOPA	Northern Parula	Setophaga americana	2485921.19	7430010.55	PO	1	s
6	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485920.07	7430072.72	PO	1	s
6	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2485895.99	7430012.23	PO	1	s
6	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485957.60	7430054.24	PO	1	s
6	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485957.04	7430015.03	PO	1	S
7	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2486167.28	7429810.50	PO	1	S
7	Point count	BCCH	Black-capped Chickadee	Poecile atricapillus	2486153.82	7429901.36	PO	1	s
7	Point count	BHVI	Blue-headed Vireo	Vireo solitarius	2486211.03	7429862.10	PO	1	s
7	Point count	COYE	Common Yellowthroat	Geothlypis trichas	2486140.36	7429845.27	PO	1	s
7	Point count	HAWA	Hairy Woodpecker	Dryobates villosus	2486187.47	7429816.10	PO	1	х
7	Point count	HETH	Hermit Thrush	Catharus guttatus	2486191.96	7429906.97	PO	1	S
7	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2486130.26	7429860.97	РО	1	s
7	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2486195.33	7429794.79	РО	1	s
7	Point count	WIWR	Winter Wren	Troglodytes hiemalis	2486153.82	7429867.71	PO	1	s
8	Point count	AMCR	American Crow	Corvus brachyrhynchos	2486382.10	7429593.43	PO	1	х

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
8	Point count	AMGO	American Goldfinch	Spinus tristis	2486382.10	7429624.84	PO	1	FO
8	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2486398.93	7429676.44	PO	1	s
8	Point count	BLWA	Blackburnian Warbler	Setophaga fusca	2486345.08	7429666.35	PO	1	s
8	Point count	BHVI	Blue-headed Vireo	Vireo solitarius	2486342.84	7429618.11	PO	1	s
8	Point count	CORA	Common Raven	Corvus corax	2486395.56	7429703.37	PO	1	x
8	Point count	GCKI	Golden-crowned Kinglet	Regulus satrapa	2486380.98	7429688.78	PO	1	s
8	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2486428.09	7429669.71	PO	1	S
8	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2486324.89	7429624.84	PO	1	s
8	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2486426.97	7429648.40	PO	1	S
8	Point count	WTSP	White-throated Sparrow	Zonotrichia albicollis	2486409.02	7429747.12	PO	1	S
8	Point count	WIWR	Winter Wren	Troglodytes hiemalis	2486430.34	7429629.33	PO	1	S
9	Point count	AMRE	American Redstart	Setophaga ruticilla	2485299.13	7430290.93	PO	1	S
9	Point count	AMRE	American Redstart	Setophaga ruticilla	2485297.82	7430366.54	PO	1	s
9	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2485276.39	7430302.00	PO	2	x
9	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485418.06	7430360.30	PO	1	S
9	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485366.17	7430271.10	PO	1	s

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
9	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485318.36	7430363.22	PO	1	s
10	Point count	AMCR	American Crow	Corvus brachyrhynchos	2485786.12	7430197.10	РО	1	х
10	Point count	HAWA	Hairy Woodpecker	Dryobates villosus	2485760.58	7430204.54	PO	1	х
10	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485731.15	7430177.95	PO	1	S
10	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485768.03	7430154.89	PO	1	S
10	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2485764.92	7430203.23	PO	1	S
10	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485759.87	7430198.16	PO		S
10	Point count	WTSP	White-throated Sparrow	Zonotrichia albicollis	2485732.92	7430145.32	PO	1	s
11	Point count	AMCR	American Crow	Corvus brachyrhynchos	2485621.80	7430029.01	PO	2	х
11	Point count	AMCR	American Crow	Corvus brachyrhynchos	2485665.99	7430007.43	PO	2	х
11	Point count	AMRE	American Redstart	Setophaga ruticilla	2485605.35	7430030.55	PO	1	S
11	Point count	AMRE	American Redstart	Setophaga ruticilla	2485640.81	7430039.29	PO	1	S
11	Point count	BEKI	Belted Kingfisher	Megaceryle alcyon	2485626.93	7430018.22	РО	1	х
11	Point count	BAWW	Black and White Warbler	Mniotilta varia	2485587.90	7430026.43	РО	1	s
11	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2485685.67	7430020.74	PO	1	S
11	Point count	CEDW	Cedar Waxwing	Bombycilla cedrorum	2485637.21	7430006.40	PO	1	х

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
11	Point count	COYE	Common Yellowthroat	Geothlypis trichas	2485594.34	7429986.20	PO	1	S
11	Point count	COYE	Common Yellowthroat	Geothlypis trichas	2485637.21	7429969.92	PO	1	S
11	Point count	DOWO	Downy Woodpecker	Picoides pubescens	2485635.67	7430016.68	PO	1	х
11	Point count	HAWA	Hairy Woodpecker	Dryobates villosus	2485500.10	7429970.39	PO	1	х
11	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485562.70	7429982.76	PO	1	S
11	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2485625.91	7430001.26	PO	1	S
11	Point count	SWSP	Swamp Sparrow	Melospiza georgiana	2485672.16	7429969.92	PO	1	S
11	Point count	YRWA	Yellow-rumped Warbler	Setophaga coronata	2485625.91	7430041.86	PO	1	S
12	Point count	AMCR	American Crow	Corvus brachyrhynchos	2485848.55	7429928.77	PO	1	х
12	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2485805.98	7429897.49	PO	1	s
12	Point count	BHVI	Blue-headed Vireo	Vireo solitarius	2485879.83	7429904.44	PO	1	S
12	Point count	GCKI	Golden-crowned Kinglet	Regulus satrapa	2485836.39	7429905.31	PO	1	S
12	Point count	NAWA	Nashville Warbler	Geothlypis philadelphia	2485866.80	7429925.30	PO	1	S
12	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485925.01	7429894.89	PO	1	s
12	Point count	PUFI	Purple Finch	Haemorhous purpureus	2485818.14	7429888.80	PO	1	S
13	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2485987.53	7429642.46	PO	1	s

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
13	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2486076.87	7429688.34	PO	1	s
13	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2486028.58	7429658.16	PO	1	х
13	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2486035.82	7429665.40	PO	1	S
13	Point count	BLJA	Blue Jay	Cyanocitta cristata	2486050.31	7429658.16	PO	1	x
13	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2486090.15	7429642.46	PO	1	S
13	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2486076.87	7429664.19	РО	1	S
14	Point count	BTNW	Black -throated Green Warbler	Setophaga virens	2486260.09	7429432.12	РО	1	S
14	Point count	вссн	Black-capped Chickadee	Poecile atricapillus	2486294.71	7429404.26	PO	1	s
14	Point count	BTBW	Black-throated Blue Warbler	Setophaga caerulescens	2486275.29	7429411.86	PO	1	S
14	Point count	НЕТН	Hermit Thrush	Catharus guttatus	2486344.53	7429450.70	PO	1	s
14	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2486333.55	7429465.89	PO	1	S
14	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2486298.09	7429462.52	PO	1	s
15	Point count	AMGO	American Goldfinch	Spinus tristis	2485137.56	7430752.50	PO	2	FO
15	Point count	BAWW	Black and White Warbler	Mniotilta varia	2485076.23	7430741.29	РО	1	S
15	Point count	NOPA	Northern Parula	Setophaga americana	2485064.02	7430732.40	PO	1	S
15	Point count	NOPA	Northern Parula	Setophaga americana	2485 1 30.55	7430715.53	PO	1	s

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breeding code
	Point			Sector Sector Sector					
15	count	NOPA	Northern Parula	Setophaga americana	2485030.76	7430789.55	PO	1	S
15	Point count	OVEN	Ovenbird	Seiurus aurocapilla	2485083.23	7430855.14	PO	1	S
15	Point count	RBNU	Red-breated Nuthatch	Sitta canadensis	2485007.04	7430755.92	PO	1	S
15	Point count	REVI	Red-eyed Vireo	Vireo olivaceus	2485073.86	7430798.92	PO	1	s
NA	Incidental	BAWW	Black and White Warbler	Mniotilta varia	2485216.17	7430310.63	со	1	PRA
NA	Incidental	BAWW	Black and White Warbler	Mniotilta varia	2486135.20	7429633.18	PO	1	S
NA	Incidental	BTNW	Black -throated Green Warbler	Setophaga virens	2486182.77	7429458.57	PO	1	S
NA	Incidental	BLWA	Blackburinan Warbler	Setophaga fusca	2485373.44	7430505.35	PO	1	S
NA	Incidental	BLWA	Blackburinan Warbler	Setophaga fusca	2485373.44	7430505.35	PO	1	S
NA	Incidental	BLWA	Blackburnian Warbler	Setophaga fusca	2486160.17	7429500.01	PO	1	S
NA	Incidental	BLWA	Blackburnian Warbler	Setophaga fusca	2485734.26	7429786.21	PO	1	S
NA	Incidental	BLWA	Blackburnian Warbler	Setophaga fusca	2485912.65	7429984.66	PO	1	S
NA	Incidental	BCCH	Black-capped Chickadee	Poecile atricapillus	2486117.26	7429915.26	PO	1	S
NA	Incidental	BTBW	Black-throated Blue Warbler	Setophaga caerulescens	2485203.93	7430378.81	PO	1	s
NA	Incidental	BHVI	Blue-headed Vireo	Vireo solitarius	2485914.90	7429781.99	PR	2	PR A
NA	Incidental	CANG	Canada Goose	Branta canadensis	2485639.21	7430047.93	CO	5	NY
NA	Incidental	CAWA	Canada Warbler	Cardellina canadensis	2485790.34	7429731.55	PO	1	SX
NA	Incidental	CEDW	Cedar Waxwing	Bombycilla cedrorum	2485703.95	7430091.97	PO	1	S
NA	Incidental	CEDW	Cedar Waxwing	Bombycilla cedrorum	2485703.95	7430091.97	PO	1	S
NA	Incidental	CSWA	Chestnut-sided Warbler	Setophaga pensylvanica	2486058.22	7430026.28	PO	1	S
NA	Incidental	COYE	Common Yellowthroat	Geothlypis trichas	2486175.84	7429953.95	PO	1	S
NA	Incidental	EAKI	Eastern Kingbird	Tyrannus tyrannus	2485731.43	7430335.55	со	4	FY
NA	Incidental	HAWA	Hairy Woodpecker	Dryobates villosus	2485819.62	7430102.06	PO	1	Х
NA	Incidental	HETH	Hermit Thrush	Catharus guttatus	2486103.18	7429953.36	CO	1	NV

Point ID	Point type	Code	Scientific Name	Common Name	Coord X	Coord Y	Code	Count	Breedir code
NA	Incidental	HETH	Hermit Thrush	Catharus guttatus	2485492.15	7430038.75	со	1	NY
NA	Incidental	OVEN	Ovenbird	Seiurus aurocapilla	2485541.15	7430316.61	PO	1	S
NA	Incidental	OVEN	Ovenbird	Seiurus aurocapilla	2485541.15	7430316.61	PO	1	S
NA	Incidental	PUFI	Purple Finch	Haemorhous purpureus	2486083.79	7429826.83	PO	1	s
NA	Incidental	RBNU	Red-breated Nuthatch	Sitta canadensis	2485535.40	7430495.56	PR	2	Р
NA	Incidental	RBNU	Red-breated Nuthatch	Sitta canadensis	2485540.27	7430276.39	PO	1	S
NA	Incidental	RBNU	Red-breated Nuthatch	Sitta canadensis	2485540.27	7430276.39	PO	1	S
NA	Incidental	RUGR	Ruffed Grouse	Bonasa umbellus	2485352.80	7430409.22	со	1	NY
NA	Incidental	RUGR	Ruffed Grouse	Bonasa umbellus	2485763.88	7429751.02	со	1	NY
NA	Incidental	VEER	Veery	Catharus fuscescens	2486061.14	7430090.57	PO	1	S
NA	Incidental	WIWR	Winter Wren	Troglodytes hiemalis	2485600.67	7430453.02	PO	1	S
NA	Incidental	YBSA	Yellow-bellied Sapsucker	Sphyrapicus varius	2486065.53	7430067.19	PO	1	S
NA	Incidental	YBSA	Yellow-bellied Sapsucker	Sphyrapicus varius	2486214.42	7429444.85	PO	1	Х
NA	Incidental	YBSA	Yellow-bellied Sapsucker	Sphyrapicus varius	2485740.40	7429860.66	CO	1	Х
NA	Incidental	YRWA	Yellow-rumped Warbler	Setophaga coronata	2485795.64	7429855.50	PO	1	S

Appendix IV Wetland Delineation Forms

New Brunswick Department of Environment Wetland Delineation Data Sheet

— Hydrol						
		(minimum of one is rea	uired; check all that apply)	WLIawet		
Surface Wa High Water Saturation Water Mark Sediment D Drift Depos Algal Mat o Iron Depos Inundation Sparsely V	later (A1) rr Table (A2) (A3) rks (B1) Deposits (B2) sits (B3) or Crust (B4) sits (B5) to Visible on Aerial Ima /egetated Concave Si	gery (B7) urface (B8)	Water Stained Leaves (B9) Aquatic Fauna (B13) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron reduction in tilled Soils (C6) Thin Muck Surface (C7) Other (Explain in Remarks)			
Surface So Drainage F Moss Trim Dry-Seaso Crayfish Bo	idicators: (minimum (oil Cracks (B6) Patterns (B10) I Lines (B16) on Water Table (C2) Burrows (C8) Visible on Aerial Imag		 Stunted or Stressed Plants Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D FAC-Neutral Test (D5) 			
Field Observat Surface Water Water Table P Saturation Pres Comments:	r Present? Yes Present? Yes esent? Yes	NoDepth To Depth_ 30 To Depth_ 5		Wetland Hydrology Present? Yes <u>No</u>		
-Soil Pr	rofile					
Profile Descri	iption: (Describe to the	ne depth needed to doo	cument the indicator or confirm the a	absence of indicators)		
Depth(cm)	Matrix		Redox Features			
8-0 0-21	<u>Color(moist)</u> 1.5YR/S/2	<u>%</u> <u>Color(moist)</u> BD 7.5YR/6	$\frac{\frac{\%}{20}}{120} \xrightarrow{\text{Type}^1} \xrightarrow{\text{Loc}^2} $	<u>Drganic</u>		
¹ Type: C=Cond	centration, D=Depleti	on, RM=Reduced Matri	ix, CS=Covered or Coated Sand Gr	rains. ² Location: PL=Pore Lining, M=Matrix		
Black Histii Hydrogen S Stratified L Depleted B Thick Dark Sandy Muc Scm Mucky Sandy Gleg	A1) bedon (A2) be (A3) Suflide (A4) Layers (A5) Below Dark Surface (A & Surface (A12) cky Mineral (S1) y Peat or Peat (S3) eyed Matrix (S4)		 Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) 			
Restrictive Lay	yer (if observed): Type	Clay Depth		Hydric Soil Present? Yes No		
Comments:						

version 1.8 June 1, 2009

New Brunswick Department of E	nvironment Wetland Delineation Data Sheet
Project Site Argan	Date Jun 12/2018 Sample Point WLIa up
Applicant/Owner_ New Mary land	Field Investigator(s) Derrich Mitchell
County YOCK	Coordinates 2.446730/7430/20
PID 75349068, 75064849, 75062174	_Do normal environmental conditions exist on-site? Yes
if no explain:	
Is this a potential Problem Area ? Yes No Department	
Wetland Determination	
(Check One Only For Each Criteria)	Wetland
Dominant Hydrophytic Vegetation (50/20 rule)	YesNo Determination
Wetland Hydrology	
Hydric Soils	
Wetland Type: N/A	
Rational for Determination:// A	
Vegetation	
Vegetation	
Tree Stratum: (Plot size: 15 x %Cover Dominant Species	Indicator Status Dominance Test Worksheet:
1. Acer vub 20 V FI	# of Dominant Species
3 Betu Pop 5 Fr	that are OBL,FACW,FAC:(A)
4 Abie bal 45 V FA	Total # of Dominant Species across all strata:(B)
5= Total Cover	Species across all strata(b)
Shrub Stratum: (Plot size:	% of Dominant Species that are OBL,FACW,FAC: (A/B)
1. Abres bal 5 E.	40
2	Prevalence Index Worksheet: Total % Cover of: Multiply by:
4	
5	OBL Species x1 = FACW Species x2 =
= Total Cover	FAC Species 85 x3 = 255
Herb Stratum: (Plot size:	FACU Specie x4 = UPL Species x5 =
A It - E	Column Totals: 35 x1 = 2.55
2.11. 5	7
ATTIC bor 5 FA	Prevalence Index = B/A =
5. Demu a'a S	Hydrophytic Vegetation Indicators:
= Total Cover	Rapid Test for Hydrophytic Vegetation
= 30	Prevalence Index is ≤3.0 ¹
	Morphological Adaptations ¹ (explain)
	Problematic Hydrophytic Vegetation ¹ (explain) ¹ Indicators of hydric soil and wetland hydrology must be
	present, unless disturbed or problematic
Comments	
	/
	Hydrophytic Vegetation Present? Yes V

Primary Hydrological Indicators: (minimum of one is required: check all that apoly) WH f a up Surface Water (A1) Aquater Stained Leaves (B0) Surface Stained Leaves (B0) Defined Staine (C2) Defined Stained Leaves (B0) Defined Staine (C2) Innotation Water Stained Leaves (B0) Defined Staine (C2) Innotation Water Stained Leaves (B0) Started or Stressed Plans (D1) Decoder Midde Staine (C2) Started or Stressed Plans (D1) Dranage Plans (P1) Started or Stressed Plans (D1) Dranage Plans (P1) Started or Stressed Plans (D1) Started Valer Present? Yes_No. Coepth_ Water Table Present? Yes_No. Coepth_ Startado Valer Present? Yes_No. Coepth_ Type: Cr-Concentration, DroDepletion, RM=Reduced Matri	— Hydrology —	
Surface Water (A1)		radi abagk all that apply) (JL /a)
Surface Soil Cracks (BP)	Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7)	Water Stained Leaves (B9) Aquatic Fauna (B13) Marl Deposite (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron reduction in tilled Soils (C6) Thin Muck Surface (C7)
Surface Water Present? Yes_No_bepth_ Water Table Present? Yes_No_bepth_ Saturation Present? Yes_No_bepth_ Comments:	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Craviter Burrows (C8)	Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth(cm) Matrix Redox Features 9-0 Color(moist) % Type! Loc? Texture Remarks 9-0 TSTR/H/H Gold Image: Source of the system	Surface Water Present? Yes No Depth Water Table Present? Yes No Depth Saturation Present? Yes No Depth	
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators) Depth(cm) Matrix Redox Features 9-0 Color(moist) % Type! Loc? Texture Remarks 9-0 TSTR/H/H Gold Image: Source of the system		
Depth(cm) Matrix Redox Features 9-0 Color(moist) % Type ¹ Loc ² Texture Remarks 0-19 TSTR/4/4 00 Image: state st	Soil Profile	
9-0 Color(moist) % Type1 Loc2 Texture Remarks 9-0 TSYR/4/4 00 Type1 Loc2 Texture Remarks 0-19 TSYR/4/4 00 Top1 Stration Stration Stration 10-19 Stratified Layers (A1) Stratified Layers (A2) Stratified Layers (A5) Top24 Matrix (S6) 11-10 Dark Surface (A12) Depleted Delow Dark Surface (A12) Depleted Delow Dark Surface (A12) Depleted Matrix (F2) 2-10 Sandy Mucky Minerat(S1) Depleted Dark Surface (F7) Redox Dark Surface (F7) Depleted Dark Surface (F7) 3-2 Sandy Gleyed Matrix (S4) Redox Depressions (F8) Hydric Soil Present? Yes_ No Yes_ No	Profile Description: (Describe to the depth needed to docu	ment the indicator or confirm the absence of indicators)
9-0 7.5YR/4/4 00 9-19 7.5YR/4/4 00 1 7.5YR/4/4 00 1 1 5000000000000000000000000000000000000	Depth(cm) Matrix	Redox Features
Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Suffide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Scm Mucky Peat or Peat (S3) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if observed): Type Depth: Z8cm	A 0	Urganic
Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Suffide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Scm Mucky Peat or Peat (S3) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if observed): Type Depth: Z8cm		
Hydric Soil Indicators: Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Suffide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Scm Mucky Peat or Peat (S3) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if observed): Type Depth: Z8cm		
Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped-Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Suflide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) 5cm Mucky Peat or Peat (S3) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Hydric Soil Present? Yes_ No L	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix	CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix
Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped-Matrix (S6) Black Histic (A3) Dark Surfaces (S7) Hydrogen Suflide (A4) Polyvalue Below Surface (S8) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) 5cm Mucky Peat or Peat (S3) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Hydric Soil Present? Yes_ No L	Hudria Sail Indicators:	
	Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suflide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5cm Mucky Peat or Peat (S3)	Stripped-Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7)
Comments:		74
	Restrictive Layer (if observed): Type Depth: Depth:	Hydric Soil Present? Yes No
		Hydric Soil Present? Yes No
		Hydric Soil Present? Yes No_

New Brunswick Department of E	nvironment Wetland Delineation Data Sheet
Project Site Arsam	Date Jun 12/2019 Sample Point WLIB wet
Applicant/Owner New Mary land	Field Investigator(s) Derrick Mitchell
County York	Coordinates 2445730/7430120
PID 75349068, 75064840, 75062174	Do normal environmental conditions exist on-site? Yes No
if no explain:	
Atypical Situation? Yes No DExplain	
Wetland Determination (Check One Only For Each Criteria)	
	Wetland
Dominant Hydrophytic Vegetation (50/20 rule)	
Wetland Hydrology	Yes NO
Hydric Soils	
Wetland Type: Wetland Complex	
Rational for Determination: 3 in dirators	present
Vegetation	
Tree Stratum: (Plot size:) 5 % % Cover Dominant Species	Indicator Status Dominance Test Worksheet:
1	# of Dominant Species
2	that are OBL,FACW,FAC:(A)
3	
4	Total # of Dominant Species across all strata:(B)
= Total Cover	
Shrub Stratum: (Plot size:	% of Dominant Species (A/B)
2	Prevalence Index Worksheet:
3	Total % Cover of: Multiply by:
4	OBL Species 35 x1 = 35
	FACW Species 45 x2 = 90
= Total Cover	FAC Species x3 =
Herb Stratum: (Plot size:	FACU Specie x4 = UPL Species x5 =
	Column Totals: So x1 = 175
2 Con Can 45 V F	Acu
3	BL Prevalence Index = B/A = 1,6
4 SCOF CYP 5 FA	Hydrophytic Vegetation Indicators:
Total Cover	Rapid Test for Hydrophytic Vegetation
03	Dominance Test is >50%
	Prevalence Index is ≤3.0 ¹ Morphological Adaptations ¹ (explain)
	Problematic Hydrophytic Vegetation ¹ (explain)
	Indicators of hydric soil and wetland hydrology must be
	present, unless disturbed or problematic
Comments	
	Hydrophytic Vegetation Present? Yes V
	Hydrophytic Vegetation Present? Yes_/ No

— Hydrology —	
Primary Hydrological Indicators: (minimum of one is require	ad chack all that apply) 11/11
Surface Water (A1) Surface Water (A1) Higb Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Mundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8)	ed; check all that apply) Water Stained Leaves (B9) Aquatic Fauna (B13) Water Stained Leaves (B15) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Wxidized Rhizospheres on Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron reduction in tilled Soils (C6) Thin Muck Surface (C7) Other (Explain in Remarks)
Secondary Indicators: (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)	 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes Water Table Present? Yes No Depth Saturation Present? Yes No Depth Old Beaver	Wetland Hydrology Present? Yes <u>No</u>
Soil Profile	
Profile Description: (Describe to the depth needed to docum	ent the indicator or confirm the absence of indicators)
Depth(cm) Matrix	Redox Features
<u>16-0</u> <u>0-34</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u> <u>Color(moist)</u>	½ Type ¹ Loc ² Texture Remarks
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, 0	CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix
Hydric Soil Indicators:	Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Hydric Soil Present? Yes No_
Comments:/	/
1	

New Brunswick Department of Environment We	etland Delineation Data Sheet
1	12/2018 Sample Point WL/c wet
	485730/1430120
A CALLAND ARALLING AN ALAN	onmental conditions exist on-site? Yes
if no explain:	
Atypical Situation? Yes No LExplain	
Is this a potential Problem Area? Yes No	
Wetland Determination (Check One Only For Each Criteria)	
Dominant Hydrophytic Vegetation (50/20 rule) Yes Vo	Wetland Determination
Wetland Hydrology Yes Var	
Hydric SoilsYes Ves	YES NO
Wetland Type: Wetland camples	
Rational for Determination: 3 indicators present	
Vegetation	
Tree Stratum: (Plot size: 15M) %Cover Dominant Species Indicator State	us Dominance Test Worksheet:
1. Acer rub 15 V FAC	# of Dominant Species
2 Abic bul 25 FAC	that are OBL, FACW, FAC:(A)
4 Betwart & FAC	Total # of Dominant
5 Thuy occ 2 = Total Cover FACW	Species across all strata:(B)
267	% of Dominant Species
Shrub Stratum: (Plot size: SM)	that are OBL,FACW,FAC: _/00(A/B)
2 Abies bal 5 FAC	Prevalence Index Worksheet:
4 Frax nig 2 EArw	Total % Cover of: Multiply by:
5	OBL Species x1 =
= 12 = Total Cover	FACW Species 40 $x^2 = 80$ FAC Species $3^2 = 195$
/	FACU Specie x4 =
Herb Stratum: (Plot size: / M)	UPL Species $x5 =$ Column Totals: 105 $x1 =$ 2.75
1. Onocsen 20 V FACW	
2 Corn can 15 FAC 3 Athr fil 10 FAC 4 Core int 10 FAC	Prevalence Index = B/A =6
5. Ruby Aub 10	Hydrophytic Vegetation Indicators:
= 65 = Total Cover Friction	Rapid Test for Hydrophytic Vegetation Dominance Test is >50%
	CPrevalence Index is ≤3.0 ¹
	Morphological Adaptations ¹ (explain)
	Problematic Hydrophytic Vegetation ¹ (explain) ¹ Indicators of hydric soil and wetland hydrology must be
	present, unless disturbed or problematic
Comments	
	/
	Hydrophytic Vegetation Present? Yes No

	y			
Primary Hydrolog	ical Indicators: (minimum of one is rea	quired; check all that apply)	WL IC wet
Surface Water High Water Tail Saturation (A3) Water Marks (E Sediment Depo Drift Deposits (Algal Mat or Cr Iron Deposits (Inundation Visi Sparsely Vegel	ble (A2) 31) psits (B2) B3) rust (B4)	gery (B7) Irface (B8)	Aquatic Fauna (B13) Aquatic Fauna (B13) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on I Presence of Reduced Iron (Recent Iron reduction in tille Thin Muck Surface (C7) Other (Explain in Remarks)) Living Roots (C3) (C4) ed Soils (C6)
Secondary Indica Surface Soil Cr Drainage Patte Moss Trim Line Dry-Season Wa Crayfish Burrov Saturation Visil	racks (B6) rns (B10) es (B16) ater Table (C2) ws (C8)		 Stunted or Stressed Plants Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 	
Field Observations	-			
Surface Water Prese Water Table Prese Saturation Present	nt? Yes	oDepth_2S		Wetland Hydrology Present? Yes No
Comments:				
Soil Profil	e			
Profile Descriptio	n: (Describe to the	e depth needed to do	cument the indicator or confirm the ab	bsence of indicators)
Depth(cm)	Matrix		Redox Features	,
5-0	Color(moist)	% Color(moist	<u>%</u> <u>Type¹</u> <u>Loc²</u>	Texture Remarks
0-32 7	548/5/2	95 7.5YR/6/	4 5 D M	Sandy/silt
	19-10			
1	etian D-Daalatia			2
Type: C=Concentr	ation, D=Depletio	n, RM=Reduced Mati	ix, CS=Covered or Coated Sand Gra	ins. ² Location: PL=Pore Lining, M=Matrix
Hydric Soil Indica	tors:			
Histosol (A1) Histic Epipedon Black Histic (A3 Hydrogen Suflic Stratified Layer Depleted Below	3) de (A4)	11)	 Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) 	
 Thick Dark Surf Sandy Mucky M 5cm Mucky Pea Sandy Gleyed I 	/ineral (S1) at or Peat (S3) Matrix (S4)	0 1	Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)	
Restrictive Layer (if	fobserved): Type	Rock Depth	37 cm	Hydric Soil Present? YesNo
Comments:			•	

version 1.8 June 1, 2009

Ē

New Brunswick Department of Environment Wetla	nd Delineation Data Sheet
Project Site Arsam Date Jun 1	2/2018 Sample Point Whic up
Applicant/Owner New Maryland Field Investigator(s)	Demick Mitchell
County York Coordinates 248	5730/7430120
PID_15349068,75064840,75062174 Do normal environm	nental conditions exist on-site? Yes
if no explain:	
Atypical Situation? Yes No CExptain	·
Is this a potential Problem Area? Yes No Dexplain	
Wetland Determination (Check One Only For Each Criteria)	
Dominant Hydrophytic Vegetation (50/20 rule) Yes No	Wetland Determination
Wetland Hydrology Yes No	Determination
E./-	YES NO
nt/A	
Wetland Type:	
Rational for Determination:	
Vegetation	
16	
Tree Stratum: (Plot size: 15 A) %Cover Dominant Species Indicator Status	Dominance Test Worksheet:
2 Acerrub 50 V FAC	# of Dominant Species that are OBL,FACW,FAC:(A)
3 Techno 20 PAC	
5. FACU	Total # of Dominant Species across all strata: 4 (B)
75 = Total Cover	N of Dominant Species
Shrub Stratum: (Plot size: Sm)	% of Dominant Species that are OBL,FACW,FAC:(A/B)
1- Betwall 2 FAC	Prevalence Index Worksheet:
3	Total % Cover of: Multiply by:
4	OBL Species x1 =
2	FACW Species x2 =
= Total Cover	FAC Species 73 x3 = 219 FACU Specie x4 =
Herb Stratum: (Plot size:)	UPL Species x5 =
1. Acer rub / V FAC	Column Totals: 73 x1 = $2/9$
2	Prevalence Index = B/A =
4.	Prevalence Index = B/A =
5	Hydrophytic Vegetation Indicators:
= Total Cover	Rapid Test for Hydrophytic Vegetation
	Prevalence Index is ≤3.0 ¹
	Morphological Adaptations ¹ (explain) Problematic Hydrophytic Vegetation ¹ (explain)
	Indicators of hydric soil and wetland hydrology must be
	present, unless disturbed or problematic
Comments	
	Hydrophytic Vegetation Present? Yes V No

— Hydrology —	
Primary Hydrological Indicators: (minimum of one is requ	wired; check all that apply) WLICUP
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B9) Secondary Indicators: (minimum of two required) Surface Soil Cracks (B6) Orainage Patterno (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)	
 Cravitsh Burrows (C8) Saturation Visible on Aerial Imagery (C9) 	FAC-Neutral Test (D5)
Field Observations: Surface Water Present? Yes No Depth	
Water Table Present? Yes No Depth	Wetland Hydrology Present? Yes No_
Saturation Present? Yes No Depth	Wethand Trychology Present resNo
Comments:	
	sument the indicator or confirm the obscapes of indicators)
Profile Description: (Describe to the depth needed to doc Depth(cm) <u>Matrix</u> <u>Color(moist) % Color(moist)</u>	Redox Features
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0 0-10 7.5YR/4/2 100	Redox Features
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0	Redox Features <u>%</u> <u>Type¹</u> Loc ² <u>Texture</u>
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0 0-10 7.5YR/4/2 100	Redox Features <u>%</u> <u>Type¹</u> Loc ² <u>Texture</u>
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix <u>Color(moist)</u> % <u>Color(moist)</u> <u>3-0</u> <u>0-10</u> 7,5YR/4/2 100	Redox Features <u>%</u> <u>Type¹</u> Loc ² <u>Texture</u>
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0 0-10 7.5YR/4/2 100	Redox Features <u>%</u> <u>Type¹</u> Loc ² <u>Texture</u>
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix $3-0$ $\%$ $0-10$ $7.5YR/4/2$ 100 $10-25$ $7.5YR/5/4$ 100	Redox Features <u>%</u> <u>Type¹</u> Loc ² <u>Texture</u>
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix $3-0$ $\%$ $0-10$ $7.5YR/4/2$ 100 $10-25$ $7.5YR/5/4$ 100	Redox Features % Type ¹ Loc ² Texture Remarks
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0 0-10 1,5YR/4/2 /00 10-25 7,5YR/5/4 /00	Redox Features % Type1 Loc2 Texture Remarks Organic Sandy Image: Sandy Image: Sandy Image: Sandy Image: Sandy Redox (S5) Stripped Matrix (S6) Image: Sandy Redox (S5) Image: Sandy Redox (S5) Image: Sandy Redox (S5) Stripped Matrix (S6) Image: Sandy Redox (S7) Image: Sandy Redox (S7) Image: Sandy Redox Stripped Matrix (S6) Image: Sandy Redox (S7) Image: Sandy Redox (S7) Image: Sandy Redox Stripped Matrix (S6) Image: Sandy Redox (S7) Image: Sandy Redox (S7) Image: Sandy Redox Stripped Matrix (S6) Image: Sandy Redox (S7) Image: Sandy Redox (S7) Image: Sandy Redox Stripped Matrix (S6) Image: Sandy Redox (S7) Image: Sandy Redox (S7) Image: Sandy Redox Stripped Matrix (S6) Image: Sandy Redox (S7) Image: Sandy Redox (S7) Image: Sandy Redox Stripped Matrix (F2) Image: Sandy Redox Image
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0 0-10 10-25 7,5YR/4/2 100 10-25 7,5YR/5/4 100 10-25 10-25 7,5YR/5/4 100 10-25 7,5YR/5/4 100 10-25 7,5YR/5/4 100 10-25 7,5YR/5/4 100 10-25 7,5YR/5/4 100 10-25 7,5YR/5/4 100 10-25 10-25 7,5YR/5/4 100 10-25 10	Redox Features % Type ¹ Loc ² Texture Remarks Organic Standy Image: Standy Image: Standy Image: Standy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Image: Standy Redox (S5) Stripped Matrix (S6) Dark Surface (S7) Potyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)
Profile Description: (Describe to the depth needed to doc Depth(cm) Matrix Color(moist) % Color(moist) 3-0 0-10 1,5YR/4/2 /00 10-25 7,5YR/5/4 /00	Redox Features % Type ¹ Loc ² Texture Remarks Organic Standy Image: Standy Image: Standy Image: Standy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Image: Standy Redox (S5) Stripped Matrix (S6) Dark Surface (S7) Potyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)

New Brunswick Department of Environment Wet	land Delineation Data Sheet
Project Site Arsan Date Jun Applicant/Owner New Maryland Field Investigator	15/2018 Sample Point WLZ wet
	18/5730/7430120
DID 7534 9069, 75064840, 75062174 Do normal environ	
f no explain:	
Atypical Situation? Yes No Fexplain	
s this a potential Problem Area ? Yes No Replain	
(Check One Only For Each Criteria)	Wetland
Dominant Hydrophytic Vegetation (50/20 rule)Yes No	Determination
Vetland Hydrology —————Yes 🔽 No 🛺	
Hydric SoilsYes No I	
Netland Type: Forested Riverene swamp	
Rational for Determination: 3 indicators preses	их.
Vegetation	
ree Stratum: (Plot size: Km) %Cover Dominant Species Indicator Status	s Dominance Test Worksheet:
	# of Dominant Species
	that are OBL, FACW, FAC:(A)
Acerrus 20 FAC	Total # of Dominant
Abie bal 10 PAC	Species across all strata:(B)
=60 = Total Cover	% of Dominant Species
Shrub Stratum: (Plot size: 5.m.)	that are OBL, FACW, FAC: 100 (A/B)
Frax Mig 25 FACW	Prevalence Index Worksheet:
Abie bal 5 FAC	Total % Cover of: Multiply by:
	OBL Species x1 =
	FACW Species 55 x2 = 110
= <u>30</u> = Total Cover	FAC Species x3 = FACU Specie x4 =
lerb Stratum: (Plot size: / m)	UPL Species x5 =
Comparia 15 V FAC	Column Totals: 105 x1 = 260
The nova 15 FAC	Prevalence Index = $B/A = 2.5$
Care gyr 10 FACW	Hydrophytic Vegetation Indicators:
Onoc Sen 5 = Total Cover FACW	Rapid Test for Hydrophytic Vegetation
= 55	Dominance Test is >50%
	Morphological Adaptations ¹ (explain) Problematic Hydrophytic Vegetation ¹ (explain)
	¹ Indicators of hydric soil and wetland hydrology mus
	present, unless disturbed or problematic
omments	
	/
	Hudrombutio Verstation Descento Vest
	Hydrophytic Vegetation Present? Yes V No

이 다 전쟁을 받을 것이다.

- Hydrology	inum of one is require	d obook all that anoth		1.11 7	2 wet
<i>cimary Hydrological Indicators</i> : (min Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imager Sparsely Vegetated Concave Surfa <i>econdary Indicators: (minimum of tw</i> Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)	r (B7) ze (B8)	d; check all that apply Water Stained Lo Aquatic Fauna (6 Marl Deposits (B Hydrogen Sulfide Oxidized Rhizos) Presence of Red Recent Iron redu Thin Muck Surfa Other (Explain in Stunted or Stress Geomorphic Pose Shallow Aquitaro Microtopographic FAC-Neutral Tes	sed Plants (I (D3) c Remarks)	iving Roots (C3) C4) d Soils (C6) D1)	
_ Saturation Visible on Aerial Imagery	(C9)		st (D5)		
ield Observations:					
	Depth				/
	Depth			Wetland Hydro	logy Present? Yes VN
Saturation Present? YesNo					
Comments:					
- Soil Profile					
	anth needed to docum	ont the indicator or co	ofirm the end	conce of indicator	2)
rofile Description: (Describe to the d	epth needed to docum		nfirm the ab	sence of indicator	s)
Profile Description: (Describe to the dependence) Matrix		Redox Features			
Profile Description: (Describe to the d			nfirm the abs	Texture	Remarks
Profile Description: (Describe to the d Depth(cm) <u>Matrix</u> <u>Color(moist)</u> 2 1-0	<u>Color(moist)</u>	Redox Features % Type ¹			
Profile Description: (Describe to the dependence) Matrix	<u>Color(moist)</u>	Redox Features		Texture	Remarks
Profile Description: (Describe to the d Depth(cm) Matrix Color(moist) 2 1-0	<u>Color(moist)</u>	Redox Features % Type ¹		Texture	Remarks
drofile Description: (Describe to the display in the din the display in the display in the dinterval in the dint	<u>Color(moist)</u>	Redox Features % Type ¹		Texture	Remarks
rofile Description: (Describe to the d epth(cm) Matrix Color(moist) 2	<u>Color(moist)</u>	Redox Features % Type ¹		Texture	Remarks
Profile Description: (Describe to the display in the din the display in the display in the dinterval in the dint	<u>Color(moist)</u>	Redox Features % Type ¹		Texture	Remarks
Color(moist) 2 2-20 7.5YR/5/2 9	<u>Color(moist)</u>	S D		Texture Organic Silt	Remarks
Profile Description: (Describe to the d Depth(cm) <u>Matrix</u> <u>Color(moist)</u> 2 <u>7-0</u> <u>7.5YR/5/2</u> 9	<u>Color(moist)</u>	S D		Texture Organic Silt	Remarks
Profile Description: (Describe to the d Depth(cm) Matrix Color(moist) 2 1-0	<u>Color(moist)</u>	S D		Texture Organic Silt	Remarks
1-0 <u>Color(moist)</u> 2	<u>Color(moist)</u>	S D	Loc ²	Texture Organic Silt	Remarks
Profile Description: (Describe to the d Depth(cm) Matrix Color(moist) 9 1-0 0-20 7.5YR/5/2 9 Type: C=Concentration, D=Depletion, Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suflide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11)	<u>Color(moist)</u>	Redox Features	Loc ²	Texture Organic Silt	Remarks
Profile Description: (Describe to the d Depth(cm) Matrix Color(moist) 2 1-0 0-20 7.5YR/5/2 Type: C=Concentration, D=Depletion, Hydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suffide (A4) Stratified Layers (A5)	<u>Color(moist)</u>	Redox Features	Loc ²	Texture Organic Silt	Remarks
Profile Description: (Describe to the d Depth(cm) Matrix Color(moist) 9 1-0 2-20 7.5YR/5/2 9 Type: C=Concentration, D=Depletion, Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suflide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) 5cm Mucky Peat or Peat (S3) Sandy Gleyed Matrix (S4)	Color(moist)	Redox Features	Loc ²	Texture Grganic Silt 	Remarks
Profile Description: (Describe to the dependence of the dep	Color(moist)	Redox Features % Type1 ✓ D D ✓ D D D ✓ D D D D ✓ D D D D ✓ D D D D ✓ D D D D ✓ D D D <	Loc ²	Texture Grganic Silt 	Remarks

New Brunswick Department of Environment Wetlar	nd Delineation Data Sheet
Project Site Arsam Date Jun 19	5/2018 Sample Point WL2 WA
	Derrick Mitchell
County YOFK Coordinates 245	15730/7430120
PID_ 7534 9069, 75064840, 75062174 Do normal environm	ental conditions exist on-site? Yes No
if no explain:	
Atypical Situation? Yes No Lexplain	
Is this a potential Problem Area? Yes No Explain	
(Check One Only For Each Criteria)	Wetland
Dominant Hydrophytic Vegetation (50/20 rule)Yes V No	Determination
Wetland HydrologyYes No	YES NO L
Hydric SoilsYes No	
Wetland Type:/V / //	
Rational for Determination:	
F	
Vegetation	
Tree Stratum: (Plot size: 15m) %Cover Dominant Species Indicator Status	Dominance Test Worksheet:
1. Acerrub 40 FAC	# of Dominant Species
2 Abie bal 20 FAC	that are OBL,FACW,FAC:(A)
4 Thuj oce 10 PACW	Total # of Dominant
5. Betwall 5 = Total Cover FAC	Species across all strata:(B)
-15	% of Dominant Species
Shrub Stratum: (Plot size: SM)	that are OBL,FACW,FAC: (A/B)
2. Abie bad 5 / PAC	Prevalence Index Worksheet:
3	Total % Cover of: Multiply by:
5	OBL Species x1 =
= 5 = Total Cover	FACW Species x2 = FAC Species 47 x3 = 7.01
	FACU Specie x4 =
Herb Stratum: (Plot size: / ///)	UPL Species x5 = Column Totals: x1 =
1. Trie bal 2 FAC	
3	Prevalence Index = B/A = 3.0
4 5	Hydrophytic Vegetation Indicators:
= = Total Cover	Rapid Test for Hydrophytic Vegetation
	Dominance Test is >50% Prevalence Index is ≤3.0 ¹
	Morphological Adaptations ¹ (explain)
	Problematic Hydrophytic Vegetation ¹ (explain)
	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic
Comments	
	Hydrophytic Vegetation Present? Yes No

Hydrology	
Primary Hydrological Indicators: (minimum of one is requ	uired: check all that apply) WLZ up
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8)	Water Stained Leaves (B9) Aquatic Fauna (B13) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron reduction in tilled Soils (C6) Thin Muck Surface (C7) Other (Explain in Remarks)
Secondary Indicators: (minimum of two required) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)	Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
ield Observations:	
Surface Water Present? Yes No_Depth	
Vater Table Present? Yes No Depth	Wetland Hydrology Present? Yes No_
Saturation Present? YesNoDepth	
Comments:	
O-II D-di	
Soil Profile	
rofile Description: (Describe to the depth needed to doc	
Depth(cm) Matrix	Redox Features
<u>Color(moist)</u> % <u>Color(moist)</u>	<u>% Type¹ Loc² Texture Remarks</u>
7-0	
	% Type ¹ Loc ² Texture Remarks
7-0	<u>% Type¹ Loc² Texture Remarks</u>
7-0	<u>% Type¹ Loc² Texture Remarks</u>
7-0	<u>% Type¹ Loc² Texture Remarks</u>
7-0	<u>% Type¹ Loc² Texture Remarks</u>
7-0	<u>% Type¹ Loc² Texture Remarks</u>
<u>1-0</u> -22 1 <u>.5YR/5</u> 4 1 <u>0</u> 0	<u>% Type¹ Loc² Texture Remarks</u>
7-0 7.5YR/Sf4 100 9-22 7.5YR/Sf4 100 9 9 9 9 9	% Type1 Loc2 Texture Remarks
7-0 7.5YR/Sf4 100 9-22 7.5YR/Sf4 100 Image: Signal Si	% Type1 Loc2 Texture Remarks Image: Second grain Second grain Second grain Image: Second grain Image: Second grain Image: Second grain <
7-0 7.5YR/5/4 100 9-22 7.5YR/5/4 100 "ype: C=Concentration, D=Depletion, RM=Reduced Matrix vdric Soil Indicators: Histosol (A1) Histoc Epipedon (A2)	% Type1 Loc2 Texture Remarks Organnic Sandynic Sandynic Sandynic ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6)
7-0 7.5YR/5/4 100 9-22 7.5YR/5/4 100 "ype: C=Concentration, D=Depletion, RM=Reduced Matrix" ydric Soil Indicators: Histosol (A1) Histosol (A1) Black Histic (A3)	% Type1 Loc2 Texture Remarks Organic Sandy Sandy Sandy Sandy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Dark Surfaces (S7) Sandy Redox (S5) Stripped Matrix (S6)
7 - O 7,5YR/Sf4 100 9 - 22 7,5YR/Sf4 100 Fype: C=Concentration, D=Depletion, RM=Reduced Matrix Wdric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sufficied (A4) Stratified Layers (A5)	% Type1 Loc2 Texture Remarks Organnic Sandy Redox (signature) Sandy Redox (signature) Sandy Redox (signature) ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9)
7 - O 7,5YR/Sf4 100 9 - 22 7,5YR/Sf4 100 Fype: C=Concentration, D=Depletion, RM=Reduced Matrix Wdric Soll Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suffide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11)	% Type1 Loc2 Texture Remarks Organic Sandy Sandy Sandy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6) Derk Sturfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loamy Gleyed Matrix (F2)
7 - O 7.5YR/Sf4 100 9 - 22 7.5YR/Sf4 100 Synch Signed Stress 100 Fype: C=Concentration, D=Depletion, RM=Reduced Matrix Wdric Soll Indicators: Histosol (A1) Histosol (A1) Black Histic (A3) Hydrogen Suffide (A4) Stratified Layers (A5) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky-Mineral (S1)	% Type1 Loc2 Texture Remarks Organnic Sandy Redox (Signature) Sandy Redox (Signature) Sandy Redox (Signature) ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6)
7 - O 7,5YR/Sf4 100 9 - 22 7,5YR/Sf4 100 Fype: C=Concentration, D=Depletion, RM=Reduced Matrix Wdric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sufficie (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky-Mineral (S1) 5cm Mucky Peat or Peat (S3)	% Type1 Loc2 Texture Remarks Organnic Sandy Sandy Sandy Sandy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6)
7-0 9-22 7,5YR/Sf4 100 Type: C=Concentration, D=Depletion, RM=Reduced Matrix Vdric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suffide (A4) Stratified Layers (A5) Depleted Belows (A5) Depleted Belows (A5) Sandy Mucky-Mineral (S1) 5cm Mocky Peat or Peat (S3) Sandy Gleyed Matrix (S4)	% Type1 Loc2 Texture Remarks Organic Sandy Sandy Sandy Sandy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loarny Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) A// A
7 - 0 7,5YR/Sf4 100 9 - 22 7,5YR/Sf4 100 Type: C=Concentration, D=Depletion, RM=Reduced Matrix Mydric Soil Indicators: Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Suffice (A4) Stratified Layers (A5) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky-Mineral (S1) 5cm Mucky Peat or Peat (S3)	% Type1 Loc2 Texture Remarks Organic Sandy Sandy Sandy Sandy ix, CS=Covered or Coated Sand Grains. ² Location: PL=Pore Lining, M=Matrix Sandy Redox (S5) Stripped Matrix (S6) Dark Surfaces (S7) Polyvalue Below Surface (S8) Thin Dark Surface (S9) Loarny Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) A// A

Appendix V WESP-AC Scores

Wetland ID:	WL1	
Date:	06/13/2018	
Observer:	Derrick Mitchell	
Latitude & Longitude (decimal degrees):		

provided in the final calculator for WBF, WBN, SBM, and PO being revised.	E, then mouels are car	renuy				
Results for this Assessment Area						
Wetland Functions or Other Attributes:	Function Score (normalized)	Function Rating	Benefits Score (normalized)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Surface Water Storage (WS)	2.55	Lower	7.14	Higher	3.54	5.00
Stream Flow Support (SFS)	10.00	Higher	9.18	Higher	6.06	6.90
Water Cooling (WC)	7.54	Higher	5.12	Moderate	5.03	3.30
Sediment Retention & Stabilisation (SR)	3.39	Moderate	7.05	Moderate	5.33	4.28
Phosphorus Retention (PR)	3,59	Moderate	7.39	Higher	5.76	7.01
Nitrate Removal & Retention (NR)	6.07	Higher	10.00	Higher	6.02	10.00
Carbon Sequestration (CS)	3.91	Moderate			6.16	10000
Organic Nutrient Export (OE)	8.55	Higher			6.78	
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	8.09	Higher	3.83	Moderate	5.63	2.72
Aquatic Invertebrate Habitat (INV)	6.17	Moderate	7.31	Higher	5.79	5.20
Amphibian & Turtle Habitat (AM)	5.46	Moderate	10.00	Higher	6.36	6.91
Waterbird Feeding Habitat (WBF)	9.46	Higher			7.58	
Waterbird Nesting Habitat (WBN)	6.20	Higher			5.17	
Songbird, Raptor, & Mammal Habitat (SBM)	7.82	Higher	1		6.48	1
Pollinator Habitat (POL)	9.06	Higher			7.30	

Native Plant Habitat (PH)	7.51	Higher	10.00	Higher	6.54	6.81
Public Use & Recognition (PU)	1		2.03	Lower		1.54
Wetland Sensitivity (Sens)			6.31	Higher		4.23
Wetland Ecological Condition (EC)			5.63	Moderate		7.36
Wetland Stressors (STR) (higher score means more)			10.00	Higher	_	6.16
Summary Ratings for Grouped Functions:	-		-			1
HYDROLOGIC Group (WS)	2.55	Lower	7.14	Higher	3.54	5.00
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	2.36	0.00	10.00	Higher	5.99	8.55
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	9.14	0.00	8.76	Higher	6.35	6.02
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	7.89	0.00	8.48	Higher	6.27	5.06
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	7.04	0.00	10.00	Higher	7.03	6.81
WETLAND CONDITION (EC)			5.63	Moderate		7.36
WETLAND RISK (average of Sensitivity & Stressors)			10.00	Higher		5.19

Wetland ID:	WL2	
Date:	06/13/2018	
Observer:	Derrick Mitchell	
Latitude & Longitude (decimal degrees):		

provided in the final calculator for WBF, WBN, SBM, and PO being revised.		renuy				
Results for this Assessment Area						
Wetland Functions or Other Attributes:	Function Score (normalized)	Function Rating	Benefits Score (normalized)	Benefits Rating	Function Score (raw)	Benefits Score (raw)
Surface Water Storage (WS)	2.11	Lower	7.14	Higher	3.19	5.00
Stream Flow Support (SFS)	5.94	Moderate	8.74	Higher	3.17	6.57
Water Cooling (WC)	7.17	Higher	5.12	Moderate	4.78	3.30
Sediment Retention & Stabilisation (SR)	2.40	Moderate	7.15	Moderate	4.63	4.34
Phosphorus Retention (PR)	2.83	Moderate	6.08	Higher	5.26	5.83
Nitrate Removal & Retention (NR)	2.07	Lower	10.00	Higher	4.78	10.00
Carbon Sequestration (CS)	4.01	Moderate		In succession	6.20	1000
Organic Nutrient Export (OE)	8.44	Higher			6.70	1
Anadromous Fish Habitat (FA)	0.00	Lower	0.00	Lower	0.00	0.00
Resident Fish Habitat (FR)	5.27	Moderate	3.49	Moderate	3.67	2.47
Aquatic Invertebrate Habitat (INV)	6.11	Moderate	6.50	Higher	5.76	4.78
Amphibian & Turtle Habitat (AM)	5.33	Moderate	10.00	Higher	6.30	6.85
Waterbird Feeding Habitat (WBF)	7.93	Higher			6.36	
Waterbird Nesting Habitat (WBN)	5.79	Higher			4.83	
Songbird, Raptor, & Mammal Habitat (SBM)	9.10	Higher			7.53	
Pollinator Habitat (POL)	9,83	Higher			7.92	

Native Plant Habitat (PH)	6.43	Higher	10.00	Higher	6.09	7.37
Public Use & Recognition (PU)		The second second	2.38	Moderate		1.78
Wetland Sensitivity (Sens)			5.59	Moderate		4.00
Wetland Ecological Condition (EC)			5.63	Moderate		7.36
Wetland Stressors (STR) (higher score means more)			10.00	Higher	-	7.88
Summary Ratings for Grouped Functions:						
HYDROLOGIC Group (WS)	2.11	Lower	7.14	Higher	3.19	5.00
WATER QUALITY SUPPORT Group (max+avg/2 of SR, PR, NR, CS)	1.78	0.00	9.85	Higher	5.71	8.36
AQUATIC SUPPORT Group (max+avg/2 of SFS, INV, OE, WC)	8.05	0.00	8.25	Higher	5.90	5.73
AQUATIC HABITAT Group (max+avg/2 of FA, FR, AM, WBF, WBN)	5.94	0.00	8.33	Higher	5.29	4.98
TRANSITION HABITAT Group (max+avg/2 of SBM, PH, POL)	8.26	0.00	10.00	Higher	7.55	7.37
WETLAND CONDITION (EC)	-		5.63	Moderate	_	7.36
WETLAND RISK (average of Sensitivity & Stressors)			10.00	Higher		5.94

Appendix VI Site Photographs

Photo 1. Test wells located along access road and adjacent to the west central portion of Wetland 1.

Photo 2. Representative photograph of deciduous treed slope swamp component of Wetland 1 complex. Note vegetated intermittent watercourse channel.

Photo 3. Representative photograph of permanent watercourse channels flowing through Wetland 1.

Photo 4. Representative photograph of coniferous slope swamp component of Wetland 1 complex.

Photo 5. Representative photograph of deciduous treed riverene swamp component of Wetland 1 complex.

Photo 6. Photograph of sedge/reed riparian swamp component of Wetland 1 complex.

Photo 7. Photograph of utility road intersecting the northeastern boundary of Wetland 2 viewed southeast. Note watercourse crossing the utility road in the background and evidence of ATV use.

Photo 8. Photograph of watercourse crossing the utility road and flowing into Wetland 2 viewed northwest.

Photo 9. Photograph of Wetland 2 (deciduous treed riverene swamp) and permanent watercourse channel viewed northwest from outlet.

APPENDIX

C-3 ARCHAEOLOGICAL FIELD RESEARCH

Archaeological Field Research Permit Final Report

Village of New Maryland Arsam Property Wellfield Development

AFRP No. 2018 NB 133

Prepared by Stratis Consulting Inc.

Archaeological Field Research Permit Final Report Village of New Maryland Arsam Property Wellfield Development

AFRP No. 2018 NB 133

Report to:

Archaeological Services Heritage Branch Department of Tourism, Heritage and Culture Province of New Brunswick P.O. Box 6000 Fredericton, NB E3B 5H1

Proponent:

WSP Canada 80 Bishop Drive, Fredericton, NB E3C 1B2

vsp

On behalf of: Village of New Maryland 584 New Maryland Highway New Maryland, NB E3C 1K1

Submitted by:

Stratis Consulting Inc. 527 Dundonald Street, Suite 115 Fredericton, NB E3B 1X5

25 January 2019 Revised 11 April 2019

Grant Aylesworth, PhD, RPA (Reg. No. 15583)

Principal Investigator and Author

© 2019 Stratis Consulting Inc.

Table of Contents

List of Archival Photographs, Documents, and Drawingii
List of Field Photographsii
List of Appendicesii
List of Generally Used Abbreviationsiii
Executive Summary1
Introduction1
Proponent2
Project
Project Assessment Area2
Methodology2
Documentary Research, Direct Consultation, and Preliminary Field Examination
Findings
General 4
ASB Potential Model
National Air Photo Library
Google Earth
Surficial and Bedrock Geology5
Direct Consultation
Preliminary Field Investigation5
Wells and Transmission Pipeline to Treatment Plant5
Transmission/Distribution Line from Treatment Plant to New Maryland Highway
Lark Street Spur
Transmission/Distribution Line along New Maryland Highway7
Sandcherry Connection/Spur
St. Mary the Virgin Anglican Church and Cemetery7
Resource Inventory7
Conclusions and Recommendations
Accidental Discovery
Cemetery Monuments and Public Safety
Closing9
References

List of Archival Photographs, Documents, and Drawing

- Item A1 Historical aerial photograph KA33/28, 16 July 1925
- Item A2 Historical aerial photograph KA33/53, 16 July 1925
- Item A3 Historical Aerial Photograph KA33/54, 16 July 192.
- Item A4 Historical Aerial Photograph KA33/55, 16 July 1925.
- Item A5 Historical Aerial Photograph KA33/66, 16 July 1925.
- Item A6Historical Aerial Photograph KA33/86, 16 July 1925
- Item A7Historical Aerial Photograph KA33/100, 16 July 1925
- Item A8 Historical Aerial Photograph A82237/11, 4 July 1945
- Item A9 Overlay of Project-Related Infrastructure on Historical Aerial Photograph (A8237/100), dating to 4 July 1945.
- Item A10 Overlay of Archaeological Potential Model on contemporary Google Earth Pro imagery.

List of Field Photographs

B1	Daniel Drive Connection area
B2	Model interpreted watercourse area south of Daniel Drive
B3	St. Mary the Virgin Anglican Church and Cemetery from area west of New Maryland Highway
B4	Example of leaning stone monuments in St. Mary the Virgin Cemetery
B5	Example of fallen stone monument in St. Mary the Virgin Cemetery
B6	Sandcherry connection area, facing towards New Maryland Highway
B7	Sandcherry connection area, facing towards New Maryland Highway
B8	Existing storm water attenuation feature near Sandcherry connection
В9	Modified watercourse along Lark Street Spur area
B10	Transmission pipeline area near intersection with New Maryland Highway
B11	Water Treatment area
B12	Small unnamed watercourse along Transmission Pipeline, south of Water Treatment area
B13	Gravel road running through southern part of Transmission Pipeline area
B14	Existing ground disturbance and push-ups near existing wells
B15	Soil push-up disturbance along existing road in Transmission Pipeline RoW
B16	Existing sanitary easement along Distribution Pipeline RoW
B17	Potential Model inferred water course area near civic number 469, New Maryland Highway
B18	Potential Model inferred water course area near St. Mary the Virgin Church

List of Appendices

- Appendix A Archival Photographs and Photo Overlays
- Appendix B Field Photographs
- Appendix C Potential Model, Archaeological Services Branch
- Appendix D Archaeological Field Research Permit
- Appendix E Field Notes
- Appendix F National Air Photo Library Metadata
- Appendix G Project-Related Infrastructure Locations, courtesy WSP
- Appendix H Accidental Discovery Protocols

List of Generally Used Abbreviations

AFRP	Archaeological Field Research Permit
ASB	Archaeological Services Branch, GNB
GNB	Government of New Brunswick
GPS	Global Positioning System
HRIA	Heritage Resource Impact Assessment
MARI	Maritime Archaeological Resource Inventory
NAPL	National Air Photo Library
NB	New Brunswick
NTS	National Topographic Service
PANB	Provincial Archives of New Brunswick
RoW	Right of Way
RPA	Registered Professional Archaeologist
Stratis	Stratis Consulting Inc.
WSP	WSP Canada
VONM	Village of New Maryland

Executive Summary

The Village of New Maryland plans to improve its water distribution system. As part of environmental work prior to construction, Stratis Consulting Inc. completed this Heritage Resource Impact Assessment. Under the Heritage Resource Impact Assessment permit, this report is required to be filed for review and approval with Archaeological Services Branch, Government of New Brunswick.

Stratis undertook three phases of work: Documentary Research, Direct Consultation (consultation with First Nations, if any is required for the Project, was not part of the Stratis scope of work), and a Preliminary Field Examination. The scope of the assessment was developed in consultation with Archaeological Services Branch. Stratis found that the Project's assessment area does not have medium or high potential to contain unknown heritage resources. Nevertheless, the possibility of accidental discovery of heritage resources remains, as for any project; therefore, Stratis provided protocols to be followed in the unlikely event of accidental discovery.

One historic period site was identified during this assessment: St. Mary the Virgin Anglican Church and Cemetery, located along New Maryland Highway. Since project-related construction is across the highway from the cemetery and the work is being done in a previously disturbed area, archaeological monitoring of construction near the church is not recommended. Stratis noted that some of the stone monuments in the cemetery are leaning and in poor condition and recommended that this may be considered as a public safety issue. No pre-contact artifacts were found during the field visits. Archaeological testing is not recommended.

Introduction

WSP Canada (WSP) retained Stratis Consulting Inc. (Stratis) to complete a Heritage Resource Impact Assessment (HRIA) of the Village of New Maryland's (VONM) planned wellfield development project.

Stratis undertook documentary research prior to field visits to the project area on 31 October 2018 and 1 November 2018. Work was done under Archaeological Field Research Permit (AFRP) 2018 NB 133, issued to Dr. Grant Aylesworth, RPA No. 15583.

This report has information in appendices, including:

- Appendix A Archival Photographs and Photo Overlays
- Appendix B Field Photographs
- Appendix C Potential Model, Archaeological Services New Brunswick
- Appendix D AFRP
- Appendix E Field Notes
- Appendix F NAPL (National Air Photo Library) Metadata
- Appendix G Project-Related Infrastructure Locations, courtesy WSP
- Appendix H Accidental Discovery Protocols

Stratis will deposit a hard copy of this Final Report with ASB along with a CD containing GPS track logs for the visual survey, a PDF of this report, copies of historic aerial photographs, and field notes. Stratis

Archaeological Field Research Permit Final Report Village of New Maryland Arsam Property Wellfield Development AFRP No. 2018 NB 133

does not recommend further archaeological work such as testing or monitoring of construction, except for the project using "Accidental Discovery Protocols", samples of which are provided in Appendix H.

Proponent

At the request of WSP, Stratis completed this HRIA on behalf of VONM. Contact information for WSP is as follows:

Stephen Pyke M.A.Sc., P.Eng. WSP Canada 80 Bishop Drive, Fredericton, NB E3C 1B2 +1 506 451 0076 Email: Stephen.Pyke@wsp.com

Project

The Project is located in the Village of New Maryland, south of Sunrise Estates and along and west of the New Maryland Highway (Route 101) in York County.

The Project includes a Right of Way (RoW) for a water supply and transmission/distribution pipeline, access to monitoring wells, a water treatment plant, and a water distribution line (Appendix G). The water treatment plant will be built on a previously disturbed and decommissioned lagoon site south of Sunrise Park. Access to the monitoring wells is along an existing road. The water distribution line passes through some previously unexcavated areas south of Sunrise Estates Drive then follows an existing sanitary easement to the New Maryland Highway. The distribution system then follows alongside the New Maryland Highway and will be installed parallel to the highway in the existing longitudinal ditch. There will be two spurs along the transmission/distribution pipeline: one along Lark Street and a second leading to Sandcherry Lane. The transmission/distribution line ends with a connection at Daniel Drive.

Project Assessment Area

The Assessment Area is defined as the area in which project-related infrastructure will be constructed, as shown in Appendix G. In consultation with Archaeological Services Branch (ASB), Government of New Brunswick, it was determined that the assessment area would include all areas for project-related infrastructure, from the well locations to the Daniel Drive connection, including the Lark Street Spur and the Sandcherry connection and along the New Maryland Highway. Along Highway 101 (New Maryland Highway), the assessment was undertaken with the understanding that pipe would be installed in the existing ditch along the west side of the highway. As such, with the exception of the cemetery, the assessment was limited to the area immediately adjacent to the highway and did not consider heritage potential nearby buildings as these will not be disturbed during construction. An exception to this was a visual survey of the St. Mary the Virgin Church and Cemetery as the regulated buffer zone for these falls into the assessment area.

Methodology

The method for this HRIA followed ASB Guidelines and generally accepted principles as well as professional standards and ethics dictated by the Register of Professional Archaeologists. The methods

Archaeological Field Research Permit Final Report Village of New Maryland Arsam Property Wellfield Development AFRP No. 2018 NB 133

included searches at the Provincial Archives of New Brunswick (PANB) and the National Air Photo Library (NAPL), a review of the Archaeological Potential Model from ASB, direct consultation with ASB and PANB staff, and a preliminary field examination. Local history societies are sometimes contacted in the course of HRIA research. The York Sunbury Historical Society has not provided any comment to Stratis on any past inquiries and was, therefore, not contacted for this project. Archival aerial photographs from NAPL (Appendix A) were obtained and reviewed prior to fieldwork.

The preliminary field examination included a visual survey of the assessment area, as shown in Appendix G. The length of water supply and transmission pipeline from the wells to the water treatment plant location were walked over and photographed, as well as the RoW for the transmission/distribution pipeline along the existing sanitary easement south of Sunrise Estates. The Lark Street Spur was also walked over. The Sandcherry Connection/spur was also walked over. The transmission/distribution pipeline RoW along the New Maryland Highway was surveyed as a combined windshield survey and walkover survey. The walkover included areas where watercourse crossings were inferred on the ASB Potential Model. The walkover survey also included a visit to the grounds of St. Mary the Virgin Anglican church, located on the across the New Maryland Highway just south of the Sandcherry connection/spur. The church grounds and cemetery were visited because the archaeological buffer zone surrounding the church extends to within the assessment area on the west side of the New Maryland Highway (this buffer zone is shown as a blue circle on ASB's Potential model in Appendix C).

Date and location stamped photographs (Appendix B) were taken, field notes were written (Appendix E), and a GPS track log was recorded during the field survey. GPS track log files will be given to ASB with a hard copy of this Final Report. No shovel tests were undertaken.

Documentary Research, Direct Consultation, and Preliminary Field Examination

The ASB Potential Model shows one known cemetery in the assessment area and one area of medium and high archaeological potential for Pre-Contact heritage resources along a tributary to Burpee Brook, located in the southern end of the Assessment area near the well locations and transmission pipeline RoW (Appendix C). The model also shows six interpreted water course crossings along Route 101.

The cemetery surrounds St. Mary the Virgin Church located near the northern end of the assessment area across Route 101 from the Sandcherry Connection. The cemetery appears on the potential model as a red dot with a 100 m radius buffer zone, shown in light blue. The church and cemetery appear not to have been catalogued as an archaeological site and have no Borden Number (assigned to archaeological sites of all time periods catalogued on the provincial and federal site cataloguing system) on the Potential model.

Registered historic places were also searched at the provincial and federal level. The New Brunswick Register of Historic Places was searched and St. Mary the Virgin Church is listed on the Register. The church was also listed on the Register of Canada's Historic Places in 1994. The church building is pre-Confederation (Petz 2017) and the associated cemetery contains interments ranging in date from the 19th century to recent. Details about the church are recorded by the historic places registers and so are not repeated here.

The records of the Provincial Archives of New Brunswick (PANB) were consulted along with staff experts who indicated that they knew of little in the holdings related to the history of New Maryland and that there were no publications in the New Brunswick literature collection regarding New Maryland.

The National Air Photo Library (NAPL) was searched for the earliest aerial photographs of the assessment area. This resulted in eight photos, mostly dating to 1925, being located and included Appendix A with metadata in Appendix F.

A review of surficial geology (Rampton 1984) and bedrock geology (NBDNRE 2000) showed no issues of concern with respect to heritage resources. This review was undertaken with reference to well logs provided to Stratis by WSP. In addition, Stratis reviewed as-built plans for the Wastewater Collection System Upgrade, dating to 2005.

A visual survey of the project area was undertaken on 31 October 2018 and 1 November 2018.

Findings

This section further outlines the findings of the Documentary Research and Preliminary Field Examination.

General

In terms of settlers of European descent, the area was settled by descendants of Loyalists from Maryland, United States of America in the early 1800s with the Parish of New Maryland created in 1846 (Welch and Payne 2012). Indigenous people have lived in New Brunswick for at least 13,000 years and although there are currently no catalogued Indigenous archaeological sites in the assessment area, this does not mean they do not exist. Areas within 80 m of watercourses have been found to have medium to high potential to contain Indigenous archaeological sites in New Brunswick.

ASB Potential Model

There are no known pre-historic sites in the project area, as indicated on the ASB Potential Model. With respect to historic period sites that appear on the Potential Model, only St. Mary the Virgin Anglican Church and cemetery is within the assessment area, located near the northern end of the assessment area, across the highway and south of the Sandcherry connection (Potential Model, Appendix C).

The Potential Model shows only one watercourse with high archaeological potential. This watercourse is an unnamed tributary to Burpee Brook and does not appear on 1:50 000 NTS maps of the area. This area was further assessed during the Preliminary Field Examination.

National Air Photo Library

Eight historic aerial photographs were required to cover the assessment area. These were obtained from NAPL and reviewed prior to fieldwork. Seven of the photos date to 1925, which is the earliest the author has seen for New Brunswick, and the eighth dated to 1945. The photos are given in Appendix A with metadata from NAPL in Appendix F.

The photos show that the alignment of Highway 101 ("New Maryland Highway") was the same in the early 20th century as today. The presence of some buildings pre-dating the 20th century indicates that the road alignment was likely similar since the 1800s, with some variation for approaches to watercourses, the largest of which is outside the project area, to the north at Baker Brook, where the road used to curve west of its current location to approach the watercourse (Item A6, Appendix A).

The aerial photographs show that, in general, the assessment area was farm land such as pasture and apple orchards. The orchards are largely gone but some apple trees remain throughout parts of New Maryland. Near the present-day subdivision known as Sunrise Estates, a watercourse that is a tributary to Burpee Brook ran across the location of Sunrise Estates Drive, south under Sunrise Park, then along the eastern edge of the decommissioned lagoon site property. This watercourse appears present currently as a culvert that runs under Sunrise Park. The aerial photograph shows the area of this watercourse, near the former lagoon site, to be a somewhat steep valley (Items A8-A9, Appendix A).

Google Earth

Stratis created an overlay of the portion of the transmission pipeline and wells area that is located within the medium to high potential areas shown on the Potential Model. This was created with the Potential Model added as a transparent layer above Google Earth satellite imagery and shows the previous disturbance in the area from the existing road cut (Item A10, Appendix A).

Surficial and Bedrock Geology

Prior to fieldwork, Stratis obtained and reviewed test well logs from WSP. The geological information on these logs corresponded to the information available from Rampton (1984) and NBDNRE (2000). Specifically, that the assessment area is underlain by late Wisconsinan morainal sediments and late Carboniferous sandstone that underlies most of eastern and central New Brunswick. These deposits did not, in themselves, indicate elevated areas of archaeological concern and fossils of natural heritage interest are unlikely to be encountered by the project.

Direct Consultation

Direct Consultation was undertaken with ASB in relation to the scope of the assessment and to review the archaeological potential model during the drafting of the report. Staff at PANB were consulted regarding materials related to the history of New Maryland.

Preliminary Field Investigation

The assessment area was visited twice, on 31 October 2018 and 1 November 2018. A GPS track log, photographs, and field notes were taken. A digital version of the GPS track log will be submitted to Archaeological Services with the Final Report. Photographs from the visual survey are in Appendix B.

Wells and Transmission Pipeline to Treatment Plant

The area of the wells and water transmission pipeline are at the southeastern end of the assessment area. This area has been previously logged and a rough road runs across and near much of the RoW for the transmission pipeline. The area near existing wells, shown as medium to high archaeological potential on the Potential Model, does not, in fact, have high potential. This is because it has been previously excavated and disturbed for road construction (Photographs B13-B15, Appendix B). The area

contains numerous bulldozer or grader cuts and push-ups. The road cuts were visually surveyed for artifacts and features and nothing was found. The transmission pipeline RoW in the medium to high potential areas is also sloped to a greater degree than shown on the potential mode, mostly sloping down to the wet area north of the assessment area and north of the existing wells. Given the slope, previous ground disturbance, and negative results of the visual survey of the road cuts, this area is not interpreted to have high or medium archaeological potential. The watercourse that triggered the high potential zone was flooded with water over the road at the time of the Preliminary Field Examination. In general, the high potential area has been heavily modified by previous activities.

Along the RoW for the Transmission Pipeline after it turns towards the Water Treatment location, it crosses two small watercourses. These are very small streams in a mostly low-lying area that is very wet and contained numerous cedar stumps (Photograph B12, Appendix B). The area had been previously logged, including selective logging for cedar. This cedar was likely used for fences as can be seen throughout New Maryland in the historic aerial photographs. This area was also criss-crossed with overgrown roads and ground disturbance such as bulldozer/grader push-ups from previous activities. The area around one watercourse was identified by a biologist as delineated wetland and the surrounding forest was described as "mature intolerant hardwood", referring to shade intolerant forest that is 30-50-year-old¹. The combination of the delineated wetland, low-lying marshy area, and very small watercourses suggest low archaeological potential for this area.

The Water Treatment plant location has been previously disturbed and is a decommissioned lagoon site. The northern part of this area consists of a park and a tributary to Burpee Brook runs in a culvert under the park. Adjacent to the park and on the former lagoon property is a large borrow pile that is overgrown with trees and located next to the tributary. This is the steep area visible in the 1945 aerial photograph. Although there is a nearby watercourse, no work is planned near the watercourse and the area has been previously excavated for the former lagoon. As such, this area does not archaeological potential.

Transmission/Distribution Line from Treatment Plant to New Maryland Highway

This part of the assessment area is along an existing and previously disturbed sanitary easement. The only watercourse crossing in this area is the unnamed tributary to Burpee Brook that runs along the area of the Lark Street Spur. This watercourse has been heavily modified and follows a straight line, as a longitudinal ditch along the existing easement. As such, this watercourse does not have archaeological potential and does not warrant archaeological testing. Photographs B10 and B16 (Appendix B) provide overviews of this area.

Lark Street Spur

This area parallels a small heavily modified water course and runs north from the area of the existing sanitary easement to Lark Street. Nearby areas have been previously excavated and the watercourse channel modified and riprap placed along it (Photograph B9, Appendix B). The nearby houses sit atop fill

¹ Boreal Environmental. Report to WSP on Breeding Bird, Rare Plant and Wetland Survey, Proposed Wellfield Development, New Maryland, NB. August, 2018.

as the unfilled surrounding area is relatively low and wet. Given these conditions, this area does not warrant archaeological testing.

Transmission/Distribution Line along New Maryland Highway

The assessment area along New Maryland Highway crossed six interpreted watercourse crossings that appear on the Potential Model. Each of these locations was visited and none are of archaeological concern. Just north of St. Mary the Virgin Church, an inferred watercourse is present as a small drainage along the eastern side of the highway (Photograph B18, Appendix B). There will be no project-related ground disturbance in this area. Along the western side of the highway at this inferred crossing, a storm water attenuation feature has been built and therefore this area has no archaeological potential.

The remaining parts of the assessment area along New Maryland Highway to Daniel Drive do not have elevated archaeological potential due to watercourse crossings. In addition, ground disturbance will take place immediately adjacent to the existing highway, an area already disturbed by fill and a longitudinal ditch. Other interpreted watercourse crossings found in the potential model did not contain channels or water-related features (e.g., Photograph B2, Appendix B).

Sandcherry Connection/Spur

The area of the Sandcherry connection or spur to connect to a new subdivision has seen relatively recent disturbance for the construction of a storm water drainage channel and a storm water attenuation feature located beside the highway (Photographs B6-B8, Appendix B). Given the previous construction, this area does not warrant archaeological testing.

St. Mary the Virgin Anglican Church and Cemetery

The northern part of the transmission pipeline, just south of the Sandcherry Connection, crosses within the buffer zone of St. Mary the Virgin Anglican Church and cemetery (photograph B2, Appendix B). This area, including the church grounds, was visually surveyed because of the extent of the 100 m radius buffer zone given by the Potential Model. The area is not recommended for archaeological monitoring because construction will be away from the cemetery on the opposite side of the highway.

Resource Inventory

No new heritage resources were found within the project area. St. Mary the Virgin Church and Cemetery is across the highway from the planned construction area.

Conclusions and Recommendations

Archaeological testing is not recommended. Archaeological monitoring is not recommended. No further follow-up or mitigation is recommended other than the adoption of "accidental discovery protocols" that must be followed, and these follow provincial laws and regulations.

The only area showing high or medium archaeological potential on the ASB Potential model is in the southeastern end of the project area near the wells. The watercourse in this area is connected to a large wet area that is likely the result of beaver dams. The area within the predicted high potential and

medium potential buffers (up to 80 m from the watercourse as shown in light blue and darker blue around the watercourse on the Potential model) has been previously disturbed by road construction, previous bulldozing, and other ground disturbance, logging, and other activities. In addition, parts of the area leading down to the wet area have a greater slope than is predicted on the model and this mitigates against the presence of archaeological sites. The road that leads to the wells cuts through the high and medium potential areas. The road cut, which is along and across with project RoW, was visually surveyed and no artifacts or features were noted. Together, these factors mitigate against the potential of this area to contain heritage resources.

Accidental discovery of heritage resources, however unlikely, remains possible whenever ground is disturbed. Therefore, an "accidental discovery protocol", one for artifacts or archaeological features, and another for human remains, is recommended for the project. Draft protocols are included in Appendix H. Since pipeline construction is planned across the street from the cemetery, in the existing ditch area, archaeological monitoring is not recommended during construction near the cemetery in the 100 m radius buffer zone shown on the Potential Model from ASB. The likelihood of accidental discovery is low for that particular area.

Accidental Discovery

Accidental discovery of heritage resources is possible during any ground disturbance. This likelihood for the project is considered low so archaeological monitoring during construction is not recommended. With respect to ASB's Potential Model, project-related excavation will pass through the regulated buffer zone for the cemetery at St. Mary the Virgin Anglican Church. Since the pipeline will be installed across the highway from the cemetery, accidental discovery is unlikely. If archaeological materials are encountered, ASB must be notified and any ASB protocols related to accidental discovery of heritage resources must be followed. If human remains are accidentally discovered, protocols must be followed. Draft protocols are included in Appendix H.

Cemetery Monuments and Public Safety

The visual survey around St. Mary the Virgin Anglican Church identified the possibility, though remote, that stone monuments in the cemetery may present a risk to public safety because of their condition, such as leaning (e.g. Photographs B4-B5, Appendix B). Exhaustive research was not done related to this potential but some preliminary comments are offered here for information purposes only.

Since the cemetery is open for public access, VONM may wish to consider follow-up with respect to the condition of headstones and/or other stone and metal monuments and objects in the cemetery. Such follow-up may include notifying the Anglican Diocese or local parish officials who may be responsible for the condition of the cemetery. Although unlikely, fatal accidents have occurred involving cemetery monuments falling on people. Local governments have been found responsible in some cases but not others (e.g., Press Association 2018, Tribune Wire Reports 2015). In particular, injury or death may be a possibility when leaning headstones are not remediated. In general, responsible authorities adopt a risk-based approach to cemetery monuments in the United Kingdom (e.g., Ministry of Justice 2009) and Canadian-centred information is available from insurers in Ontario (e.g., Ecclesiastical Insurance 2011) and other sources.

Closing

This report is subject to review and acceptance by ASB. Written notification about the acceptability of this report is issued at the discretion of ASB. Other agencies and stakeholders may review this report before it is deemed acceptable.

This report has been prepared as a requirement of AFRP No. 2018 NB 133 for the sole benefit of WSP and VONM and is not intended to be used by any other person or entity, other than for its intended purposes, without the written consent of Stratis, WSP, and VONM. Use of this report by third parties is the responsibility of such third party. This report is copyrighted by Stratis with all rights reserved.

The information and recommendations in this report are based upon work undertaken in accordance with ASB Guidelines and generally accepted practices at the time the work was undertaken. The information and recommendations in this report are in accordance with the author's understanding of the project as it was presented at the time the work was undertaken.

This report was reviewed and approved by WSP and VONM before submission to ASB. This report was authored by the undersigned.

[submitted hard copy to be signed]

Grant R. Aylesworth, PhD, RPA Managing Director

Stratis Consulting Inc. 527 Dundonald Street, Suite 115 Fredericton, NB E3B 1X5

grant.aylesworth@stratis.consulting +1 506 999 0151

References

Ecclesiastical Insurance. 2011. Keeping Cemeteries Safe. Focus. 10 February 2011. Available online at: https://niagaraanglican.ca/resources/docs/cemeteries/Keeping%20Cemeteries%20Safe.pdf

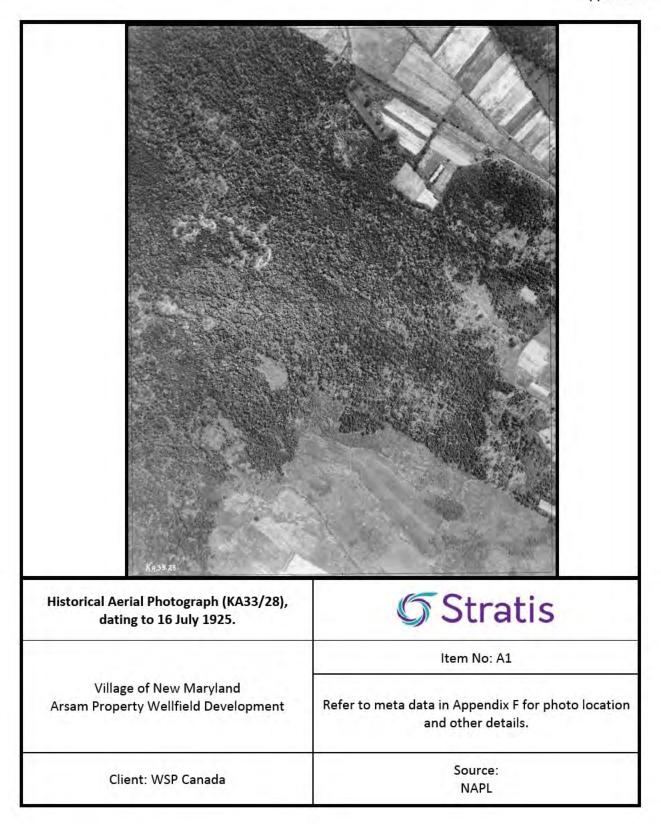
Ministry of Justice. 2009. Managing the Safety of Burial Ground Memorials: Practical Advice for dealing with Unstable Memorials. Government of the United Kingdom. Available online at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/32

NBDNRE (New Brunswick Department of Natural Resources and Energy). 2000. Bedrock Geology of New Brunswick. Minerals and Energy Division. Map Nr-1 (2000 Edition). Scale 1:500 000.

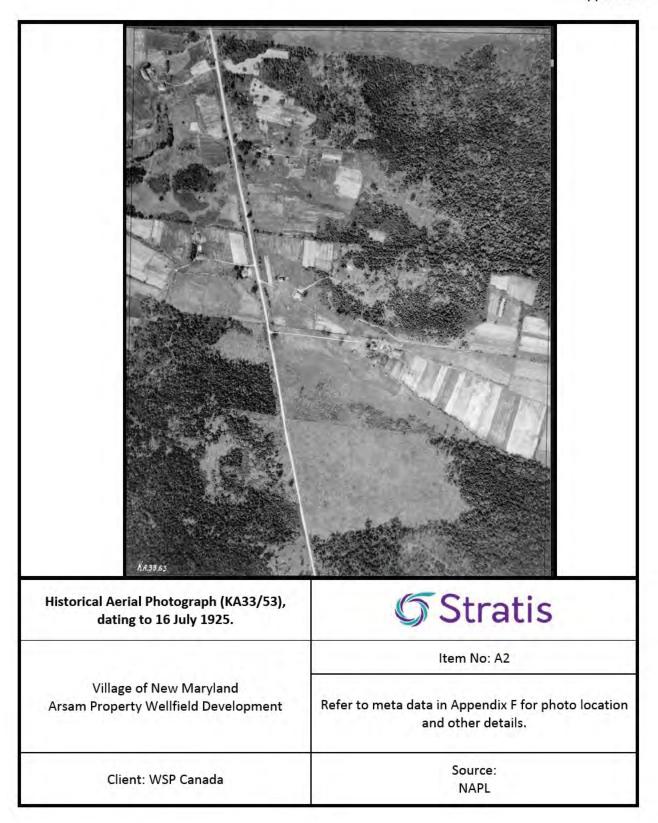
Petz, Sarah. 2017. Vacant New Maryland church 'an absolute stunner', says Fredericton architect. CBC News. Online article available at: <u>https://www.cbc.ca/news/canada/new-brunswick/new-maryland-church-heritage-1.4430862</u>, published 3 December 2017.

Press Association. 2018. Family of Glasgow boy crushed by gravestone win compensation. The Guardian. 18 June 2018. Available online at: <u>https://www.theguardian.com/uk-news/2018/jun/18/family-glasgow-boy-ciaran-williamson-crushed-gravestone-compensation</u>

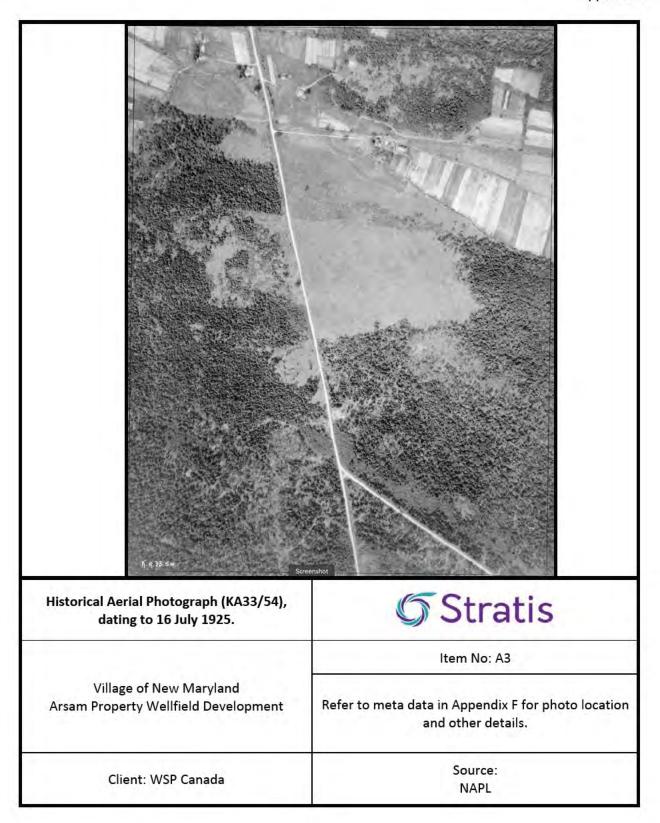
Rampton, V. N. 1984. Generalized surficial geology map of New Brunswick. Department of Natural Resources and Energy. Minerals, Policy and Planning Division, NR-8 (scale 1:500 000).

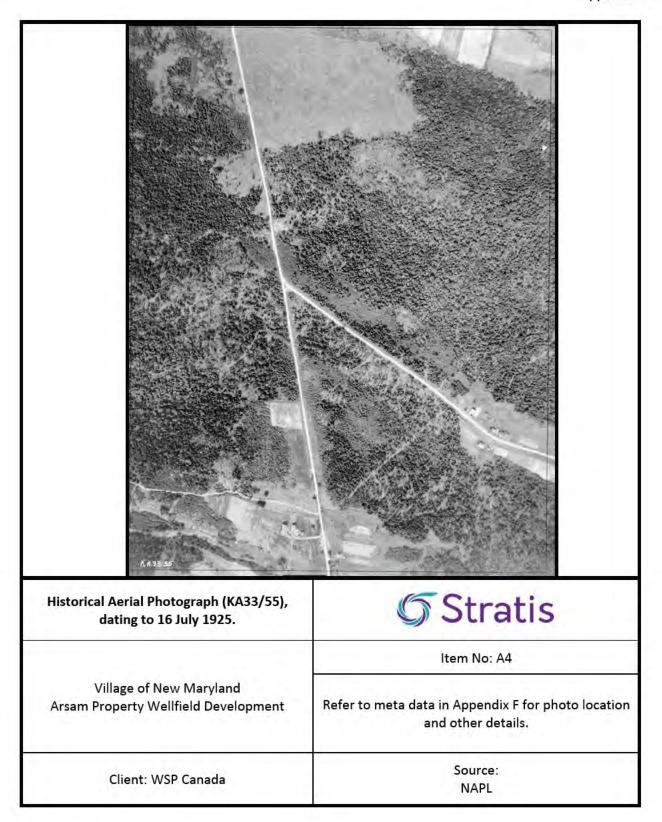

Tribune Wire Reports. 2015. Utah cemetery not negligent in death of boy crushed by headstone. Chicago Tribune. 30 October 2015. Available online at: <u>https://www.chicagotribune.com/news/nationworld/ct-boy-crushed-by-headstone-20151030-</u> <u>story.html</u>

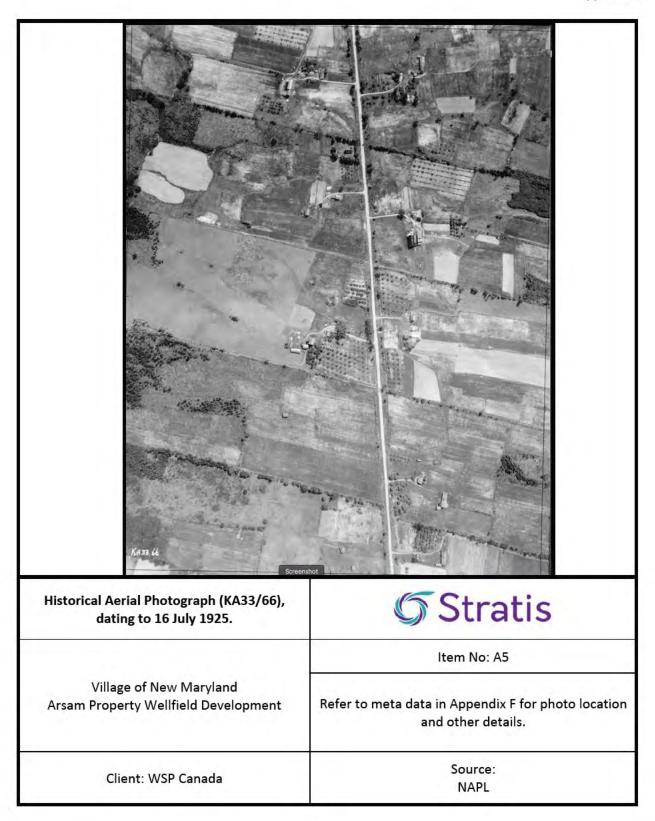
Welch, Deborah, and Michael Payne. 2012. New Maryland in The Canadian Encyclopedia. Available online at: <u>https://www.thecanadianencyclopedia.ca/en/article/new-maryland</u>

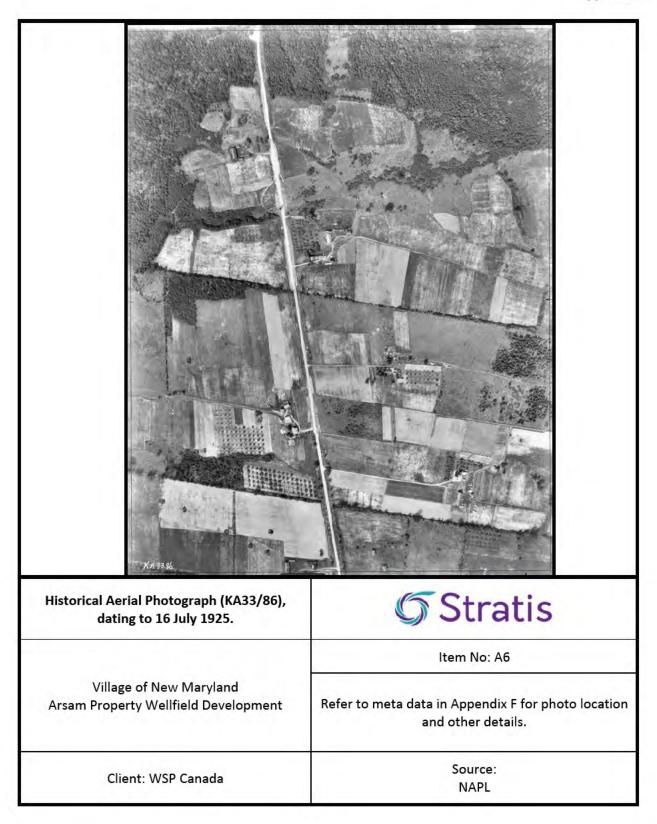


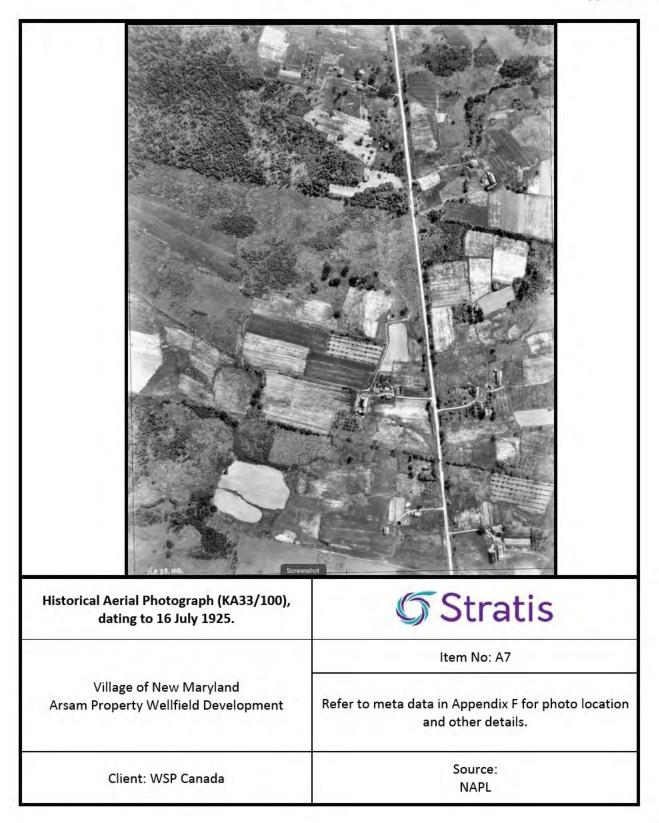
Appendix A

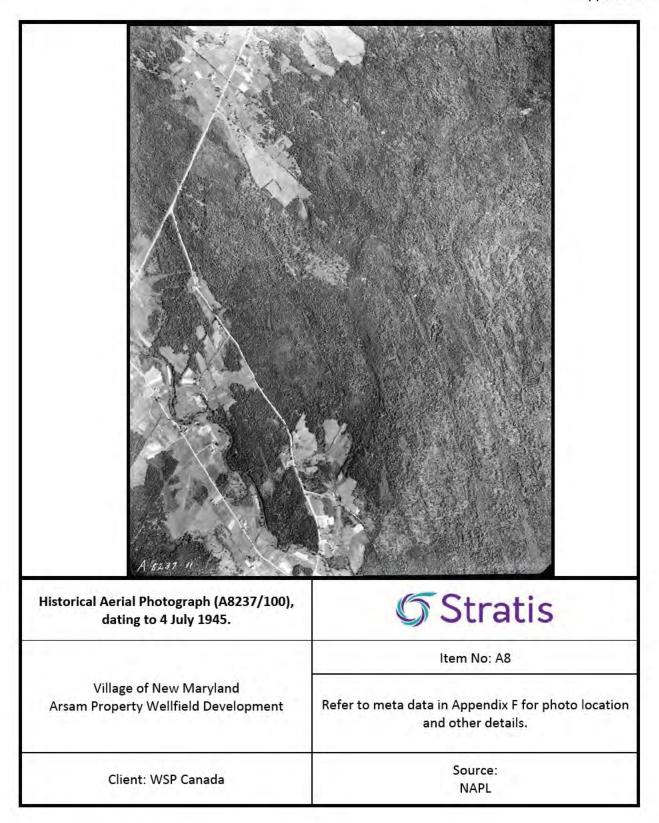

Archival Photographs and Photo Overlays

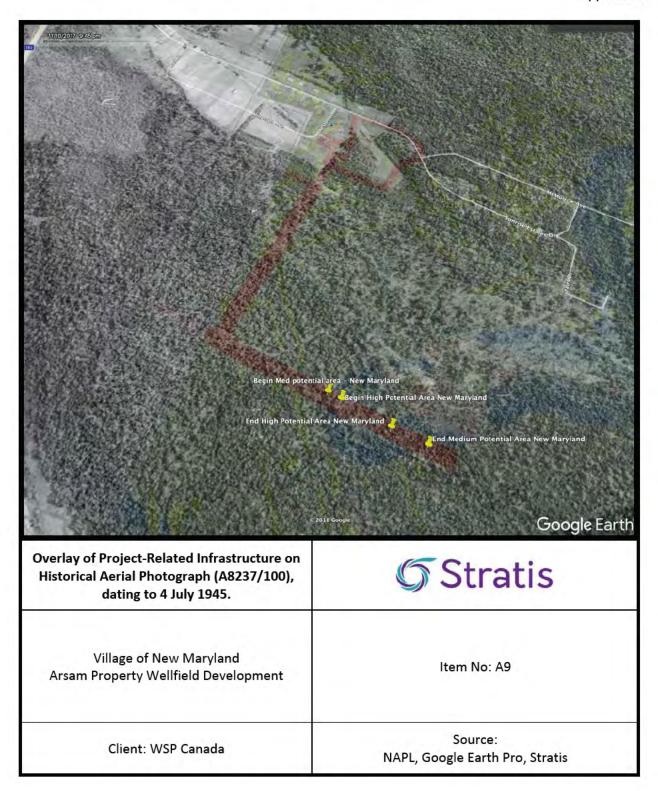


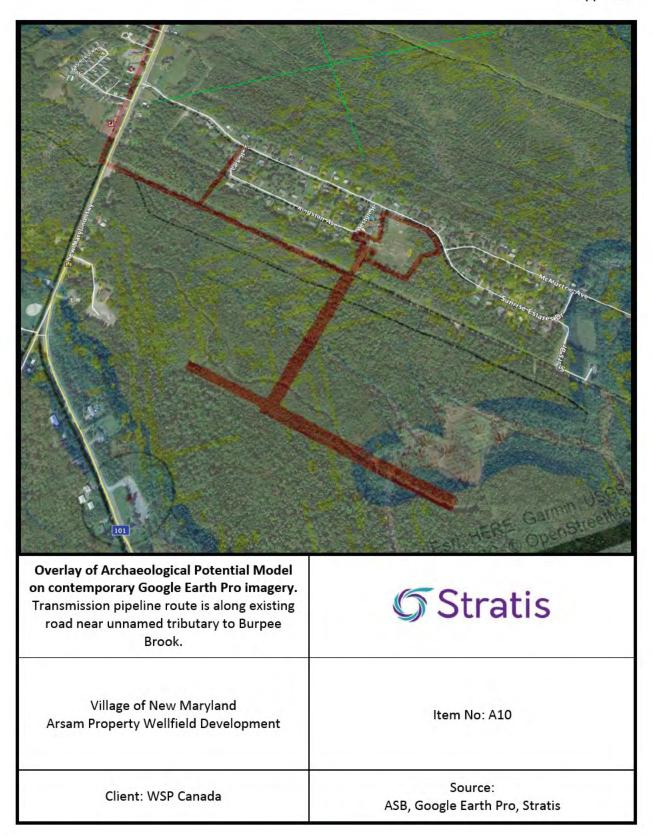


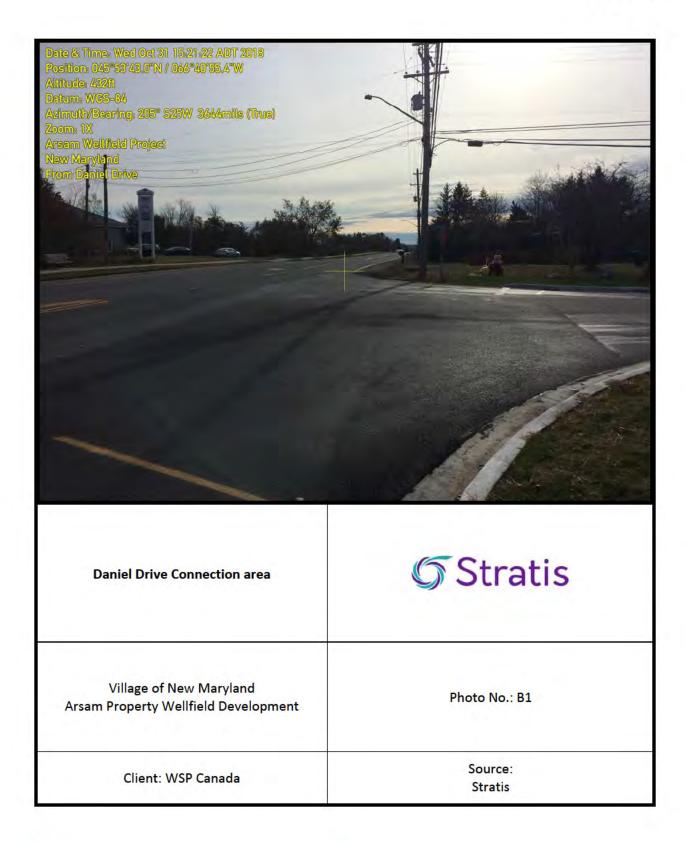


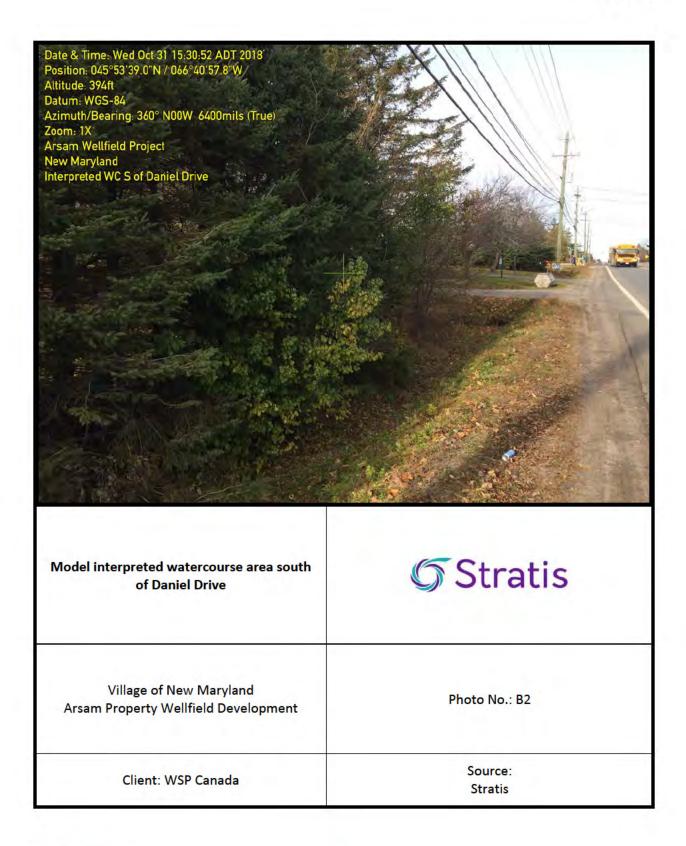




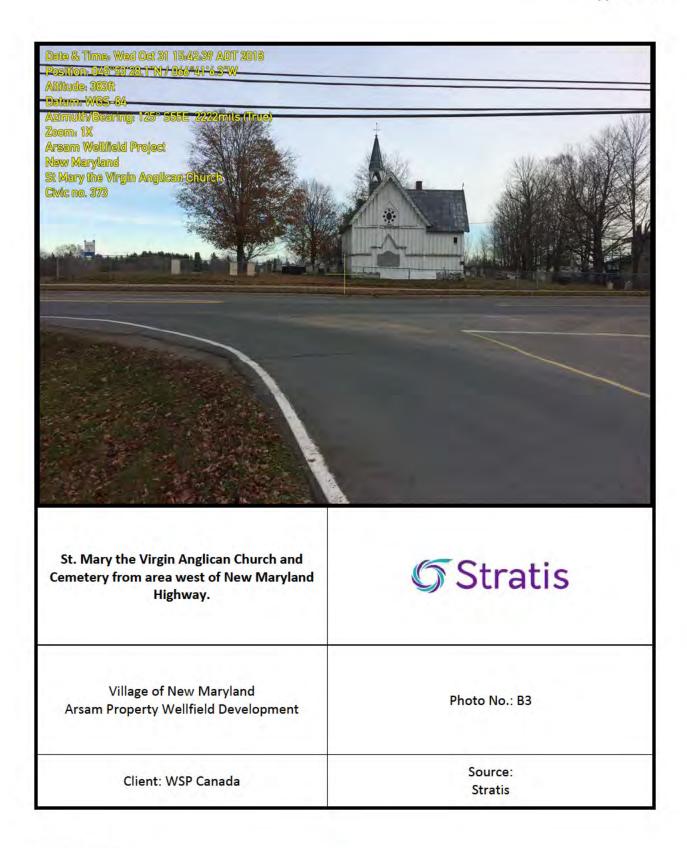


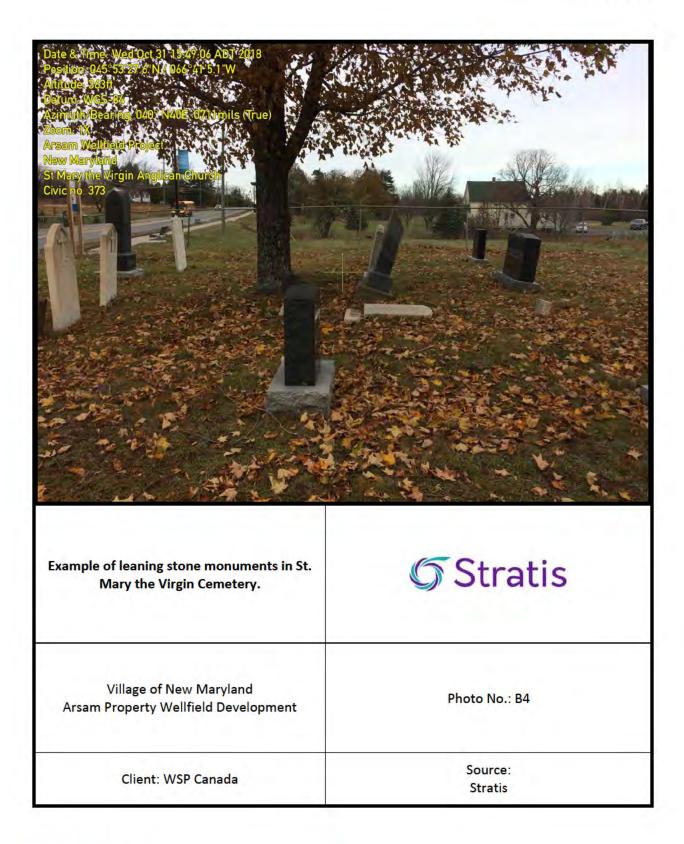


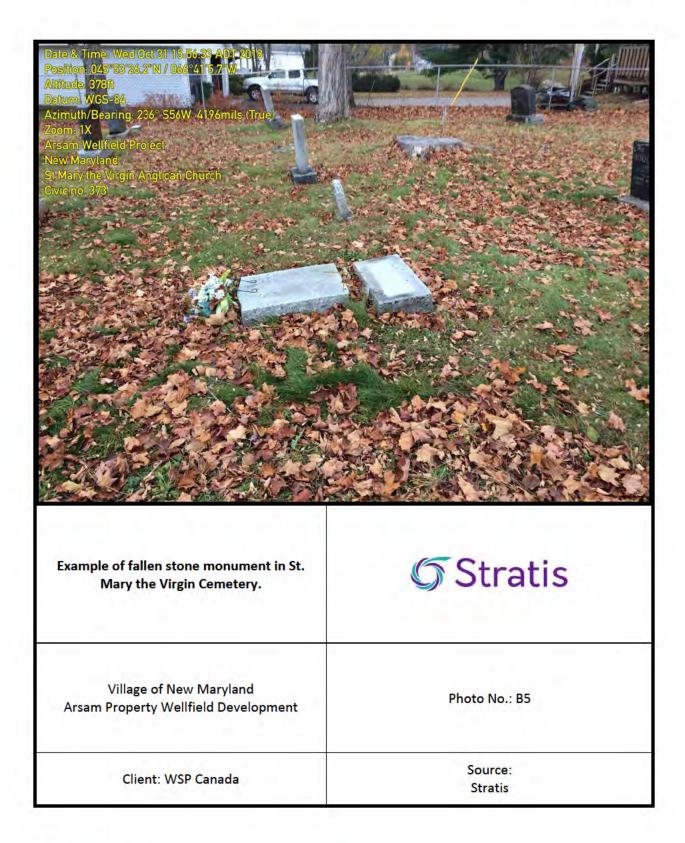


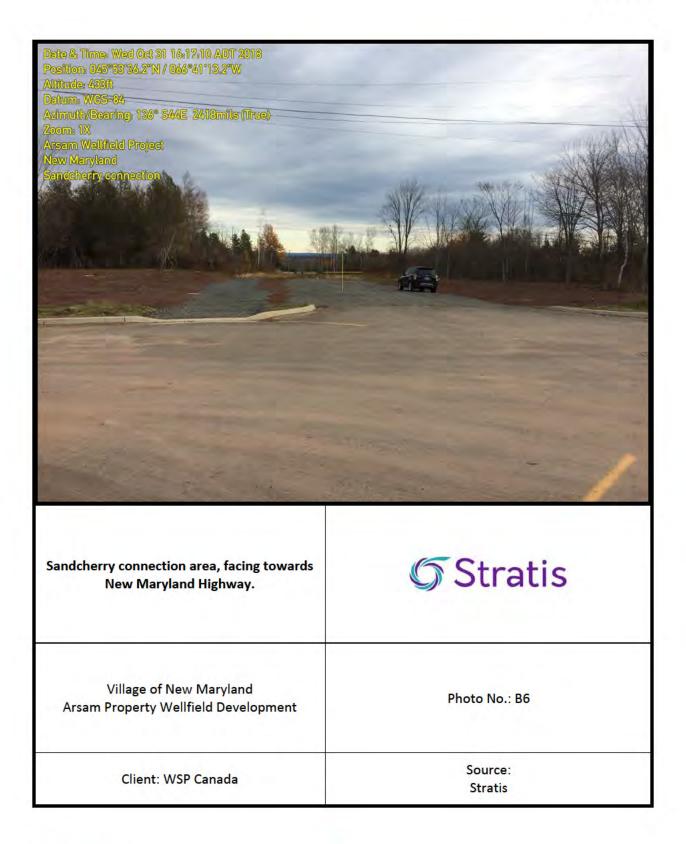


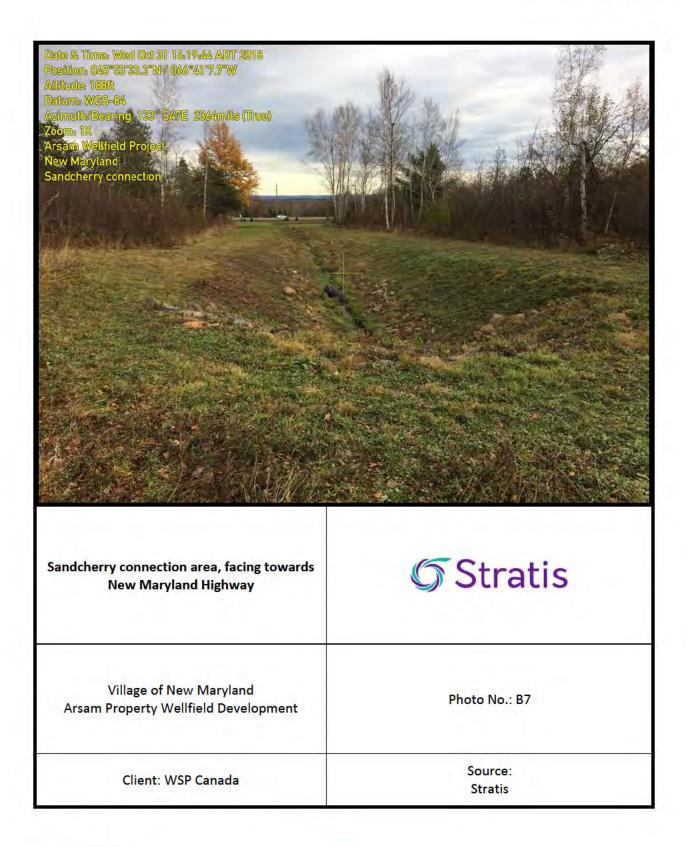
Appendix B

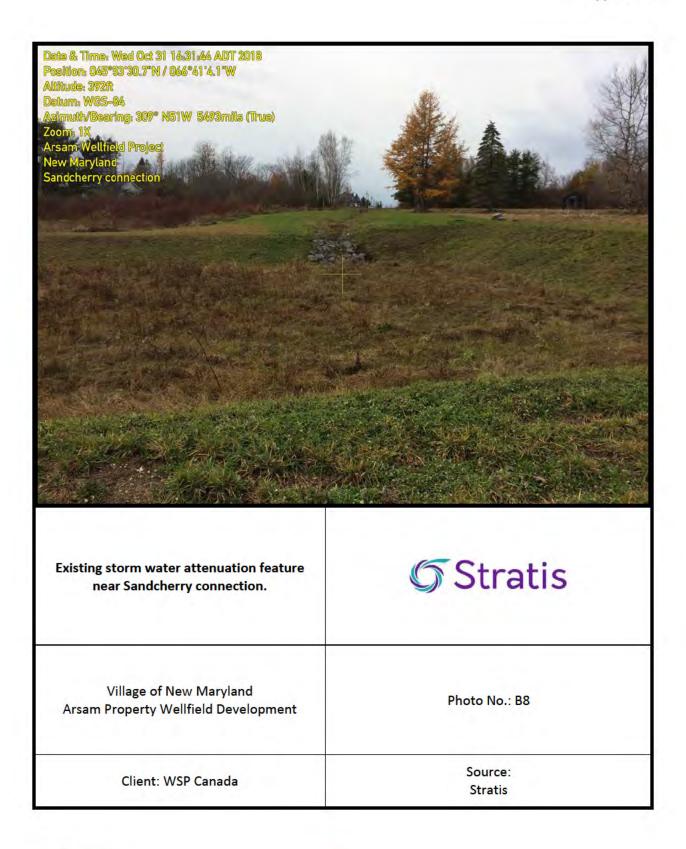

Field Photographs



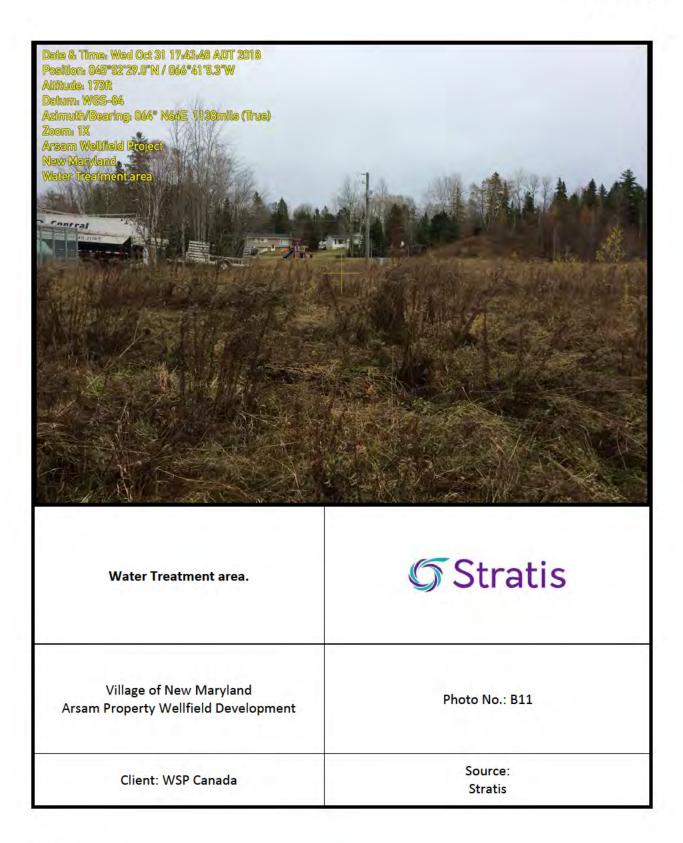


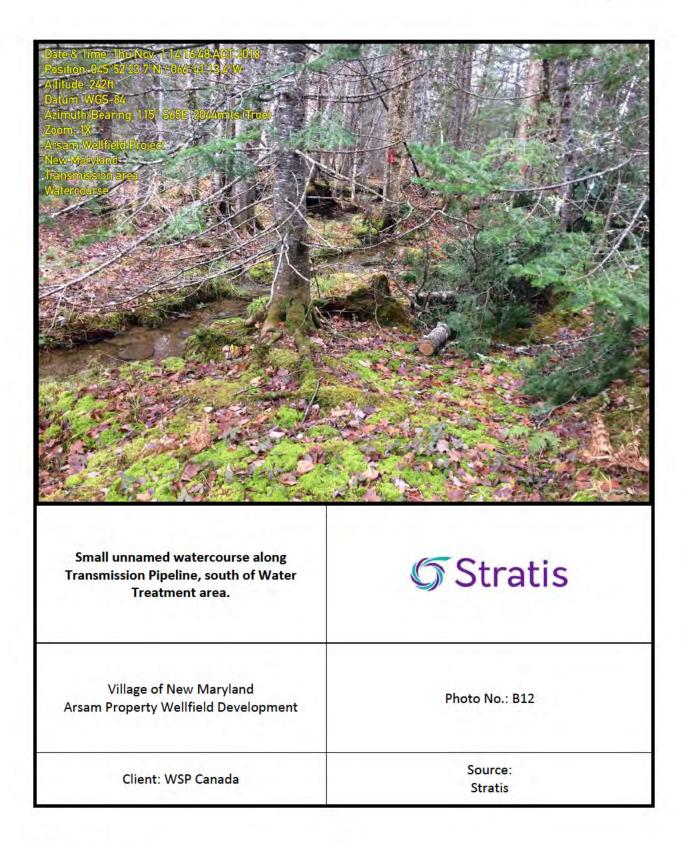


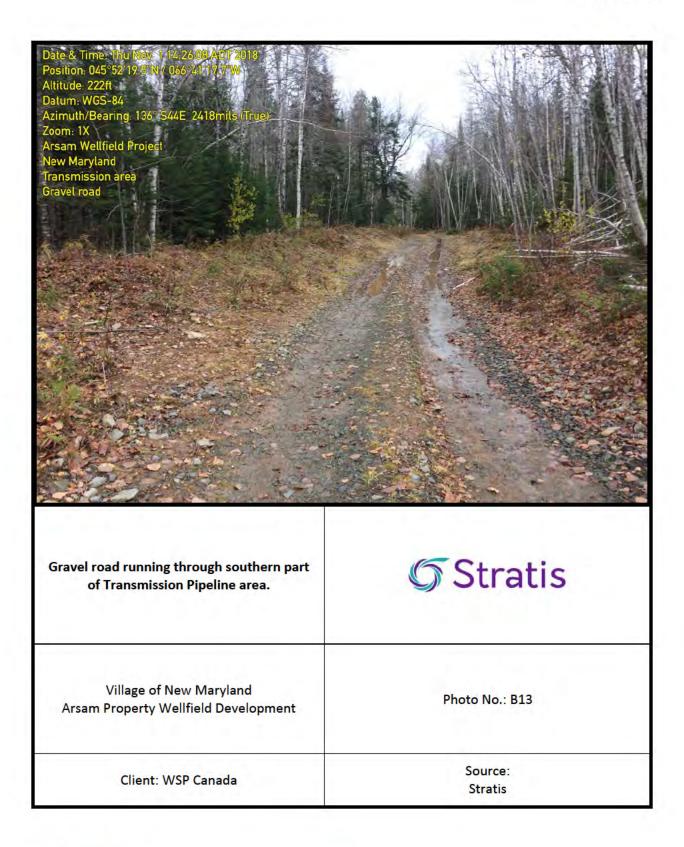


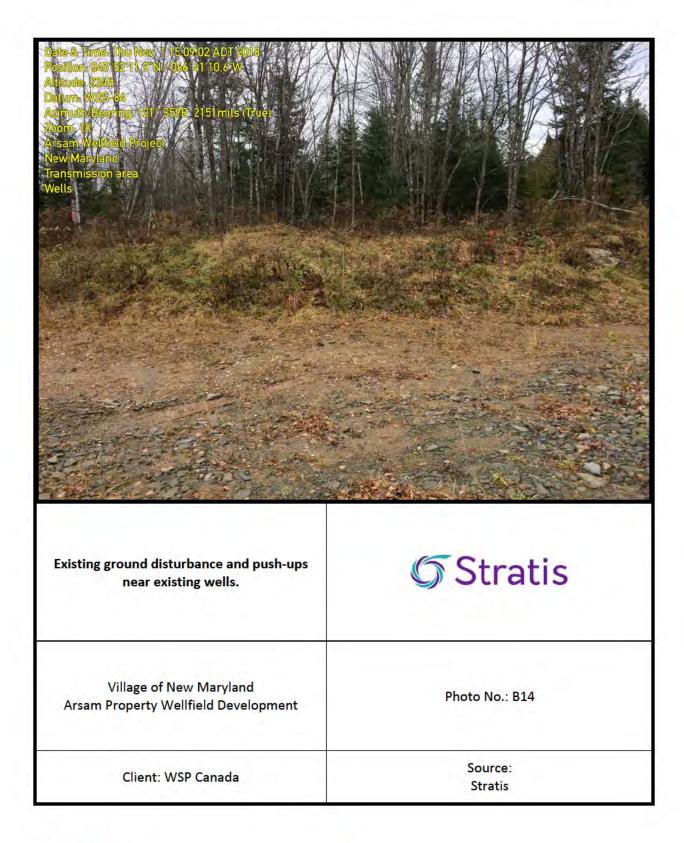


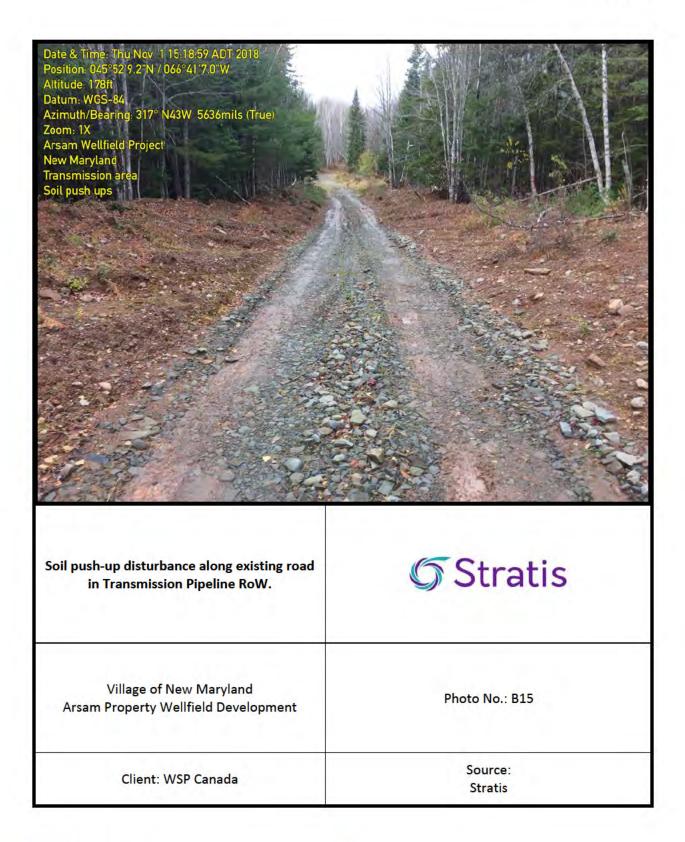


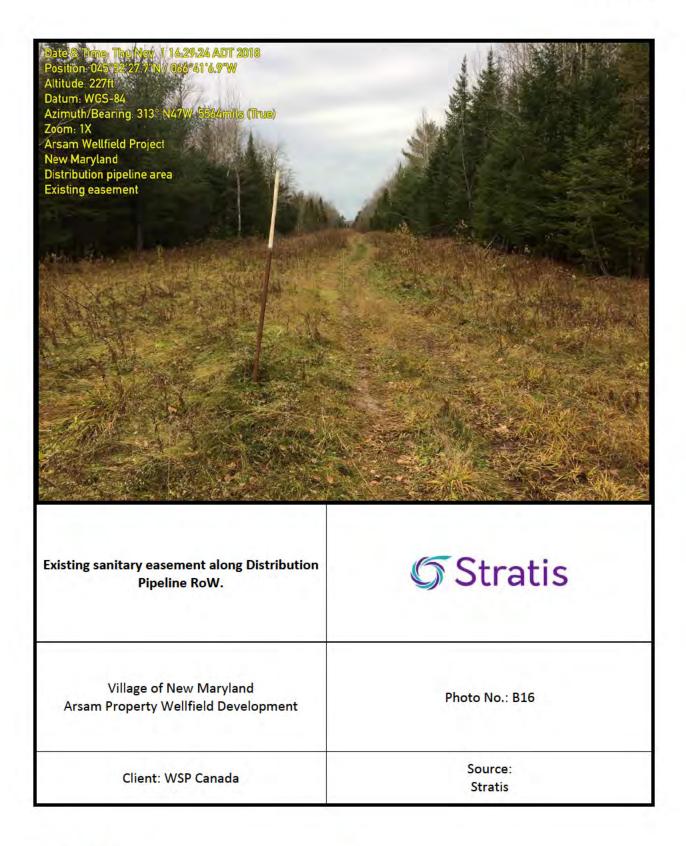


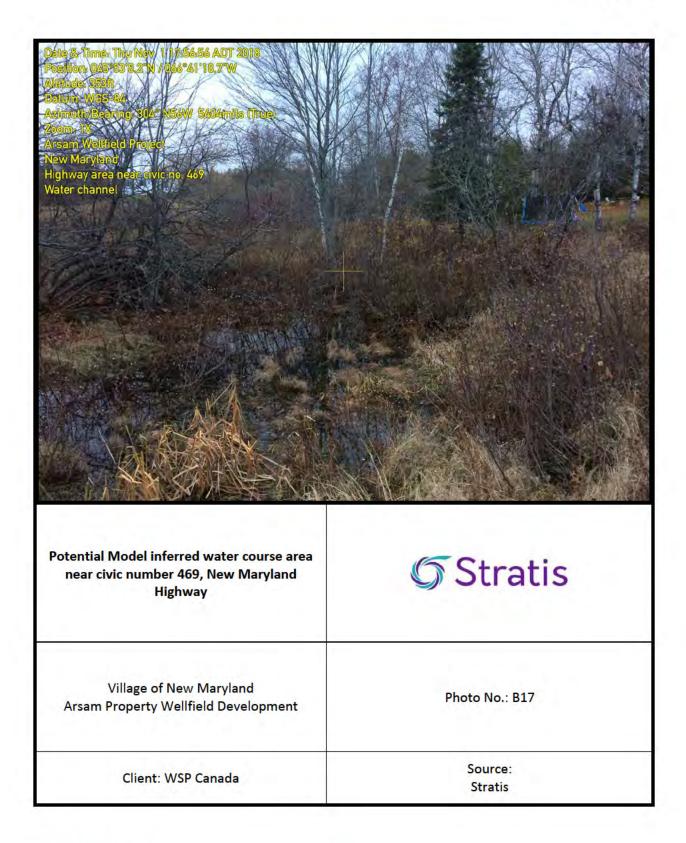


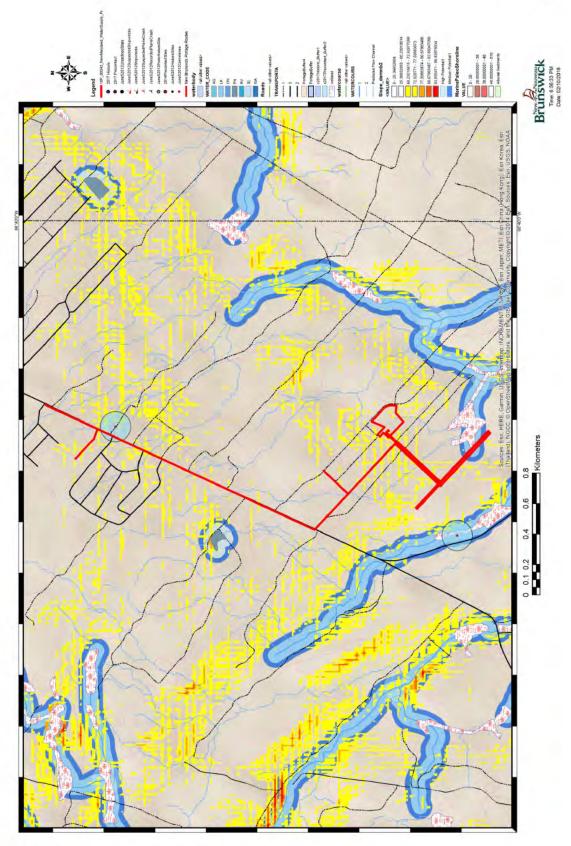












Appendix C

Potential Model, Courtesy of ASB

G Stratis

Appendix D

Archaeological Field Research Permit

The Province of New Brunswick Archaeological Field Research Permit

Province du Nouveau-Brunswick Permis de traveaux archéologiques sur le terrain

Under the provisions of Sections 13 and 14 of the Heritage Conservation Act, a permit is hereby granted to:

field research project entitled:

to undertake the following archaeological

En vertu des l'articles 13 et 14 de la Loi sur la conservation du paprimoine, un permis est octroyé à

Grant Aylesworth

pour entreprendre le projet de recherches archéologiques mentionné ci-après et intitulé :

Village of New Maryland Arsam Property Wellfield Development

in the county(ies) of:

York

under the following conditions:

- The Permit shall be issued on the i. understanding the investigations are to be conducted for the sole purpose of recovering information and materials for scientific and historical study, and for the preservation of New Brunswick's historic resources; and that the research shall conform to the best scientific standards available.
- The archaeological field research being carried 2 out under this Permit may be inspected at any reasonable times; and this Permit may be revoked at any time by the Minister.
- 3. The holder of this Permit will report to Archaeological Services Section, Heritage Branch, any archaeological site found during the archaeological field research being carried out under this Permit within two (2) working days of the find.
- This Permit shall be valid until 4. December 31, 2018
- A final technical report will be due 5. March 31, 2019
- 6. The holder of this Permit must provide copies to Archaeological Services Section, Heritage Branch, of all field records, notes, maps, drawings, catalogues, and photographs pertaining to the description and context of all objects recovered under this Permit.
- 7. All cultural material recovered under this Permit must be deposited with Archaeological Services Section, Heritage Branch, upon termination of the Permit

APPROVED: / APPROUVE :

Brent S

Director / Direc

October 24, 2018 Date granted / Date d'octroi

Archaeological Services Branch /Lieux Service d'archéologie Department of Tourism, Heritage and Culture/ Ministère du Tourisme, du Patrimoine et de la Culture (A person duly designated by the Minister of Tourism, Heritage and Culture pursuant to Sec. 100 of the Heritage Conservation Act to sign this permit on his behalf)

(Une personne düment désignée par le Ministre du Tourisme, du Patrimoine et de la Culture en verta de l'article 100 de la Loi sur la conservation du patrimoine pour signer ce permit à saplace)

PERMIT NO: / Nº DU PERMIS :

(Impact Study / Étude d'impact)

2018 NB 133

dans le (s) comté (s) de :

aux conditions suivantes :

- Le permis est émis à condition que les recherches 1. soient effectuées dans le seul but d'obtenir des renseignements et du matériel pour des études scientifiques et historiques et de préserver les resources historiques du Nouveau-Brunswick; la recherche se conformera aux normes scientifiques les plus rigoureuses parmi celles disponibles
- 2. Les recherches archéologiques menées dans le cadre de ce permis peuvent faire l'objet d'une inspection à n'importe quelle heure raisonnable, et le ministre peut révoquer le permis en tout temps.
- 3 Le détenteur du permis signalera à la Section des services d'archéologie de la Direction du patrimoine tout site archéologique trouvé au cours des recherches archéologiques réalisées dans le cadre du permis et ce, dans un délai de deux jours de travail après la découverte.
- 4. Le permis sera valide jusqu'au 31 décembre 2018
- 5. Un rapport technique final sera rédigé pour le 31 mars 2019
- 6. Le détenteur du permis fournira à la Section des services d'archéologie. Direction du patrimoine, une copie de tous les documents, dessins et catalogues ainsi que de toutes les notes, cartes et photographies servant à la description et à l'établissement du contexte pour les objets trouvés dans le cadre du permis.
- 7. Tout article culturel découvert dans le cadre du permis doit être confié à la Section des services d'archéologie de la Direction du patrimoine à l'expiration du permis.

Appendix E

Field Notes

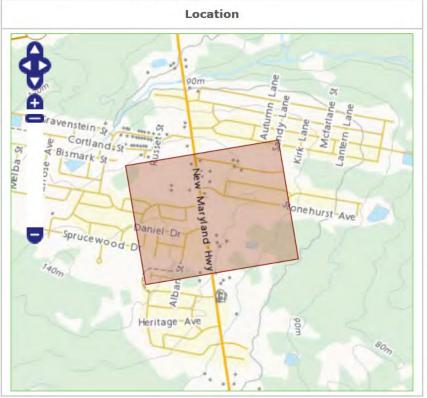
Digitized field notes are provided to ASB with two hard copies.

Appendix F

NAPL Metadata

Metadata summary and geographic extent

Photo Metadata


Dataset Attribute	Attribute Value
Photo Number	66
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

Dataset Attribute	Attribute Value
Line Number	
Frame Start	1
Frame End	103

Dataset Attribute	Attribute Value
Roll Number	КА33
Viewing Angle	Vertical
Spectral Range	Black&White
Area	FREDERICTON
Roll Date	1925-07-16
Camera Name/Number	КЗ-5
Lens Name/Number	K3-5-12
Focal length (mm)	304.8
Camera Filter	
Film Type	DUP NEGS
ASL	Yes
Total Frames	103

Geographic extent	Value
North	45.90
South	45.89
East	-66.67
West	-66.69

Metadata summary and geographic extent

Photo Metadata

Dataset Attribute	Attribute Value
Photo Number	54
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

Dataset Attribute	Attribute Value
Line Number	
Frame Start	1
Frame End	103

Dataset Attribute	Attribute Value
Roll Number	КА33
Viewing Angle	Vertical
Spectral Range	Black&White
Area	FREDERICTON
Roll Date	1925-07-16
Camera Name/Number	КЗ-5
Lens Name/Number	K3-5-12
Focal length (mm)	304.8
Camera Filter	
Film Type	DUP NEGS
ASL	Yes
Total Frames	103

Value
45.88
45.87
-66.68
-66.70

Metadata summary and geographic extent

Photo Metadata

Dataset Attribute	Attribute Value
Photo Number	53
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

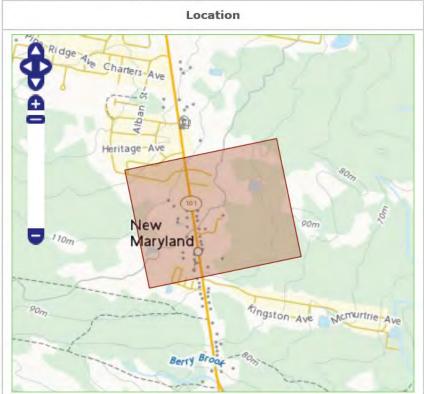
Dataset Attribute	Attribute Value
Line Number	
Frame Start	1
Frame End	103

Dataset Attribute	Attribute Value
Roll Number	КА33
Viewing Angle	Vertical
Spectral Range	Black&White
Area	FREDERICTON
Roll Date	1925-07-16
Camera Name/Number	КЗ-5
Lens Name/Number	K3-5-12
Focal length (mm)	304.8
Camera Filter	
Film Type	DUP NEGS
ASL	Yes
Total Frames	103

Geographic extent	Value
North	45.89
South	45.87
East	-66.68
West	-66.70

Metadata summary and geographic extent

Photo Metadata


Dataset Attribute	Attribute Value
Photo Number	100
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

Dataset Attribute	Attribute Value
Line Number	
Frame Start	1
Frame End	103

Dataset Attribute	Attribute Value
Roll Number	КА33
Viewing Angle	Vertical
Spectral Range	Black&White
Area	FREDERICTON
Roll Date	1925-07-16
Camera Name/Number	КЗ-5
Lens Name/Number	K3-5-12
Focal length (mm)	304.8
Camera Filter	
Film Type	DUP NEGS
ASL	Yes
Total Frames	103

Geographic extent	Value
North	45.89
South	45.88
East	-66.68
West	-66.70

Metadata summary and geographic extent

Photo Metadata

Dataset Attribute	Attribute Value
Photo Number	86
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

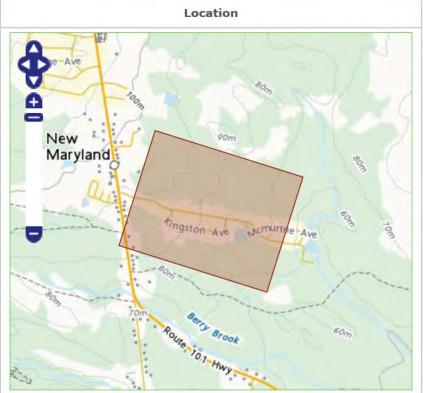
Dataset Attribute	Attribute Value
Line Number	
Frame Start	1
Frame End	103

Dataset Attribute	Attribute Value
Roll Number	КА33
Viewing Angle	Vertical
Spectral Range	Black&White
Area	FREDERICTON
Roll Date	1925-07-16
Camera Name/Number	КЗ-5
Lens Name/Number	K3-5-12
Focal length (mm)	304.8
Camera Filter	
Film Type	DUP NEGS
ASL	Yes
Total Frames	103

Geographic extent	Value
North	45.90
South	45.88
East	-66.67
West	-66.69

Metadata summary and geographic extent

Photo Metadata


Dataset Attribute	Attribute Value
Photo Number	28
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

Dataset Attribute	Attribute Value
Line Number	
Frame Start	1
Frame End	103

Dataset Attribute	Attribute Value
Roll Number	КА33
Viewing Angle	Vertical
Spectral Range	Black&White
Area	FREDERICTON
Roll Date	1925-07-16
Camera Name/Number	КЗ-5
Lens Name/Number	K3-5-12
Focal length (mm)	304.8
Camera Filter	
Film Type	DUP NEGS
ASL	Yes
Total Frames	103

Geographic extent	Value
North	45.88
South	45.87
East	-66.68
West	-66.69

Metadata summary and geographic extent

Photo Metadata

Dataset Attribute	Attribute Value
Photo Number	55
Acquisition (UTC)	1925-07-16
Scale	5000
Altitude	5000 (ft)
Original Negative Available (photo)	Yes
Negative size (WxH)	7 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

Dataset Attribute	Attribute Value	
Line Number		
Frame Start	1	
Frame End	103	

Dataset Attribute	Attribute Value	
Roll Number	КА33	
Viewing Angle	Vertical	
Spectral Range	Black&White	
Area	FREDERICTON	
Roll Date	1925-07-16	
Camera Name/Number	КЗ-5	
Lens Name/Number	K3-5-12	
Focal length (mm)	304.8	
Camera Filter		
Film Type	DUP NEGS	
ASL	Yes	
Total Frames	103	

Value
45.88
45.87
-66.68
-66.70

Metadata summary and geographic extent

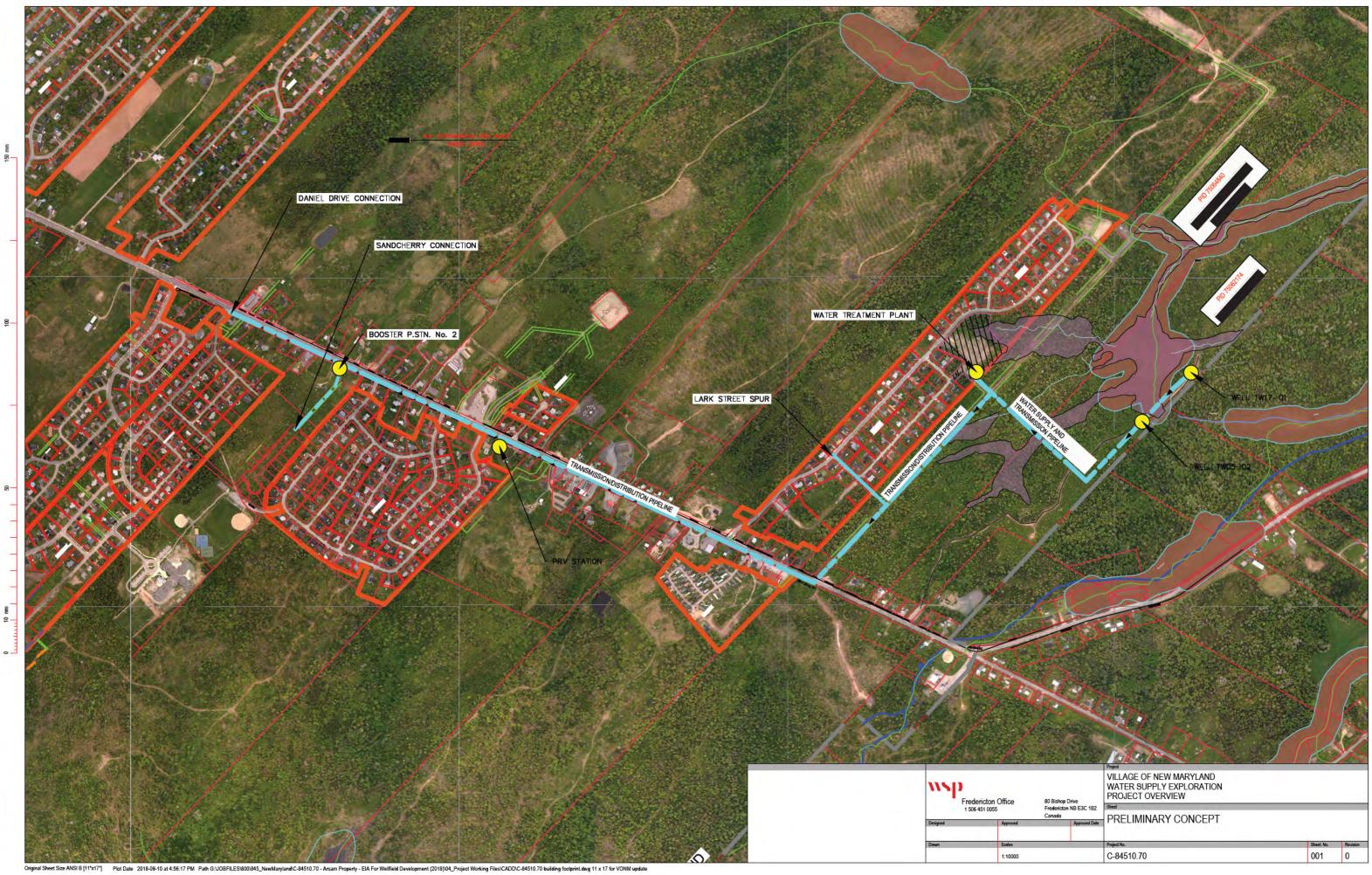
Photo Metadata

Dataset Attribute	Attribute Value
Photo Number	11
Acquisition (UTC)	1945-07-04
Scale	20000
Altitude	12000 (ft)
Original Negative Available (photo)	No
Negative size (WxH)	9 x 9
Overlap	60
NTS Map	021G15
Season	Summer

Flight Line Metadata

Dataset Attribute	Attribute Value	
Line Number	102W	
Frame Start	1	
Frame End	92	

Dataset Attribute	Attribute Value	
Roll Number	A8237	
Viewing Angle	Vertical	
Spectral Range	Black&White	
Area		
Roll Date	1945-07-04	
Camera Name/Number	F3-5	
Lens Name/Number	NOT SPECIFIED	
Focal length (mm)	209.55	
Camera Filter		
Film Type	SUPER XX PAN	
ASL	Yes	
Total Frames	92	


Value
45.88
45.85
-66.65
-66.71

Appendix G

Project-Related Infrastructure Locations

Courtesy of WSP

Original Sheet Size ANSI B [11*17] Plot Date 2018-09-10 at 4:40:38 PM Path G:UOBFILES/800/845_NewMaryland/C-84510:70 - Arsam Property - EIA For Welffield Development (2018)04_Project Working Files/CADD/C-84510:70 building footprint.dwg 11 x 17 for VONM archaeology

Appendix H

Accidental Discovery Protocols

PROTOCOL FOR ACCIDENTAL DISCOVERY OF ARCHAEOLOGICAL RESOURCES²

DOES NOT INCLUDE HUMAN REMAINS

Arsam Wellfield Development

No person, other than one authorized by the Minister responsible for the Department of Tourism, Heritage and Culture, may move, destroy, damage, deface, obliterate, alter, add to, mark or in any other way interfere with an archaeological resource.

Applicable Legislation:

New Brunswick Heritage Conservation Act

Agencies Involved:

Archaeological Services Branch (ASB), Department of Tourism, Heritage and Culture

Protocol for Accidental Discovery of Heritage Resources (e.g., artifacts or features)

Identify

All construction personnel are responsible for reporting any unusual materials unearthed during construction activities to the Construction Supervisor.

Stop Work

In those situations where the find is believed to be an archaeological resource (including artifacts or features), the Construction Supervisor will immediately stop work in the vicinity of the find and notify their immediate supervisor. As per the *Heritage Conservation Act*, the find must be reported to ASB who can be reached at (506) 453-3014. This notification can be done directly by VONM or through any consulting archaeologist. Dr. Grant Aylesworth completed the Heritage Resource Impact Assessment prior to the construction and can be reached at (506) 999-0151 or grant.aylesworth@stratis.consulting

Investigate

ASB will respond to the find and investigate. If ASB is unable to respond, a consulting archaeologist holding a permit from the Government of New Brunswick will investigate the find and, if it is determined to be an archaeological artifact or feature, must consult

² Sourced and lightly edited from: Guidelines and Procedures for Conducting Professional Archaeological Assessments in New Brunswick. Archaeological Services, Heritage Branch, Department of Culture, Tourism and Healthy Living, Fredericton. May 31, 2012.

Archaeological Field Research Permit Final Report Village of New Maryland Arsam Property Wellfield Development AFRP No. 2018 NB 133 Appendix H

with ASB. If ASB has been contacted directly and responds to the find, this consultation is not required.

Mitigate

An appropriate mitigation strategy with respect to the accidental discovery must be developed and implemented in consultation with ASB. If the find is Indigenous in nature, input may be sought from Indigenous representatives, typically from the closest First Nation community.

Resuming Work:

Work can only resume in the vicinity of the find when authorized by the Environmental Manager and/or the Construction Manager once clearance has been received from ASB (Government of New Brunswick).

PROTOCOL FOR ACCIDENTAL DISCOVERY OF HUMAN REMAINS³

Arsam Wellfield Development

Human remains will likely fall into the following four categories:

- 1. **Legal evidence**. All human remains that are discovered must be initially treated as potential forensic evidence.
- 2. Cemeteries registered under the New Brunswick Cemetery Companies Act
- 3. **Historic Cemeteries and Family plots**. These include human remains buried in currently neglected and overgrown cemeteries and family plots. Living relatives or descendants may exist.
- 4. Archaeological remains. Archaeological human remains include Pre-European Contact human remains and Historic period remains that were interred as a result of religious/social burial practices. Pre-Contact human remains may occur as a single burial or as multiple burials such as unrecorded Indigenous burial sites. Historic period archaeological human remains typically occur in historic cemeteries and long forgotten (pre-twentieth century) family plots.

Applicable Legislation:

Section 182(b) of the Criminal Code of Canada states: "Every one who improperly or indecently interferes with or offers any indignity to a dead human body or human remains, whether buried or not, is guilty of an indictable offence and liable to imprisonment for a term not exceeding five years."

Section 11 of the New Brunswick *Heritage Conservation Act* prohibits the alteration of any burial ground without an Archaeological Site Alteration Permit.

Agencies Involved:

Depending on the circumstances surrounding the discovery of human remains, several agencies may be involved and include:

•Lead police agency (RCMP). The lead police agency will decide what course of action to initiate.

•**Regional Coroner's Office**. The Coroner's Office may become involved in criminal investigations and in determining the cause of death.

•Chief Medical Officer's Office. The interest of the Chief Medical Officer relates to health issues.

•Archaeological Services Branch, Department of Tourism, Heritage and Culture.

³ Sourced and lightly edited from: Guidelines and Procedures for Conducting Professional Archaeological Assessments in New Brunswick. Archaeological Services, Heritage Branch, Department of Culture, Tourism and Healthy Living, Fredericton. May 31, 2012.

Archaeological Field Research Permit Final Report Village of New Maryland Arsam Property Wellfield Development AFRP No. 2018 NB 133 Appendix H

If it is determined that the human remains are not associated with a forensic matter or recent mishap, Archaeological Services Branch (ASB) will be consulted to determine the proper course of action. Pre- Contact burials are an extremely sensitive issue and will require the involvement of Indigenous representatives, typically from the closest First Nations community.

Protocol for accidental discovery of human remains

• Halt all Activities

Halt all activities in the vicinity (minimum 10 metre x 10 metre area) of the human remains at once. Until determined otherwise, the remains must be treated as evidence in a forensic investigation. If the remains are found in the bucket of heavy equipment, the bucket must not be emptied as physical evidence may be destroyed. When remains are found, the potential for additional burials or human remains must be acknowledged and future project activities must reflect this elevated potential.

• Secure the Area

The area must immediately be designated as "Out of Bounds" to all personnel and the public. Depending on the weather and other conditions, the human remains discovered must be provided with non-intrusive protection, such as covering with a cloth or canvas tarp (non-plastic preferred). All personnel and traffic must exit the site by one common non-intrusive path. Curiosity seekers must be kept off the site.

• Inform the Lead Police Agency (RCMP)

The nearest detachment of the lead police agency must be informed immediately – this is not an emergency call and do not use 911. For reasons of site security and sensitivity, it is recommended not to use a cell phone but cell phone use may be necessary. Upon verbal description of the situation, the lead police agency may dispense with a site visit to view the site/remains. The lead police agency will make a decision as to whether the Coroner and/or Archaeological Services Branch must be involved.

RCMP 584 New Maryland Highway New Maryland NB E3C 1K11

Telephone: (506) 357-4300

The lead police agency specialists may be called to determine if the situation is associated with a crime or an archaeological feature. If it is concluded to be related to a crime, the lead police agency specialist will follow their own protocols and procedures, such as informing the Coroner, collecting data, and removing the remains.

If the lead police agency determines the situation <u>not</u> to be associated with a criminal matter, then Archaeological Services Branch will be consulted at (506) 453-3014 to determine the proper course of action in consultation with stakeholders.

Archaeological Field Research Permit Final Report Village of New Maryland Arsam Property Wellfield Development AFRP No. 2018 NB 133 Appendix H

If Archaeological Services Branch determines that the human remains are not associated with an archaeological feature but still have to be removed, certificates of removal are required from both the Coroner's Office and the Chief Medical Officer of New Brunswick.

Resuming Work:

Work can only resume in the vicinity of the discovery once clearance has been received from all of the authorities and agencies concerned.

Stratis Consulting Inc. 527 Dundonald Street, Suite 115 Fredericton, NB E3B 1X5 Web: stratis.consulting

C-4 WSSA INITIAL APPLICATION

Water Supply Source Assessment Step One Application

1) Name of proponent:

Village of New Maryland

Contact Information:

Cynthia Geldart - Chief Administrative Officer

Email: Cynthia.Geldart@vonm.ca

Phone: 506-451-8508

Fax: 506-450-1605

2) The location of drill targets (including property PID) and purpose of the proposed water supply:

In 2005 four (4) test water wells were drilled on PID 75062174 by the property Owner, ARSAM Ltd. The company's original intent was to develop the land for mixed-use residential purposes. However, these plans did not materialize or come to fruition and the property has been on the real estate market for sale for a number of years. PID 75062174 is currently owned by **Example 1**, who was one of the original investors and/or principals of ARSAM Ltd.

The test wells were drilled under the direction and supervision of GEMTEC Limited, who prepared and issued a letter report summarizing their findings on July 14, 2005, a copy of GEMTEC's report is attached.

The Village of New Maryland plans to complete an investigation of these existing wells and wellfield in two (2) phases:

Phase 1 – Extend the total depth of TW05-2 to 165 metres from the present depth of 97.5 metres in an attempt to penetrate and enter The Boss Point Formation which is recognized as hosting substantial aquifers where bedrock structures are present. Complete subsequent step testing and a 72-hour constant rate pumping test at TW05-2 to establish an appropriate pumping rate. Water levels in test holes TW05-1, TW05-3, TW05-4 and yet to be determine locations in Sunrise Estates and on Route 101 (south of TW05-2) will be monitored during testing to determine distance-drawdown impacts. Consideration will be given to the eventual pumping rate to reduce possible interference with existing wells.

Phase 2 – Depending on the results of a detailed assessment of the geophysical data from Phase 1, additional test holes may possibly be drilled within identified bedrock structural zones. Prior to drilling any new or additional test wells the Technical Review Committee would be consulted and apprised accordingly.

Well ID	Location	PID	Purpose
TW05-1	Close to South Property Line & Village Boundary	75062174	Observation Well (Existing)
TW05-2	Close to South Property Line & Village Boundary	75062174	Existing Test Well To Be Deepened
TW05-3	Close to South Property Line & Village Boundary	75062174	Observation Well (Existing)
TW05-4	Close to South Property Line & Village Boundary	75062174	Observation Well (Existing)
Residential Well #1	Sunrise Estates, Yet to be determined		Monitoring Well
Residential Well #2	Route 101, South of TW05-2, Yet to be determined		Monitoring Well

3) Required Water Quantity (in m³/day):

Estimated 500 - 1000 m3/day

4) List alternate water supply sources in area (including municipal systems):

Within 500 metres of TW05-2 there are approximately 10 private domestic wells, and all are located near the extremity of the 500 metre radius from TW05-2. There are no municipal water systems located within 500 metres of TW05-2.

5) Discuss area hydrogeology as it relates to the project requirements:

See attached Well Driller's Reports for TW05-1, TW05-2, TW05-3 and TW05-4. Water quality analytical results are also attached for all wells, except TW05-3. Given the very close proximity of test wells TW05-2 and TW05-3, water chemistry should be the same.

6) Outline the proposed hydrogeological testing work schedule:

Phase 1:

- a. February 2017: Deepen test well TW05-2, perform hydraulic step testing and subsequent 72-hr constant rate pumping test.
- March/April 2017: Assessment of drilling and hydrogeological properties of test wells (including anticipated water quality and quantity).
- c. May July 2017: Confirm well field characteristics, perform additional pump tests if required and confirm water quality and quantity.
- d. October December 2017: Prepare EIA submission.
- January June 2018: Detailed design of water supply and, if required, treatment system.

Phase 2: If Required or Deemed Necessary

- f. June 2017: Drill additional exploratory test wells, number and location yet to be determined
- g. July 2017: Assessment of drilling and hydrogeological properties of the test wells (including anticipated water quality and quantity)
- h. August/September 2017: Pump test wells and confirm water quality and quantity
- i. October December 2017: Prepare EIA submission
- *j.* January June 2018: Detailed design of water supply and, if required, treatment system

7) Identify any existing pollution or contamination hazards within a minimum radius of 500m from the proposed drill targets. Historical land use that might pose a contamination hazard (i.e. tannery, industrial, waste disposal, etc.) should also be discussed:

Within 500 metres of TW05-2 there are approximately 4 private residential septic tanks, all are located on Route 101 near the extremity of the 500 metre radius south of TW05-2.

Approximately 400 metres to the north of TW05-2 there is a trunk sanitary sewer main which flows west to east and is located approximately 50 metres south of Sunrise Estates' southerly boundary on PID 75064840. This is a relatively new sanitary sewer main which is operated and maintained by the Village of New Maryland.

There are no other known existing pollution or contamination hazards within the 500m radius.

8) Identify any groundwater use problems (quantity or quality) that have occurred in the area:

None identified.

9) Identify any water course(s) (stream, brook, river, wetland, etc.) within 60m of proposed drill targets:

There are no streams, brooks or rivers within 60m of TW05-1, TW05-2, TW05-3 or TW05-4. There is however a poorly defined unnamed drainage course some 100 metres or so to the south east of test wells TW05-2 and TW05-3 which is a tributary to Barry Brook.

Approximately 50 metres due north of TW05-4 there is a wetland area.

10) Identify site supervisory personnel involved in the source development (municipal officials, consultants and drillers):

Representatives from Opus International, Village of New Maryland and BGC Engineering have been and will be involved with this project.

11) Attach a 1:10,000 map and/or recent air photo clearly identifying the proposed location of drill targets and property PID, the domestic or production wells with a 500m radius from the drill target(s), and any potential hazards identified in question 7:

See attached 1:10,000 map "Location Plan – Existing Test Wells". There are no existing Village municipal production wells within 500m of any of the existing test wells drilled by ARSAM Ltd. It is assumed every residence/dwelling within the 500m radius has its own private domestic well, residences in Sunrise Estates are connected to the Village's sanitary sewer system, residences on Route 101 are assumed to have their own septic tank/disposal fields.

12) Attach a land use/zoning map of the area (if any). Superimpose drill targets on this map:

The location of existing test wells TW05-1, TW05-2, TW05-3 and TW05-4 are shown on the attached Village Zoning Map. Test wells TW05-1, TW05-2 and TW05-3 are located in Residential Zone 2 (R-2) and test well TW05-4 is located on land Zoned Rural.

13) Contingency plan for open loop energy systems:

Not applicable (no open loop energy system to be developed as part of this work).

Water Supply Source Assessment Step One Application #2 for PID 75062174

1) Name of proponent:

Village of New Maryland

Contact Information:

Cynthia Geldart - Chief Administrative Officer

Email: Cynthia.Geldart@vonm.ca

Phone: 506-451-8508

Fax: 506-450-1605

2) The location of drill targets (including property PID) and purpose of the proposed water supply:

In 2005 four (4) test water wells were drilled on PID 75062174 by the property Owner, ARSAM Ltd. The company's original intent was to develop the land for mixed-use residential purposes. However, these plans did not materialize or come to fruition and the property has been on the real estate market for sale for a number of years. PID 75062174 is currently owned by **Example 1**, who was one of the original investors and/or principals of ARSAM Ltd.

The test wells were drilled under the direction and supervision of GEMTEC Limited, who prepared and issued a letter report summarizing their findings on July 14, 2005, a copy of GEMTEC's report is attached.

The Village of New Maryland just recently completed investigation work on Well TW05-02. A summary of the tasks performed and results obtained are outlined and detailed in the attached document titled "Groundwater Supply – Drilling and Test Pumping of Well TW-02, New Maryland", which was prepared by BGC Engineering Inc.

As Phase 2, the Village would now like to turn its attention to Well TW05-04 and complete a very similar investigation program to what was recently performed on Well TW05-02. Task to be undertaken include: extension of the total depth of TW05-4 to 150 metres from the present depth of 103.6 metres in an attempt to penetrate and enter The Boss Point Formation which is recognized as hosting substantial aquifers where bedrock structures are present. Complete subsequent step testing and a 72-hour constant rate pumping test at TW05-4 to establish an appropriate pumping rate. Water levels in test holes TW05-1, TW05-3, the Village's wastewater pumping station in Sunrise Estates and at the existing unnamed artesian well on Route 101 (south east of TW05-4) will be monitored during testing to determine distance-drawdown impacts. Consideration will be given to the eventual pumping rate to reduce possible interference with existing wells.

Phase 3 – Depending on the results of a detailed assessment of the geophysical data from Phase 1 and 2, additional test holes may possibly be drilled within identified bedrock structural zones. Prior to drilling any new or additional test wells the Technical Review Committee would be consulted and apprised accordingly.

Well ID	Location	PID	Purpose
TW05-1	Close to South Property Line & Village Boundary	75062174	Observation Well (Existing)
TW05-2	Close to South Property Line & Village Boundary	75062174	Could Be Used For Observation If Needed
TW05-3	Close to South Property Line & Village Boundary	75062174	Observation Well (Existing)
TW05-4	Close to South Property Line & Village Boundary	75062174	Existing Test Well To Be Deepened
Village Owned Well	Sunrise Estates, Wastewater PS		Observation Well (Existing)
Existing Artesian Well	Close To Route 101, South East of TW05-4, (yet to be field located)	75061754	Monitoring Well

3) Required Water Quantity (in m³/day):

Estimated 500 - 1000 m³/day

4) List alternate water supply sources in area (including municipal systems):

Within 500 metres of TW05-4 there are approximately 10 private domestic wells, and all are located near the extremity of the 500 metre radius from TW05-4. There are no municipal water systems located within 500 metres of TW05-4.

5) Discuss area hydrogeology as it relates to the project requirements:

See attached Capital Well Driller's Reports for TW05-1, TW05-3 and TW05-4. See attached Sullivan's Well Drilling Report for TW05-2. Water quality analytical results are also attached for all wells, except TW05-3. Given the very close proximity of test wells TW05-2 and TW05-3, water chemistry should be the same. See attached report titled "Groundwater Supply – Drilling and Test Pumping of Well TW-02, New Maryland", prepared by BGC Engineering Inc. for updated or recent water quality analytical results for Well TW05-2 and other pertinent hydrogeological information.

6) Outline the proposed hydrogeological testing work schedule:

Phase 2:

 July 2017: Deepen test well TW05-4, perform hydraulic step testing and subsequent 72-hr constant rate pumping test.

- b. July/August 2017: Assessment of drilling and hydrogeological properties of test wells (including anticipated water quality and quantity).
- c. August/September: Confirm well field characteristics, perform additional pump tests if required and confirm water quality and quantity.
- d. October 2017 January 2018: Prepare EIA submission.
- e. February July 2018: Detailed design of water supply and treatment system.

Phase 2: If Required or Deemed Necessary

- f. September 2017: Drill additional exploratory test wells, number and location yet to be determined
- g. September 2017: Assessment of drilling and hydrogeological properties of the test wells (including anticipated water quality and quantity)
- h. October 2017: Pump test wells and confirm water quality and quantity
- i. November 2017 March 2018: Prepare EIA submission
- *j.* April September 2018: Detailed design of water supply and treatment system

7) Identify any existing pollution or contamination hazards within a minimum radius of 500m from the proposed drill targets. Historical land use that might pose a contamination hazard (i.e. tannery, industrial, waste disposal, etc.) should also be discussed:

Within 500 metres of TW05-4 there are approximately 4 private residential septic tanks, all are located on Route 101 near the extremity of the 500 metre radius south of TW05-4.

Approximately 400 metres to the north of TW05-4 there is a trunk sanitary sewer main which flows west to east and is located approximately 50 metres south of Sunrise Estates' southerly boundary on PID 75064840. This is a relatively new sanitary sewer main which is operated and maintained by the Village of New Maryland.

There are no other known existing pollution or contamination hazards within the 500m radius.

8) Identify any groundwater use problems (quantity or quality) that have occurred in the area:

None identified.

9) Identify any water course(s) (stream, brook, river, wetland, etc.) within 60m of proposed drill targets:

There are no streams, brooks or rivers within 60m of TW05-1, TW05-2, TW05-3 or TW05-4. There is however a poorly defined unnamed drainage course some 100 metres or so to the south of test well TW05-4 which is a tributary to Barry Brook.

Approximately 50 metres due north of TW05-4 there is a wetland area.

10) Identify site supervisory personnel involved in the source development (municipal officials, consultants and drillers):

Representatives from Opus International, Village of New Maryland and BGC Engineering have been and will be involved with this project.

11) Attach a 1:10,000 map and/or recent air photo clearly identifying the proposed location of drill targets and property PID, the domestic or production wells with a 500m radius from the drill target(s), and any potential hazards identified in question 7:

See attached 1:10,000 map "Location Plan – Existing Test Wells". There are no existing Village municipal production wells within 500m of any of the existing test wells drilled by ARSAM Ltd. It is assumed every residence/dwelling within the 500m radius has its own private domestic well, residences in Sunrise Estates are connected to the Village's sanitary sewer system, residences on Route 101 are assumed to have their own septic tank/disposal fields.

12) Attach a land use/zoning map of the area (if any). Superimpose drill targets on this map:

The location of existing test wells TW05-1, TW05-2, TW05-3 and TW05-4 are shown on the attached Village Zoning Map. Test wells TW05-1, TW05-2 and TW05-3 are located in Residential Zone 2 (R-2) and test well TW05-4 is located on land Zoned Rural.

13) Contingency plan for open loop energy systems:

Not applicable (no open loop energy system to be developed as part of this work).