

Public Services and Procurement Canada

Marine Sediment Sampling Program and Underwater Benthic Habitat Survey – Val-Comeau, DFO-SCH New Brunswick, DRFP #23550

Final Report

Date: September 1, 2017 Ref. N°: P-0011130-0-19-200 Contract No: E0225-152192

Public Services and Procurement Canada

Marine Sediment Sampling Program and Underwater Benthic Habitat Survey - Val-Comeau DFO-SCH, New Brunswick, DRFP #23550

Jenne Walker

Final Report | P-0011130-0-19-200

Approved by :

Jenna Walker, B.Env.Sc., M.F., CET

Environmental Scientist, Environmental Engineering

Verified by:

Doreen Chenard, B.Sc. in Agr.

Team Leader, Environmental Engineering

EXECUTIVE SUMMARY

At the request of Public Services and Procurement Canada (PSPC), five (5) sediment samples were collected as part of a Marine Sediment Sampling Program (MSSP) at the Val-Comeau Department of Fisheries and Oceans Canada (DFO) Small Craft Harbour (SCH) Directory of Federal Real Property (DFRP) #23550 site in the Regional Municipality of Grand Tracadie-Sheila, New Brunswick. The samples were to be characterized in terms of their grain size composition and their chemical make-up. In addition, an underwater video along eight (8) transects was filmed and interpreted as part of an Underwater Benthic Habitat Survey.

The sediment samples were submitted to AGAT Laboratories in Dartmouth, Nova Scotia for detailed analyses. Results were compared to the Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (SQGs) for the Protection of Human and Environmental Health; CCME Canada Wide Standards (CWS) for Petroleum Hydrocarbon Concentrations (PHCs); and Atlantic Risk-Based Corrective Action (RBCA) Tier 1 Version 3 Risk-Based Screening Levels (RBSLs), Soil Ecological Screening Levels (ESLs) and Sediment Ecological Screening Levels (SESLs). In addition, one sample was analyzed for leachable polycyclic aromatic hydrocarbons (PAHs) and leachable metals. Leachate results were compared to the CCME Water Quality Guidelines (WQGs) for the Protection of Freshwater and Marine Aquatic Life and Agriculture, and the Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ). Tables 1 and 2, below, summarize the guideline exceedances of the sediment and leachate analyses, respectively. Figure 1 depicts the summarized substrate composition for the sediment samples collected from the Val-Comeau DFO-SCH site. Figure 2 shows the proportions of gravel, sand and mud (silt and clay) for individual sediment samples.

Table 1 - Sediment Analysis Guidelines Exceedances

Table 1 Sealment final years Suddenines Executations							
Parameter /	Sample ID						
Guideline	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5		
CCME Soil Qu	CCME Soil Quality Guidelines						
PAH (IACR)	-	-	X	X	X		
PAH (EH)	-	-	-	X	X		
Metals	X	X	X	X	X		
BTEX	-	•	-	-	-		
Total PCB	-	•	-	-	-		
Total DDT	-	-	-	-	-		
SAR	Х	Χ	X	X	Х		
Conductivity	Х	Χ	X	X	Х		
рН	Х	Χ	-	X	Х		
Atlantic RBCA Tier 1 RBSLs							
BTEX	-	-	-	-	-		
TPH	-	1	-	-	-		
Atlantic RBCA	Tier 1 ESLs and	d SESLs					
BTEX	-	-	-	-	-		
HC Fraction	-	-	-	-	-		
TPH	-	-	-	-	-		
CWS for PHC in Soil							

i

BTEX	-	-	-	-	-
HC Fraction	-	-	-	-	-

Notes:

"-" indicates no exceedance

"X" indicates an exceedance

PAH - Polycyclic Aromatic Hydrocarbon

BTEX - Benzene, Toluene, Ethylbenzene, Xylene

PCB - Polychlorinated Biphenyl

DDT – Dichloro-Diphenyl-Trichloroethane SAR – Sodium Adsorption Ratio

HC - Hydrocarbon

TPH - Total Petroleum Hydrocarbon

Table 2 - Leachate Analysis Guidelines Exceedances

Parameter / Guideline	Sample ID			
Farameter / Guideline	VC-SED4 (TCLP)	VC-SED4 (SPLP)		
CCME Water Quality Gui	delines			
PAH	X	X		
Metals	X	X		
pН	Not Measured	-		
Health Canada GCDWQ MAC, AO and/or Other				
PAH	-	-		
Metals	X	X		
pН	Not Measured	-		

Notes:

PAH – Polycyclic Aromatic Hydrocarbon

MAC - Maximum Acceptable Concentration

AO - Aesthetic Objective

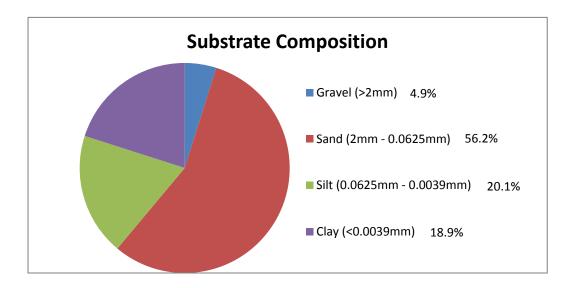


Figure 1 - Average Sediment Composition at Val-Comeau DFO-SCH

[&]quot;-" indicates no exceedance

[&]quot;X" indicates an exceedance

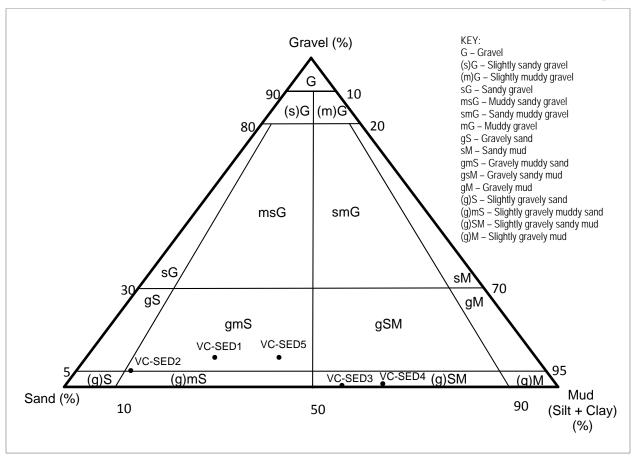


Figure 2 - Substrate Composition of Individual Sediment Samples at Val-Comeau DFO-SCH

The Val-Comeau survey area shows a variety of complex substrates running from flat sandy- silt areas with little vegetation to dense areas of eelgrass (*Zostera marina*). Further, there are very dense areas (beds) of dead mollusc shell primarily composed of the blue mussel (*Mytilus edulis*), horse mussel (*Modiolus modiolus*), moon snail (*Lunatia heros*), and periwinkles (*Littorina* sp.). Where these beds occur the common barnacle (*Balanus* sp.) is usually present, encrusting on dead and live shells. Periwinkles are commonly associated with the eelgrass. A few rock crabs (*Cancer irroratus*) and one benthic shrimp (*Crangon* sp.) were identified. There were no rare or endangered species identified during the survey.

Those areas furthest from the shoreline that are covered with mollusc shells, live molluscs, periwinkles, eelgrass or eelgrass mixed with low relief leafy algae species are excellent to good habitat for fish. Eel grass beds are highly productive areas of primary production and are an important contributor to the base of the coastal food web. Closer to the shoreline, the study area is comprised of eelgrass that is storm-thrown or barren sandy silt areas which are of lower productivity and recover quickly from disturbance.

Property and Confidentiality

"This engineering document is the property of Englobe Corp. and, as such, is protected under Copyright Law. It can only be used for the purposes mentioned herein. Any reproduction or adaptation, whether partial or total, is strictly prohibited without having obtained Englobe's and its client's prior written authorization to do so.

Test results mentioned herein are only valid for the sample(s) stated in this report.

Englobe's subcontractors who may have accomplished work either on site or in laboratory are duly qualified as stated in our Quality Manual's procurement procedure. Should you require any further information, please contact your Project Manager."

REVISION AND PUBLICATION REGISTER			
Revision N° Date Modification And/Or Publication Details			
00	2017-08-18	Draft Report Issued	
01	2017-09-01	Final Report Issued	

TABLE OF CONTENTS

E)	XECUTIVE SUMMARY	
	INTRODUCTION	
2	SCOPE AND METHODOLOGY	1
	2.1 SITE PLAN	
	2.2 MARINE SEDIMENT SAMPLING PROGRAM	
	2.3 QUALITY ASSURANCE AND QUALITY CONTROL	
	2.4 UNDERWATER BENTHIC HABITAT SURVEY	
3	SEDIMENT ANALYTICAL RESULTS	
	3.1 PAH CONCENTRATIONS	
	3.2 METAL CONCENTRATIONS	
	3.3 PETROLEUM HYDROCARBON CONCENTRATIONS	_
	3.4 PCB CONCENTRATIONS	
	3.5 DDT CONCENTRATIONS	
	3.6 GRAIN SIZE DISTRIBUTION	
	3.7 CARBON CONTENT	
	3.8 SAR, CONDUCTIVITY AND PH	
	LEACHATE ANALYTICAL RESULTSQUALITY ASSURANCE/QUALITY CONTROL	
	UNDERWATER BENTHIC HABITAT SURVEY	
	CONCLUSIONS	
	REPORT USE AND CONDITIONS	
0	REPORT USE AND CONDITIONS	
т.	able a	
	ables	
	able 1 - Sediment Analysis Guidelines Exceedances	
	able 2 - Leachate Analysis Guidelines Exceedances	
	able 3 - Sample Coordinates	
Та	able 4 - Laboratory Duplicates	3
Та	able 5 – Transect Coordinates & Date and Time of Sampling	3
Та	able 6 - Dominant Sediment Types at Each Sample Location	6
	gures	
Fiç	gure 1 - Average Sediment Composition at Val-Comeau DFO-SCH	i
Fiç	gure 2 - Substrate Composition of Individual Sediment Samples at Val-Comeau DFO-SCH	ii
Fiç	gure 3 - Average Sediment Composition at Val-Comeau DFO-SCH	6
Fiç	gure 4 - Substrate Composition of Individual Sediment Samples at Val-Comeau DFO-SCH	7
Αp	ppendices	
Αp	opendix A - Figures, Subject Area and Sediment Sample Photos and Field Data Collection Form	
•	opendix B - Analytical Summary Tables	
-	opendix C - Laboratory Certificate of Analysis and COC	
•	opendix D - Transect Surveys	
-	opendix E - Photos of Typical Habitat Types Along Transects	
ΑÞ	openuix ⊑ - ⊏notos or Typicai ⊓abitat Types Along Transects	

1 INTRODUCTION

At the request of Public Services and Procurement Canada (PSPC), five (5) sediment samples were collected as part of a Marine Sediment Sampling Program (MSSP) at the Val-Comeau Department of Fisheries and Oceans Canada (DFO) Small Craft Harbour (SCH) Directory of Federal Real Property (DFRP) #23550 site in the Regional Municipality of Grand Tracadie-Sheila, New Brunswick (NB). The samples were characterized in terms of their grain size composition and their chemical make-up. In addition, an underwater video along eight (8) transects was filmed and interpreted as part of an Underwater Benthic Habitat Survey (UBHS).

Refer to Appendix A for a site location plan (Figure A.1).

2 SCOPE AND METHODOLOGY

2.1 SITE PLAN

In total, five (5) surface sediment samples (0–30 cm) were collected at the Val-Comeau DFO-SCH site at locations provided by PSPC on July 18, 2017. An UBHS along eight (8) transects was also carried out on July 17 and 18, 2017. Refer to Appendix A for site and sample photos and the sample and transect location plan (Figure A.2).

2.2 MARINE SEDIMENT SAMPLING PROGRAM

Englobe Corp. (Englobe) retained the services of a diving team/crew from Connors Diving Services based in Lakeside, Nova Scotia (NS). The divers navigated to each identified sample location using a handheld Global Positioning System (GPS), collected sediment using a clean shovel, placed the sediment into a plastic bucket (underwater), put a lid on the bucket, brought the bucket up out of the water and to the wharf, removed the lid, and poured off excess water. An Englobe representative then homogenized the sample by means of a clean nitrile glove-covered hand prior to the placement in clean laboratory supplied jars. The bucket used for homogenizing the samples was washed thoroughly in the harbour water prior to processing the next sample. It is of note that an attempt to collect samples using core tubes was made however the substrate was too dense.

Each sample was immediately placed in laboratory supplied containers, preserved where necessary, and stored in coolers with ice prior to shipment (within 24 hours) to AGAT Laboratories (AGAT) in Dartmouth, NS.

Five (5) sediment samples were analysed for:

- ▶ Low-level polycyclic aromatic hydrocarbons (PAHs) including a creosote scan (presence/absence);
- ▶ Available metals including tin, hexavalent chromium, mercury and low-level selenium;
- ▶ Dichlorodiphenyl-trichloroethane (DDT) suite and total polychlorinated biphenyls (PCBs);

- ▶ Low level benzene, toluene, ethylbenzene, xylenes (BTEX), total petroleum hydrocarbons (TPH) and modified TPH (Atlantic PIRI Method) (note: a return to baseline at C32 was verified and silica gel clean-up was conducted for all samples);
- Fraction of organic carbon;
- Grain size distribution:
- ▶ Electrical conductivity (EC) and sodium adsorption ratio (SAR); and
- **▶** pH.

In addition, one sample (VC-SED4) was submitted for leachate extraction and leachate analyses for PAHs and metals based on the original results (i.e. the sample that exhibited the greatest concentrations of metals and PAHs). Leachate analyses were completed using both the Synthetic Precipitation Leaching Procedure (SPLP) and the Toxicity Characteristic Leaching Procedure (TCLP).

The field work was carried out in accordance with Englobe's standard operating procedures (SOPs) for sediment sampling and decontamination procedures; the 2016 Canadian Council of Ministers of the Environment (CCME) *Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment;* and the guidelines defined by provincial Occupational Health and Safety Standards.

The soil analytical sample results were compared to the following:

- CCME Soil Quality Guidelines (SQGs) for the Protection of Human and Environmental Health;
- ▶ Atlantic RBCA Tier 1 Version 3 Risk-Based Screening Levels (RBSLs) for soil, Soil Ecological Screening Levels (ESLs) for the Protection of Plants, Soil Invertebrates, Wildlife, and Livestock; and SESLs for the Protection of Freshwater and Marine Aquatic Life; and
- CCME Canada Wide Standards (CWS) for Petroleum Hydrocarbon Concentrations (PHCs).

Leachate analytical results were compared to the following:

- ▶ CCME Water Quality Guidelines (WQGs) for the Protection of Aquatic Life and Agriculture; and
- ▶ Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ).

Sediment sample coordinates are listed in Table 3, below and locations are indicated on Figure A.2 in Appendix A. Samples VC-SED3, VC-SED4 and VC-SED5 were collected closest to the wharf.

Table 3 - Sample Coordinates

Sample ID	Sample Coordinates (Latitude / Longitude – Decimal Degrees)	
VC-SED1	47.4655	-64.8834
VC-SED2	47.4657	-64.8824
VC-SED3	47.4653	-64.8823
VC-SED4	47.4651	-64.8832

VC-SED5 47.4655 -64.8828

2.3 QUALITY ASSURANCE AND QUALITY CONTROL

AGAT conducted their own internal QA/QC program to identify any potential sources of laboratory error, consistent with the relevant standards requirements for laboratory certification. The samples included in the QA/QC program are summarized in Table 4 below. The evaluation and results of the QA/QC assessment are discussed in Section 5.0.

Table 4 - Laboratory Duplicates

Sample ID	Duplicate ID	Parameter
VC-SED1	Dup #2	BTEX/TPH, DDT, Total PCBs
VC-SED4	Dup #2	TCLP and SPLP Leachable Metals
VC-SED5	Dup #2	Grain Size

2.4 UNDERWATER BENTHIC HABITAT SURVEY

The dive team completed an underwater video survey along eight (8) transect locations provided by PSPC for a total length of 720 m. A handheld Garmin GPSMAP 76S global positioning system (GPS) was used to locate the pre-determined start and finish points of the transects. Each transect was continuously filmed pausing at each 5 m mark and scanning to the right and left of the transect line to provide a wider view of the habitats. Refer to Table 5, below, for transect coordinates and the date and time of filming, and to Figure A.2 in Appendix A for the transect location plan.

Table 5 – Transect Coordinates & Date and Time of Sampling

Transect ID	Sample Coordinates (Latitude / Longitude – Decimal Degrees)		2017 Date & Time of Filming
	Start	Finish	(24 hour Clock)
T1	47.4654, -64.8850	47.4644, -64.8845	July 17, 15:15
T2	47.4648, -64.8850	47.4649, -64.8845	July 17, 16:00
T3	47.4654, -64.8843	47.4652, -64.8853	July 17, 16:30
T4	47.4657, -64.8837	47.4649, -64.8833	July 17, 17:00
T5	47.4654, -64.8829	47.4658, -64.8830	July 18, 9:40
T6	47.4659, -64.8824	47.4651, -64.8820	July 18, 8:40
T7	47.4654, -64.8837	47.4658, -64.8819	July 18, 9:10
Т8	47.4654, -64.8818	47.4652, -64.8827	July 18, 8:00

An Englobe representative was on-site to guide the dive crew in the event that any issue arose and to obtain supporting habitat and biological information.

For each transect and every 5 m, Englobe interpreted the underwater video which includes site specific information on the substrate type and marine marine macrofloral/faunal species present; detailed descriptions of biological presence and/or habitat that are related to commercial, recreational or aboriginal

fisheries; and general delineations of substrate types and a general characterization. In addition, a summary statement about the overall quality of fish habitat in the survey area was made. Refer to Section 6.0 for the UBHS results.

3 SEDIMENT ANALYTICAL RESULTS

The analytical results of the sediment samples collected from Val-Comeau DFO-SCH are summarized throughout Appendix B, and are discussed below.

Refer to Appendix B for tabulated analytical results and their comparison to relevant guidelines. The complete set of analytical results, including laboratory QA/QC and the Certificates of Analysis for all parameters tested, are provided in Appendix C.

3.1 PAH CONCENTRATIONS

The CCME SQGs for the Protection of Environmental Health stipulate guideline values for individual PAH compounds.

The CCME stipulate values for the protection of human health (potable water) for the individual PAH compounds however it should be noted that the individual values are not stand alone SQGs. Rather, each has been incorporated into the "Index of Additive Cancer Risks" (IACR) equation to account for the combined effects of individual PAHs in the mixture. The resulting IACR value is equivalent to a hazard index and should not exceed a value of 1.0. Therefore, the final SQG is expressed as IACR ≤ 1.

Guidance provided in the CCME SQGs for the Protection of Environmental and Human Health (2008) indicates that for soil contaminated by coal tar or creosote mixtures, the calculated benzo(a)pyrene total potency equivalent (TPE) concentration for soil samples should be multiplied by an uncertainty factor (UF) of 3 prior to comparison with the SQGs for the Protection of Human Health (Direct Contact) to account for carcinogenic potential of alkylated and other PAHs present for which a potency equivalency factor (PEF) does not currently exist, but which are likely to contribute to the mixture's carcinogenic potential. Laboratory analytical results revealed that the presence of creosote was not observed in any of the samples analysed.

A summary of the results compared to each of the referenced guidelines is provided in the following subsections. Refer to Table B.1 for analytical PAHs results.

CCME Soil Quality Guidelines – Human Health (Potable Water and Direct Contact)

The samples collected at VC-SED3, VC-SED4 and VC-SED5 showed exceedances of the CCME IACR of 1 at 3.84, 7.81 and 4.19, respectively.

<u>CCME Soil Quality Guidelines – Environmental Health (Soil Contact, Soil and Food Ingestion, and Freshwater Life)</u>

The samples collected at VC-SED4 and VC-SED5 showed exceedances of the CCME SQG for the Protection of Environmental Health (Freshwater Life) for all land-use settings for phenanthrene of 0.046 mg/kg at 0.07 mg/kg and 0.12 mg/kg, respectively.

No other exceedances of the CCME SQGs for the Protection of Human and Environmental Health for PAHs were observed.

3.2 METAL CONCENTRATIONS

Analytical results were compared to the CCME SQGs for agricultural, residential/parkland, commercial, and industrial settings. Refer to Table B.2 for analytical metals results.

CCME Soil Quality Guidelines - Human and Environmental Health

The samples collected at VC-SED1, VC-SED2, VC-SED3, VC-SED4, and VC-SED5 showed exceedances of the CCME SQG for the Protection of Human and Environmental Health for an agricultural setting for boron of 2 mg/kg at 17 mg/kg, 5 mg/kg, 9 mg/kg, 99 mg/kg, and 36 mg/kg, respectively.

No other exceedances of the SQGs for the Protection of Human and Environmental Health for metals were observed.

3.3 PETROLEUM HYDROCARBON CONCENTRATIONS

Refer to Table B.3 for analytical BTEX/TPH results.

The BTEX analytical results of the five samples collected were compared to the Atlantic RBCA Tier 1 Version 3 RBSLs, Soil ESLs and SESLs, the CCME SQGs for various land use applications, and the CWS for PHCs in Soil.

BTEX were not detected in any of the samples collected.

Modified TPH values reflect the sum of the individual carbon fractions that resemble gasoline, diesel #2 and lube oil. Based on resemblance results provided by the laboratory, the analytical results for mTPH are compared against the corresponding Atlantic RBCA Tier 1 Version 3 RBSLs and SESLs. The standard SESLs are derived using a fraction of organic carbon (FOC) value of 0.01. Modified TPH values were reported below the laboratory detection limits for all samples with the exception of the sample collected at VC-SED4 which exhibited a mTPH concentration of 44 mg/kg. No mTPH values were observed to be greater than the Atlantic RBCA Tier 1 RBSLs or SESLs for soil.

Individual carbon fractions in the F1 (C6-C10 less BTEX), F2/diesel (>C10-C16), diesel (>C16-C21), and lube oil (>C21-C32) ranges were reported below the laboratory detection limits for all samples with the exception of the sample collected at VC-SED4. This sample exhibited diesel (>C16-C21) and lube oil (>C21-C32) concentrations of 19 mg/kg and 25 mg/kg, respectively. No exceedances of the Atlantic RBCA Tier 1 ESLs and SESLs, and CWS for PHCs for individual carbon fractions were observed. All samples reached baseline at C32.

3.4 PCB CONCENTRATIONS

Refer to Table B.4 for analytical PCBs results.

The CCME SQGs stipulate guideline values for total PCBs for agricultural, residential/parkland, commercial, and industrial settings.

No PCBs were detected in the samples analysed.

3.5 DDT CONCENTRATIONS

Refer to Table B.4 for analytical DDT results.

The CCME SQGs stipulate guideline values for total DDT for agricultural, residential/parkland, commercial, and industrial settings.

No DDT compounds were detected in the samples analysed.

3.6 GRAIN SIZE DISTRIBUTION

Refer to Table B.5 for grain size results.

Sediment composition is described in Table 6 and Figures 3 and 4 below. Table 6 breaks down the sediment composition at each sampling location. Figure 3 illustrates the overall sediment composition from the samples collected, expressed as percentages to show the average grain size distributions. Figure 4 shows the proportions of gravel, sand, and mud (silt and clay) for individual sediment samples.

Table 6 - Dominant Sediment Types at Each Sample Location

Sample ID	Soil Distribution			
Sample ID	1° Substrate	2° Substrate	3° Substrate	4° Substrate
VC-SED1	Sand	Clay	Silt	Gravel
VC-SED2	Sand	Clay	Gravel	Silt
VC-SED3	Sand	Silt	Clay	Gravel
VC-SED4	Sand	Silt	Clay	Gravel
VC-SED5	Sand	Clay	Silt	Gravel

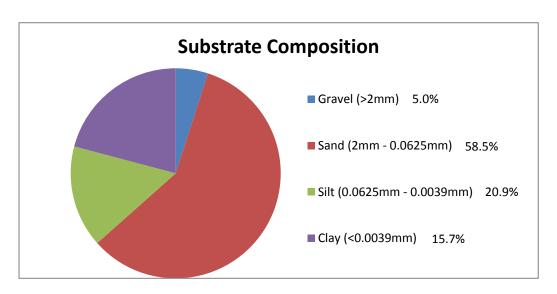


Figure 3 - Average Sediment Composition at Val-Comeau DFO-SCH

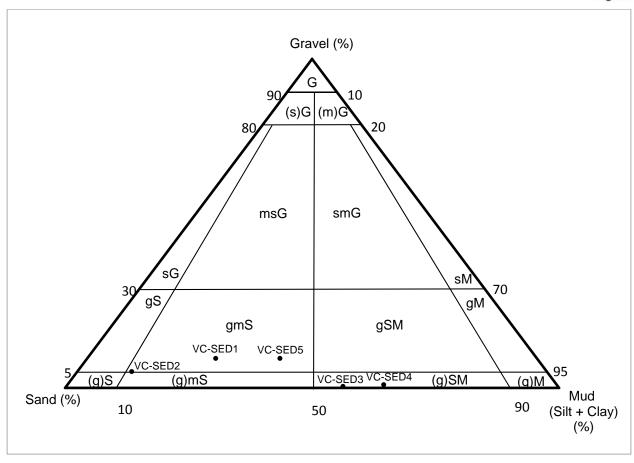


Figure 4 - Substrate Composition of Individual Sediment Samples at Val-Comeau DFO-SCH

3.7 CARBON CONTENT

Refer to Table B.5 for analytical carbon content results.

The fraction of organic carbon (FOC) is the fraction of the soil made up of organic carbon matter. The higher the FOC, the greater the ability of the sediment to adsorb organic contaminants. In this case, FOC has a direct numerical impact on the petroleum hydrocarbons SESLs for the Protection of Freshwater and Marine Aquatic Life. Standard SESLs are based on an FOC = 0.01. In the event that exceedances of the standard SESLs are observed, the measured FOC value would then be used to adjust the SESLs. No exceedances of the standard SESLs were observed for the sediment samples collected at the Val-Comeau site.

The FOC ranged from 0.0111 in the sample collected at VC-SED2, to 0.052 in the sample collected at VC-SED4.

3.8 SAR, CONDUCTIVITY AND PH

The CCME SQGs stipulate guideline values for soil SAR, conductivity and pH for various land uses. The analytical results for these parameters as they pertain to the sediment samples are presented in Table B.5.

The samples collected at VC-SED1, VC-SED2, VC-SED3, VC-SED4, and VC-SED5 showed exceedances of the CCME SQG for the Protection of Human and Environmental Health for agricultural and residential/parkland settings for SAR of 5 units, at 18.8 units, 14.8 units, 22.3 units, 36.4 units, and 26.6 units, respectively. The samples also exceeded the CCME SQG for the Protection of Human and Environmental Health for commercial and industrial settings for SAR of 12 units.

The samples collected at VC-SED1, VC-SED2, VC-SED3, VC-SED4, and VC-SED5 showed exceedances of the CCME SQG for the Protection of Human and Environmental Health for agricultural and residential/parkland settings for conductivity of 2,000 μ S/cm, at 5,130 μ S/cm, 2,810 μ S/cm, 9,380 μ S/cm, 18,500 μ S/cm, and 9,640 μ S/cm, respectively. The samples collected at VC-SED1, VC-SED3, VC-SED4, and VC-SED5 also exceeded the CCME SQG for the Protection of Human and Environmental Health for commercial and industrial settings for conductivity of 4,000 μ S/cm.

The samples collected at VC-SED1, VC-SED2, VC-SED4, and VC-SED5 were observed to have pH values outside of the CCME SQG for the Protection of Human and Environmental Health range for pH of 6-8 units for all land-use settings, at 8.20 units, 8.84 units, 8.10 units, and 8.56 units, respectively.

No other exceedances, or values outside the range, of the SQGs for the Protection of Human and Environmental Health for SAR, conductivity or pH were observed.

4 LEACHATE ANALYTICAL RESULTS

Refer to Tables B.6 and B.7 in Appendix B for leachate analytical results.

The CCME stipulate WQGs for individual PAHs and metals for the Protection of Aquatic Life (Freshwater and Marine) and the Protection of Agriculture (Irrigation and Livestock). Health Canada has developed a GCDWQ for benzo(a)pyrene, various metals and pH. These guidelines have been used to compare to leachate analytical results (using both TCLP and SPLP) for the sample collected at VC-SED4.

CCME WQG for the Protection of Aquatic Life - Freshwater

Using both the TCLP and SPLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aguatic Life for benzo(a)anthracene of 0.018 µg/L at 0.02 µg/L.

Using both the TCLP and SPLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life for fluoranthene of 0.04 μ g/L at 0.75 μ g/L and 0.83 μ g/L, respectively.

Using both the TCLP and SPLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life for pyrene of $0.025 \,\mu\text{g/L}$ at $0.38 \,\mu\text{g/L}$ and $0.42 \,\mu\text{g/L}$, respectively.

Using both the TCLP and SPLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life (long-term) for arsenic of 0.005 mg/L at 0.027 mg/L and 0.009 mg/L, respectively.

Using the TCLP, the sampled showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life for boron (long-term) of 1.5 mg/L at 2.00 mg/L.

Using both the TCLP and SPLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life for iron (long-term) of 0.3 mg/L at 14.5 mg/L and 0.4 mg/L, respectively.

Using both the TCLP and SPLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life for selenium (long-term) of 0.001 mg/L at 0.015 mg/L and 0.012 mg/L, respectively.

Using the TCLP, the sample showed an exceedance of the CCME WQG for the Protection of Freshwater Aquatic Life for silver (long-term) of 0.00025 mg/L at 0.0005 mg/L.

CCME WQG for the Protection of Aquatic Life - Marine

Using the TCLP, the sample showed an exceedance of the CCME WQG for the Protection of Marine Aquatic Life (long-term) for arsenic of 0.0125 mg/L at 0.027 mg/L.

CCME WQG for the Protection of Agriculture - Livestock

Using the TCLP, the sample showed an exceedance of the CCME WQG for the Protection of Agriculture (Livestock) for arsenic of 0.025 mg/L at 0.027 mg/L.

CCME WQG for the Protection of Agriculture - Irrigation

Using the TCLP, the sample showed an exceedance of the CCME WQG for the Protection of Agriculture (Irrigation) for iron of 5 mg/L at 14.5 mg/L.

Using the TCLP, the sample showed an exceedance of the CCME WQG for the Protection of Agriculture (Irrigation) for manganese of 0.2 mg/L at 0.54 mg/L.

<u>Health Canada GCDWQ – Maximum Acceptable Concentration</u>

Using the TCLP, the sample showed an exceedance of the Health Canada GCDWQ Maximum Acceptable Concentration (MAC) for arsenic of 0.010 mg/L at 0.027 mg/L.

Health Canada GCDWQ - Aesthetic Objective

Using the SPLP, the sample showed an exceedance of the Health Canada GCDWQ Aesthetic Objective (AO) for iron of 0.3 mg/L at 0.4 mg/L.

Using the TCLP, the sample showed an exceedance of the Health Canada GCDWQ AO for manganese of 0.05 mg/L at 0.54 mg/L.

Using the SPLP, the sample showed an exceedance of the Health Canada GCDWQ AO for sodium of 200 mg/L at 414 mg/L.

No other exceedances, or values outside the range, of the WQGs for the Protection of Aquatic Life and Agriculture, and the Health Canada GCDWQ for PAHs, metals or pH were observed.

5 QUALITY ASSURANCE/QUALITY CONTROL

Englobe conducted the environmental sampling following standard operating procedures, including job procedures and safe work practices. The sampling was conducted in accordance with all pertinent acts, regulations, codes, guidelines and standard practices. All soil samples were logged by Englobe personnel and submitted under chain of custody to AGAT.

Precision was evaluated by reviewing the laboratory relative percent difference (RPD) and comparing RPD to the acceptable amount of variation. RPD is defined as:

$$RPD = \frac{\text{(sample result - duplicate result)}}{\text{(sample result + duplicate result)}} x100$$

It should be noted that RPDs cannot be calculated in instances where the original sample, the duplicate sample, or both were found to contain no detectable concentrations or if results are within 5x the reportable detection limits. Results that have been calculated are also not included in the comparison.

RPDs for the laboratory duplicate samples are reported in the Laboratory Certificate of Analysis in Appendix C. They were generally found to be within the acceptable ranges. Based on field procedures, laboratory methods, sampling program design and field observations, the analytical results are concluded to be representative of the site conditions in general.

6 UNDERWATER BENTHIC HABITAT SURVEY

The results of the transect surveys are present in Appendix D (Tables D.1 to D.8), including the following information for each 5 m increment of transect line:

- Visual determination of substrate type (in order of dominance)
- Macrofaunal species identification and abundance
- Macrofloral species identification and percent coverage.

A summary of the information provided in Tables D.1 to D.8 (Appendix D) is described in the following paragraphs. Photographs of typical habitat types at the site have been included in Appendix E. The numbered tag in a photo refers to the distance along the transect from the start point (0 m).

For the purpose of the video survey review and macrofaunal species identification and enumeration, four categories were developed to characterize the observed abundance levels.

The categories are as follows:

A = Abundant

Numerous (not quantifiable) observations made throughout the entire 5 m segment.

C = Common

Numerous (not quantifiable) observations made intermittently along the 5 m segment.

O = Occasional

Quantifiable observations made intermittently along the 5 m segment.

U = Uncommon

Quantifiable observations made infrequently along the 5 m segment.

Transect T1

The total length of transect T1 is 125 m. It is oriented perpendicular to the shoreline and ends at the shoreline.

The substrate composition from 0-100 m along transect T1 was 100% sandy-silt. From 100-125 m, the substrate was mud (silt and clay). Periwinkles (*Littorina* sp.) were observed to be abundant from 0-75 m and common from 85-90 m and 95-100 m. Barnacles (*Balanus* sp.) were abundant from 20-30 m. Blue mussels (*Mytilus edulis*) were abundant from 20-35 m. No macrofaunal life was observed along the remaining transect segments. The coverage of eelgrass (*Zostera marina*) was estimated to be 100% from 0-10 m and 80-100% or 100% from 35-70 m. Eelgrass coverage is reduced from 70-75 m after which the sea floor becomes barren with dead eelgrass from 75-100 m. It is of note that visibility was reduced from 100-125 m and therefore the benthic habitat could not be assessed there.

Transect T2

The total length of transect T2 is 45 m. It is oriented parallel to the shoreline and ends near the wharf.

Along the entire length of transect T2, it was observed that the substrate composition was 100% sandysilt, periwinkles were abundant and the cover of eelgrass was 100%.

Transect T3

The total length of transect T3 is 75 m. It is oriented parallel to the shoreline and ends away from the wharf.

From 0-50 m along transect T3, the substrate was not visible due to heavy shell debris cover comprised of blue mussel, horse mussel (*Modiolus modiolus*) and moon snail (*Lunatia heros*) shells. It is quite likely that the substrate is 100% sandy-silt. Sandy-silt (100%) was observed from 50-75 m. From 0-50 m, barnacles, blue mussels, horse mussels, and periwinkles were observed to be abundant while moon snails were occasionally observed. Uncommon in abundance from 35-40 m were brown shrimp (*Crangon* sp.) and rock crabs (*Cancer irroratus*). From 50-70 m, periwinkles were abundant and the only macrofauna present. A substrate of heavy shell debris coincided with tuffs (<10%) of low relief leafy algae, possibly Irish moss (*Chondrus crispis*), and eelgrass (<1 to <5%). From 40-50 m, eelgrass and low

relief algae cover increased to <50% and <20%, respectively, after which eelgrass cover increased to 100% to from 50-70 m. From 70-75 m eelgrass cover was 20 to 100%.

Transect T4

The total length of transect T4 is 100 m. It is oriented perpendicular to the shoreline and ends towards the shoreline.

The substrate composition from 0-20 m along transect T4 was 100% sandy-silt. Gravel (5%) was evident from 20-45 m and 55-65 m, between which the content was higher (100%). Sandy-silt (100%) with moderate to minor shell debris was then observed to 95 m after which the substrate was just sandy-silt (100%) to 100 m. Periwinkles were observed to be abundant from 0-95 m. Barnacles and blue mussels were observed to be common from 20-30 m, abundant from 30-65 m and occasional from 65-95 m. Moon snails were common from 30-45 m and rock crab was uncommon from 30-35 m. Eelgrass coverage was 100% from 0-10 m and 80% from 10-20 m after which it was present in small patches or (dead) leaf debris.

Transect T5

The total length of transect T5 is 50 m. It is oriented perpendicular to the shoreline and ends away from the shoreline.

The substrate composition from 0-15 m along transect T5 was 100% sandy-silt covered by heavy shell debris which consists of blue mussel and oyster (*Crassostrea virginica*) shells. Shell debris cover decreased from 15-20 m after which the substrate became just sandy-silt (100%) to the end of the transect. In conjunction with heavy shell debris were abundant blue mussels and periwinkles, uncommon barnacles and rock crab and no macroflora. From 15-20 m, moon snails were uncommon. Periwinkles were abundant to 50 m. Eelgrass was first present at 15 m (<1%) with leaf debris but increased in cover (90-100%) from 20-25 m.

Transect T6

The total length of transect T6 is 100 m. It is oriented perpendicular to the shoreline and ends away from the shoreline.

The substrate composition from 0-100 m was 95-100% sandy-silt. Gravel was incorporated (5%) from 25-50 m. Shell debris composition varied. Periwinkles were generally abundant along the length of the transect. One rock crab was observed at four separate locations from 15-90 m. Moon snails were uncommon from 50-70 m. Eelgrass was present in patches (<5%) from 25-40 m and increased to 90% from 65-100 m.

Transect T7

The total length of transect T7 is 150 m. It is oriented parallel to the shoreline and ends away from the wharf.

The substrate composition from 0-50 m was sandy-silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel, horse mussel and moon snail shells. Shell debris decreased from 55-115 m after which there was just sandy-silt (100%). From 0-15 m, barnacles, blue mussels and horse mussels were observed to be abundant and moon snails were occasionally observed. Periwinkles were generally abundant along the entire length of the transect. One rock crab was observed at 15 m, 60 m and 130 m. The cover of both low relief algae, possibly Irish moss, and eelgrass was <5% within most transect segments from 0-65 m. The cover of eelgrass then increased, ranging from 50-100% from 110-150 m.

Transect T8

The total length of transect T8 is 75 m. It is oriented parallel to the shoreline and ends towards the wharf.

The substrate composition along the entire length of transect T1 was 100% sandy-silt with some shell debris from 55-75 m. Rock crabs were uncommon within most segments from 30-75 m. Brown shrimp was occasionally present from 5-10 m. Eelgrass cover was 95-100% from 0-15 m after which is was 0-<1% until the end of the transect.

The Val-Comeau survey area shows a variety of complex substrates running from flat sandy- silt areas with little vegetation to dense areas of eelgrass. Further, there are very dense areas (beds) of dead mollusc shell primarily composed of the blue mussel, horse mussel, moon snail, and periwinkles. Where these beds occur the common barnacle is usually present, encrusting on dead and live shells. Periwinkles are commonly associated with the eelgrass. The Val-Comeau site does not support areas of encrusting, filamentous or leafy macrophytes, the dominant flora is eelgrass. Further, there were no rare or endangered species identified during the survey. Other than various mollusc species that may be associated with shell debris and the common periwinkle on eelgrass, the only invertebrates identified were rock crabs and one benthic shrimp.

The three main substrate types are sandy-silt, mollusc shell covered sandy silt and sandy bottom with eel grass beds which are common throughout the southern Gulf of St. Lawrence. The shell bed substrate is excellent substrate for mussel species and snails as observed. The eel grass areas are highly productive areas of primary production and are an important contributor to the base of the coastal food web. The eelgrass also provides three dimensional habitats for other filamentous algae, bacteria and snails plus cover for feeding juveniles of many marine fish species. Not many fish were seen in the survey which is common as they move to cover or leave the area when the divers are in the shallow water and moving quickly as they were in this survey. Typically schools of small fish can be seen in these areas.

The area above (generally north of) the green dashed line on Figure A.2 in Appendix A is a combination of areas of excellent to good habitat for fish as they have bottoms covered with mollusc shells and live blue mussels, horse mussels, and periwinkles, eelgrass or eelgrass mixed with low relief leafy algae species both of which are high productive habitat areas. Below the line (generally south of) are areas covered with eelgrass that is storm-thrown or barren sandy silt areas that are of low productivity and recover quickly from disturbance.

7 CONCLUSIONS

The soil analytical results of the five (5) marine sediment samples collected at the Val-Comeau DFO-SCH DFRP# 23550 site, indicate the following guideline exceedances:

- ► CCME IACR for the Protection of Human Health (VC-SED3, VC-SED4 and VC-SED5);
- ► CCME SQG for the Protection of Environmental Health (Freshwater Life) for all land-use settings for phenanthrene (VC-SED4 and VC-SED5);
- CCME SQG for the Protection of Human and Environmental Health for an agricultural setting for boron (VC-SED1, VC-SED2, VC-SED3, VC-SED4, and VC-SED5);
- CCME SQG for the Protection of Human and Environmental Health for all land-use settings for SAR (VC-SED1, VC-SED2, VC-SED3, VC-SED4, and VC-SED5);
- CCME SQG for the Protection of Human and Environmental Health for agricultural and residential/parkland settings for conductivity (VC-SED1, VC-SED2, VC-SED3, VC-SED4, and VC-SED5);
- ► CCME SQG for the Protection of Human and Environmental Health for commercial and industrial settings for conductivity (VC-SED1, VC-SED3, VC-SED4, and VC-SED5);
- CCME SQG for the Protection of Human and Environmental Health for pH for all land-use settings (VC-SED1, VC-SED2, VC-SED4 and VC-SED5);

The leachate analytical results for the one (1) marine sediment sample (VC-SED4), analysed using the TCLP, indicate the following guideline exceedances:

- CCME WQG for the Protection of Freshwater Aquatic Life for benzo(a)anthracene, fluoranthene and pyrene;
- ▶ CCME WQG for the Protection of Freshwater Aquatic Life for arsenic, iron, selenium, and silver;
- ► CCME WQG for the Protection of Marine Aquatic Life for arsenic;
- CCME WQG for the Protection of Agriculture (Livestock) for arsenic;
- ► CCME WQG for the Protection of Agriculture (Irrigation) for iron and manganese;
- ► Health Canada GCDWQ MAC for arsenic; and
- ▶ Health Canada GCDWQ AO for manganese.

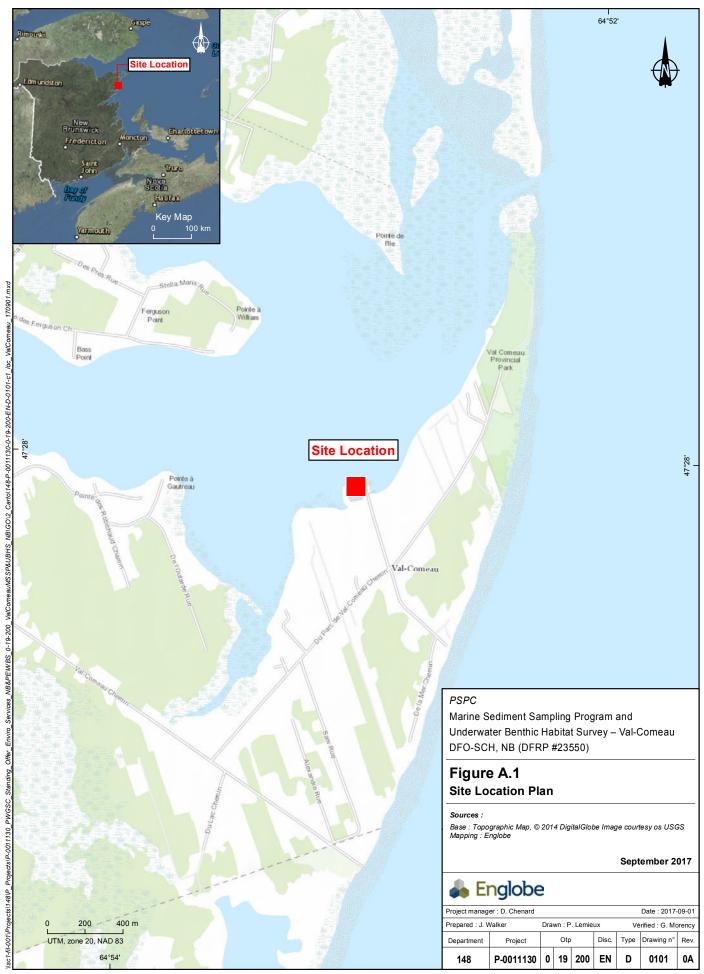
The leachate analytical results for the one (1) marine sediment sample (VC-SED4), analysed using the SPLP, indicate the following guideline exceedances:

- CCME WQG for the Protection of Freshwater Aquatic Life for benzo(a)anthracene, fluoranthene and pyrene;
- ▶ CCME WQG for the Protection of Freshwater Aquatic Life for arsenic, iron and selenium; and

▶ Health Canada GCDWQ AO for iron and sodium.

The Val-Comeau survey area shows a variety of complex substrates running from flat sandy- silt areas with little vegetation to dense areas of eelgrass. Further, there are very dense areas (beds) of dead mollusc shell primarily composed of the blue mussel, horse mussel, moon snail, and periwinkles. Where these beds occur the common barnacle is usually present, encrusting on dead and live shells. Periwinkles are commonly associated with the eelgrass. A few rock crabs (*Cancer irroratus*) and one benthic shrimp (*Crangon* sp.) were identified. There were no rare or endangered species identified during the survey.

Those areas furthest from the shoreline that are covered with mollusc shells, live molluscs, periwinkles, eelgrass or eelgrass mixed with low relief leafy algae species are excellent to good habitat for fish. Eel grass beds are highly productive areas of primary production and are an important contributor to the base of the coastal food web. Closer to the shoreline, the study area is comprised of eelgrass that is storm-thrown or barren sandy silt areas which are of lower productivity and recover quickly from disturbance.


8 REPORT USE AND CONDITIONS

This report was prepared for the exclusive use of PSPC and DFO and is based on data and information obtained during a site visit by Englobe on the subject property; and is based solely upon the condition of the property on the date of such inspection, supplemented by information obtained and described herein.

The evaluation and conclusions contained in this report have been prepared in light of the expertise and experience of Englobe. Environmental conditions are dynamic in nature and changing circumstances in the environment and in the use of the property can alter radically the conclusions and information contained herein.

APPENDIX A - Figures, Subject Area and Sediment Sample Photos and Field Data Collection Form

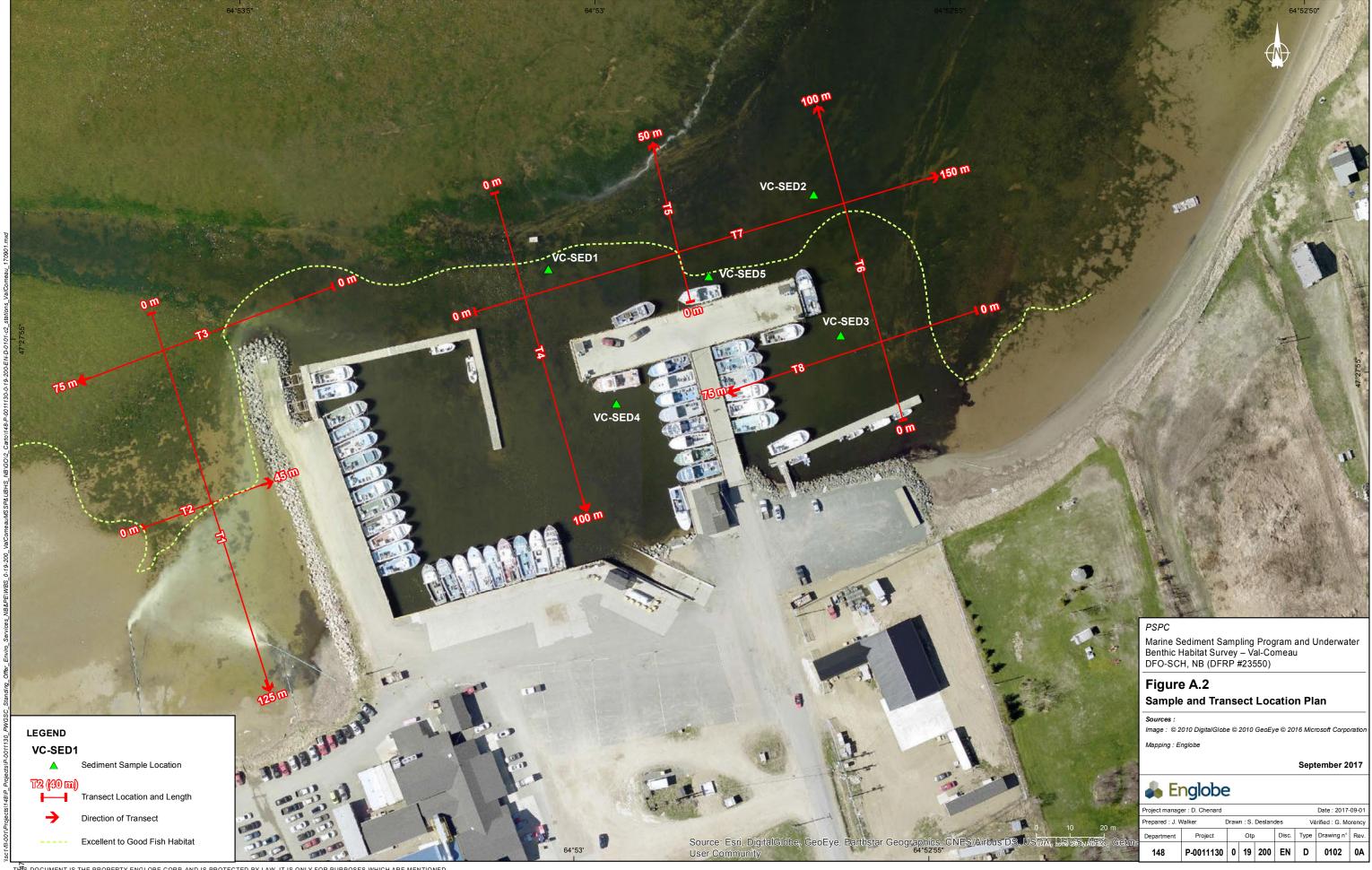


Photo 1: View (facing west) of the location of transect T1 (July 17, 2017).

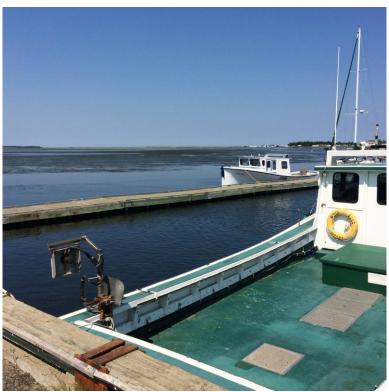


Photo 2: View (facing north-northeast) of the subject area (July 17, 2017).

Photo 3: View (facing west) of the subject area (July 17, 2017).



Photo 4: View (facing northeast) of the subject area (July 17, 2017).

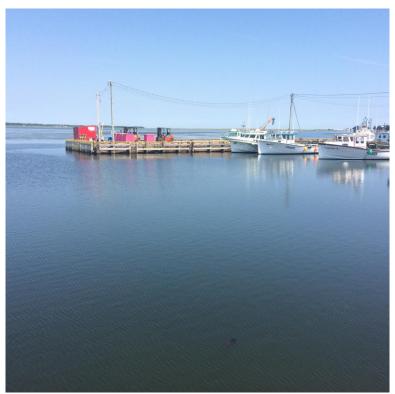


Photo 5: View (facing north) of the subject area, nearest transect T4 (July 17, 2017).

Photo 6: View (facing south-southeast) of the subject area, nearest transect T4 (July 17, 2017).

Photo 7: View of the surface sediments at sample location VC-SED1 (July 17, 2017).

Photo 8: View of the surface sediments at sample location VC-SED1 (July 17, 2017).

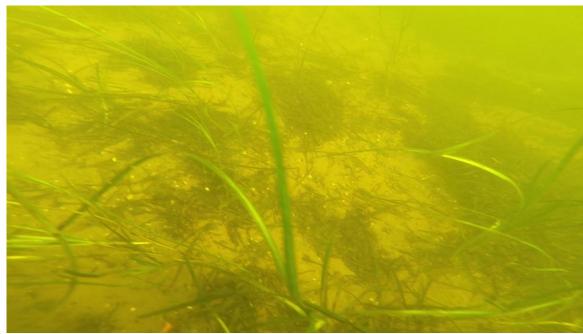


Photo 9: View of the surface sediments at sample location VC-SED2 (July 17, 2017).

Photo 10: View of the surface sediments at sample location VC-SED2 (July 17, 2017).

Photo 11: View of the surface sediments at sample location VC-SED3 (July 17, 2017).

Photo 12: View of the surface sediments at sample location VC-SED3 (July 17, 2017).

Photo 13: View of the surface sediments at sample location VC-SED4 (July 17, 2017).

Photo 14: View of the surface sediments at sample location VC-SED4 (July 17, 2017).

Photo 15: View of the surface sediments at sample location VC-SED4 (July 17, 2017).

Photo 16: View of the surface sediments at sample location VC-SED4 (July 17, 2017).

Photo 17: View of the surface sediments at sample location VC-SED5 (July 17, 2017).

Photo 18: View of the surface sediments at sample location VC-SED5 (July 17, 2017).

FIELD DATA COLLECTION FORM

Site: Val-Comeau DFC-SCH, NB Location: Val-Comeau, NB	Date: July 18, 2017
Sample Collector: Leeland Thomson	Time: 8am - 2pm
Recorder: N/A	Average Water Temperature (°C):
Collection Device: Grab	Type of Vessel: Zodiak

Site Description:			
Air Temperature: 29 x°C □°F Weather: Sunny, clear, hot Photographs Taken: x Yes □ No			
Site Conditions: Calm waters			
Observations: Several boats docked in harbour			

Sample Data:					
Sample ID	Sediment Description ¹	Odour ²	Grab Depth (cm)	Flora/Fauna	Latitude and Longitude ³
VC - SED 1	Silty sand with clay, trace cobble, wet, dark grey to black.	Strong organic	0-30	Eel grass, mussel and clam shell	See Diver Notes
VC - SED 2	Silty sand with ash, trace clay, brown, wet.	Mild organic	0-30	Eel grass, mussel and clam shell	See Diver Notes
VC - SED 3	Sandy silt with trace clay and cobble, brown, wet.	Mild organic	0-30	Eel grass, mussel and clam shell	See Diver Notes
VC - SED 4	Silty sand with clay, trace cobble, dark grey to black, wet.	Strong organic	0-30	Eel grass, mussel and clam shell	See Diver Notes
VC - SED 5	Silty sand with clay, trace cobble, dark grey to black, wet.	Strong organic	0-30	Eel grass, mussel and clam shell	See Diver Notes

Additional Comments:

Diver Crew could not retrieve sediment sample with core sampler, resorted to grab samples, see Diver notes for additional descriptions and depths Hot/Sunny day, calm waters

- 1. Material type, texture and consistency, colour, presence of biota
 2. Degree of odour (strong, slight, none)
 3. Decimal degrees (DDD.dddd)

APPENDIX B - Analytical Summary Tables

Table B.1. PAH Results for Sediment Samples - Val-Comeau DFO-SCH Site, NB

				CCME Sediment Q	tuality Guidelines ¹			CCME Soil Qu	ality Guidelines 2					Sample ID and Date		
		Units			,		Human Health		•	ental Health						
			Interim Sediment	Quality Guidelines	Probable Ef	ffects Levels	Potable Water	Soil	Contact	Soil and Food Ingestion	Freshwater Life	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5
Parameter	RDL	Units	Freshwater	Marine	Freshwater	Marine	Agricultural, Residential/ Parkland, Commercial and Industrial	Agricultural, Residential/ Parkland	Commercial and Industrial	Agricultural, Residential/ Parkland	Agricultural, Residential/ Parkland, Commercial and Industrial			18-Jul-17		
Polycyclic Aromatic Hydrocarbo	n (PAH) Resu	ılts							<u> </u>							
1-Methylnaphthalene	0.05	mg/kg										<0.05	<0.05	< 0.05	< 0.05	<0.05
2-Methylnaphthalene	0.01	mg/kg	0.0202	0.0202	0.201	0.201						<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	0.00671	mg/kg	0.00671	0.00671	0.0889	0.0889				21.5	0.28	< 0.00671	<0.00671	<0.00671	0.0097 3,4	0.0153 ^{3,4}
Acenaphthylene	0.004	mg/kg	0.00587	0.00587	0.128	0.128					320	<0.004	<0.004	0.024 3,4	0.030 3,4	0.014 3,4
Acridine	0.05	mg/kg										<0.05	<0.05	< 0.05	< 0.05	<0.05
Anthracene	0.03	mg/kg	0.0469	0.0469	0.245	0.245		2.5	32	61.5		<0.03	<0.03	0.06 3,4	0.10 3,4	0.17 3,4
Benzo(a)anthracene	0.01	mg/kg	0.0371	0.0748	0.385	0.693				6.2		<0.01	<0.01	0.24 3,4	0.52 3,4,6	0.31 3,4
Benzo(a)pyrene	0.01	mg/kg	0.0319	0.0888	0.782	0.763		20	72	0.6	8,800	<0.01	<0.01	0.13 3,4	0.35 3,4	0.18 3,4
Benzo(b)fluoranthene	0.05	mg/kg								6.2		<0.05	<0.05	0.24	0.37	0.19
Benzo(b+j)fluoranthene	0.1	mg/kg										<0.1	<0.1	0.3	0.6	0.3
Benzo(e)pyrene	0.05	mg/kg										<0.05	<0.05	0.17	0.29	0.15
Benzo(g,h,i)perylene	0.01	mg/kg										<0.01	<0.01	0.08	0.17	0.10
Benzo(k)fluroanthene	0.01	mg/kg								6.2		<0.01	<0.01	0.11	0.19	0.10
Chrysene	0.01	mg/kg	0.0571	0.108	0.862	0.846				6.2		<0.01	<0.01	0.30 3,4	0.52 ^{3,4}	0.41 3,4
Dibenz(a,h)anthracene	0.006	mg/kg	0.00622	0.00622	0.135	0.135						<0.006	<0.006	<0.006	<0.006	<0.006
Fluoranthene	0.05	mg/kg	0.111	0.113	2.355	1.494		50	180	15.4		<0.05	<0.05	1.19 ^{3,4}	1.96 3,4,7	1.70 3,4,7
Fluorene	0.01	mg/kg	0.0212	0.0212	0.144	0.144				15.4	0.25	<0.01	<0.01	<0.01	0.02	0.01
Indeno(1,2,3-cd)pyrene	0.01	mg/kg										<0.01	<0.01	0.1	0.18	0.11
Naphthalene	0.01	mg/kg	0.0346	0.0346	0.391	0.391				8.8	0.013	<0.01	<0.01	<0.01	<0.01	<0.01
Perylene	0.05	mg/kg										<0.05	< 0.05	0.05	0.13	0.06
Phenanthrene	0.03	mg/kg	0.0419	0.0867	0.515	0.544				43	0.046	<0.03	< 0.03	< 0.03	0.07 3,8	0.12 3,4,8
Pyrene	0.05	mg/kg	0.053	0.153	0.875	1.398				7.7		<0.05	< 0.05	0.74 3,4	1.21 3,4,6	1.00 3,4,6
Quinoline	0.05	mg/kg										<0.05	<0.05	< 0.05	< 0.05	< 0.05
Total PAH	0.5	mg/kg										<0.5	<0.5	2.5	4.5	3.4
Index of Additive Cancer Risk (IACR)	Calculation	None					1					0.39	0.39	3.84 ⁵	7.81 ⁵	4.19 ⁵
Benzo(a)pyrene TPE (10 ⁻⁵)	Calculation	mg/kg					5.3					0.01	0.01	0.21	0.51	0.27
Creosote or Coal Tar source suspected / known?	Resemb	olance										NR	NR	NR	NR	NR
Uncertainty Factor (UF) Applied	Yes /	Yes / No							No	No	No	No	No			
Benzo(a)pyrene TPE (10-5) with UF	Calculation	mg/kg					5.3					NA	NA	NA	NA	NA

Notes:

value ^x - guideline exceedance

Where a calculation requires the use of a value which was not detected, a value equal to half the laboratory reportable detection limit (RDL) is used in the equation.

NR = No Resemblance

NA = Not Applicable

¹ Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life (2017 online).

² CCME Soil Quality Guidelines for the Protection of Human and Environmental Health (2017 online).

³ Value exceeds the CCME Interim Sediment Quality Guideline (ISQG) for the Protection of Freshwater Aquatic Life.

⁴ Value exceeds the CCME ISQG for the Protection of Marine Aquatic Life.

⁵ Value exceeds the CCME IACR for the Protection of Human Health.

⁶ Value exceeds the CCME Probable Effects Level (PEL) for the Protection of Freshwater Aquatic Life.

 $^{^{\}rm 7}$ Value exceeds the CCME PEL for the Protection of Marine Aquatic Life.

⁸ Value exceeds the CCME Soil Quality Guideline for the Protection of Environmental Health; Freshwater Life, for all land-use settings.

Table B.2. Metals Results for Sediment Samples - Val-Comeau DFO-SCH Site, NB

			C	CCME Sediment (Quality Guidelines	1		CCME Soil Qua	ality Guidelines ²				Sample ID and Date					
Parameter	RDL	Units	Interim Sedir Guide		Probable Ef	fects Levels	- Agricultural	Residential/	Commercial	Industrial	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5			
			Freshwater	Marine	Freshwater	Marine	7.9.1541.41	Parkland		aastiiai	18-Jul-17							
Aluminum	10										7,930	5,630	7,820	14,400	7,510			
Antimony	1						20	20	40	40	<1	<1	<1	<1	<1			
Arsenic	1		5.9	7.24	17.0	41.6	12	12	12	12	3	3	5	11 ^{4,5}	6 ⁴			
Barium	5						750	500	2,000	2,000	32	11	24	69	34			
Beryllium	2						4	4	8	8	<2	<2	<2	<2	<2			
Boron	2						2				17 ³	5 ³	9 ³	99 ³	36 ³			
Cadmium	0.3		0.6	0.7	3.5	4.2	1.4	10	22	22	<0.3	<0.3	0.3	0.5	<0.3			
Chromium +6	0.4						0.4	0.4	1.4	1.4	<0.4	<0.4	<0.4	<0.4	<0.4			
Chromium (Total)	2		37.3	52.3	90	160	64	64	87	87	13	9	18	35	20			
Cobalt	1						40	50	300	300	8	5	9	13	9			
Copper	2		35.7	18.7	197	108	63	63	91	91	7	3	13	29 ⁵	14			
Iron	50										16,400	12,000	18,700	31,700	20,700			
Lead	0.5	malka	35	30.2	91.3	112	70	140	260	600	3.5	2.4	15.7	15.5	7.8			
Lithium	5	mg/kg									24	19	23	31	23			
Manganese	2										227	152	180	360	263			
Mercury	0.05		0.17	0.13	0.486	0.7	6.6	6.6	24	50	< 0.05	< 0.05	< 0.05	<0.05	<0.05			
Molybdenum	0.05						5	10	40	40	<2	<2	<2	4	3			
Nickel	2						45	45	89	89	17	12	21	34	23			
Selenium	1						1	1	2.9	2.9	<1	<1	<1	<1	<1			
Silver	0.5						20	20	40	40	<0.5	<0.5	<0.5	<0.5	<0.5			
Strontium	5										65	18	14	50	86			
Thallium	0.1						1	1	1	1	<0.1	<0.1	0.1	0.2	0.1			
Tin	2						5	50	300	300	3	3	2	5	4			
Uranium	0.1						23	23	33	300	0.4	0.3	0.8	1.4	1.0			
Vanadium	2						130	130	130	130	21	15	25	44	27			
Zinc	5		123	124	315	271	200	200	360	360	36	26	54	86	52			

Notes:

value x - guideline exceedance

¹ Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life (2017 online).

 $^{^{2}}$ CCME Soil Quality Guidelines for the Protection of Human and Environmental Health (2017 online).

³ Value exceeds the CCME Soil Quality Guideline (SQG) for the Protection of Human and Environmental Health for an agricultural setting.

⁴ Value exceeds the CCME Interim Sediment Quality Guideline (ISQG) for the Protection of Freshwater Aquatic Life.

 $^{^{5}\}mbox{Value}$ exceeds the CCME ISQG for the Protection of Marine Aquatic Life.

Table B.3. BTEX/TPH Results for Sediment Samples - Val-Comeau DFO-SCH Site, NB

					BTEX Cor	ncentrations			Pet	roleum Hydrocarbon	Fraction Concentrat	ions			Reached Baseline	
Sample ID		Date	Units	Benzene	Toluene	Ethylbenzene	Xylenes	F1 (C6-C10 Less BTEX)	F2 (>C10-C16)	>C16- <c21< th=""><th>>C21-<c32< th=""><th>F3 (>C16-C34)</th><th>F4 (>C34-C50)</th><th>Modified TPH (Less BTEX)</th><th>at C32 (Yes / No)</th><th>Resemblance</th></c32<></th></c21<>	>C21- <c32< th=""><th>F3 (>C16-C34)</th><th>F4 (>C34-C50)</th><th>Modified TPH (Less BTEX)</th><th>at C32 (Yes / No)</th><th>Resemblance</th></c32<>	F3 (>C16-C34)	F4 (>C34-C50)	Modified TPH (Less BTEX)	at C32 (Yes / No)	Resemblance
/C-SED1				<0.005	<0.025	<0.01	<0.05	<3	<15	<15	<15			<20	Yes	NR
/C-SED2				<0.005	<0.025	<0.01	<0.05	<3	<15	<15	<15			<20	Yes	NR
VC-SED3		18-Jul-17		< 0.005	<0.025	<0.01	<0.05	<3	<15	<15	<15			<20	Yes	NR
VC-SED4			mg/kg	<0.005	<0.025	<0.01	<0.05	<3	<15	19	25			<20	Yes	NR
VC-SED5				<0.005	<0.025	<0.01	< 0.05	<3	<15	<15	<15			44	Yes	UC
RDL				0.005	0.025	0.01	0.05	3	15	15	15			20		
							A	tlantic RBCA Tier I R	BSLs for Soil 1							
		Coarse-gr	ained	0.042	0.35	0.043	0.73							74 Gas 270 Diesel 1,100 Lube Oil		
	Potable	Fine-gra	ined	0.094	0.74	0.089	1.5							1,900 Gas 4,700 Diesel 10,000 Lube Oil		
Agricultural / Residential		Coarse-gr	ained	0.099	77	30	8.8							74 Gas 270 Diesel 1,100 Lube Oil		
	Non-potable Fir		ined	2.3	10,000	9,300	210							2,100 Gas 2,100 Gas 8,600 Diesel 10,000 Lube Oil		
	Potable	Coarse-gr	ained	0.042	0.35	0.043	0.73							870 Gas 1,800 Diesel 10,000 Lube Oil		
Commercial / Industrial	Polable	Fine-gra	ined	0.094	0.74	0.089	1.5							1,900 Gas 4,700 Diesel 10,000 Lube Oil		
	mercial / Industrial Non-potable	Coarse-gr	ained	2.5	10,000	10,000	110							870 Gas 4,000 Diesel 10,000 Lube Oil		
	·	Fine-gra	ined	33	10,000	10,000	10,000							10,000 Gas 10,000 Diesel 10,000 Lube Oil		
							Atl	antic RBCA Tier I ES	Ls and SESLs ²							
Soil Ecological Screening Leve	els for the Protection					1			T	ı	T	T	1			
Agricultural/Residential	Land Use	Coarse-gr		31	75	55	95	210	150			300	2,800			
		Fine-gra		60	110	120	65	210	150			1,300	5,600			
Commercial/ Industrial	Land Use	Coarse-gr		180	250	300	350	320	260			1,700	3,300			
Soil Ecological Screening Leve	als for the Protection	Fine-gra		310	330	430	230	320	260			2,500	6,600	L		
į.	Agricultural Land Use)		18	980	640	2600	11,000	9,800			16,000	8,400			
Sediment Ecological Screening Sediment Typ	e	Typic		ne Aquatic Life 1.2	1.4	1.2	1.3	15	2	25	43			500		
(based on FOC =	0.01)	Othe	r	5.4	6.1	5	5.5	67	1	10	190			500		
								CCME Soil Quality	Guidelines ³		•					
		Coarse	Soil	0.03	0.37	0.082	11									
Agricultural, Residential/ Parkland, Commercial/	Surface	Fine S	oil	0.0068	0.08	0.018	2.4									
Industrial Land Use	Subsoil	Coarse		0.03	0.37	0.082	11									
		Fine S	OII	0.0068	0.08	0.018	2.4	011/0 4 7/11	0.114							
		Coarse	Soil	0.03	0.37	0.082	11	CWS for PHC in	n Soil ⁴			300	2,800			
A arioudtural/	Surface	Fine S		0.0068	0.08	0.082	2.4	210 (170 ⁵)	150			1,300	5,600			
Agricultural/, Residential/Parkland Land Use		1 1110 3														
	Surface	Coarse		0.03	0.37	0.082	11	320 (240 ⁵)	260			1,700	3,300			

value X - guideline exceedance

NR = No Resemblance

UC = Unidentified Compounds

¹ Atlantic RBCA Version 3 Risk-Based Screening Levels (RBSLs) (January 2015).

² Atlantic RBCA Version 3 Ecological Screening Levels (ESLs) and Sediment Ecological Screening Levels (SESLs) (January 2015).

³ CCME Soil Quality Guidelines for the Protection of Human and Environmental Health (2017 online).

⁴ Canada Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil (January 2008).

⁵ Where applicable, for the protection of potable groundwater.

Table B.4. DDT and PCB Analytical Results for Sediment Samples - Val-Comeau DFO-SCH Site, NB

				CCME Sediment C	uality Guidelines ¹		CCME	Soil Quality Guid	elines ²		Sa	ample ID and Dat	te			
Parameter	RDL	Units		ment Quality elines	Probable Eff	fects Levels	Agricultural	Residential/ Parkland	Commercial and Industrial	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5		
			Freshwater	Marine	Freshwater	Marine		Turkland	muustiui	18-Jul-17						
Dichloro-Diphenyl-Trichloroethar	ne (DDT)															
Dieldrin	0.005		0.00285	0.00071	0.00667	0.0043				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
o,p-DDD	0.001									< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
p,p-DDD	0.001									< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
o,p-DDE	0.001									< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
p,p-DDE	0.001									< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
o,p-DDT	0.001	mg/kg								< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
p,p-DDT	0.001									< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
o,p-DDD + p,p-DDD	0.001		0.00354	0.00122	0.00851	0.00781				< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
o,p-DDE + p,p-DDE	0.001		0.00142	0.00207	0.00675	0.3740				< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
o,p-DDT + p,p-DDT	0.001		0.00199	0.00119	0.00477	0.00477				< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Total DDT	0.001						0.7	0.7	12	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		
Polychlorinated Biphenyls (PCBs	s)															
Total Polychlorinated Biphenyls	0.015		0.0341	0.0215	0.277	0.189	0.5	1.3	33	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Notes:					·		·		·							

value X - guideline exceedance

¹ Canadian Council of Ministers of the Environment (CCME) Sediment Quality Guidelines for the Protection of Aquatic Life (2017 online).

² CCME Soil Quality Guidelines for the Protection of Human and Environmental Health (2017 online).

Table B.5. Grain Size and Other Analytical Results for Sediment Samples - Val-Comeau DFO-SCH Site, NB

			CCME Soil Qua	ılity Guidelines 1			Sample ID and Date		
Parameter	RDL	Units	Agricultural, Residential /	Commercial and Industrial	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5
			Parkland				18-Jul-17		
Grain Size Results									
< PHI -4 (12.5 mm)	0.1				98.6	100	100	100	97.5
< PHI -3 (9.5 mm)	0.1				97.7	100	100	100	96.7
< PHI -2 (4.75 mm)	0.1				95.3	100	100	100	94.1
< PHI -1 (2 mm)	0.1				90.9	94.8	99.8	98.6	91.2
< PHI 0 (1 mm)	0.1				82.6	85.9	99.2	97.5	89.9
< PHI 0 (1/2 mm)	0.1				70.8	62.4	95.8	94.9	87.8
< PHI +1 (1/4 mm)	0.1				42.1	22.5	83.4	86.1	73.1
< PHI +2 (1/8 mm)	0.1				29.1	13.7	71.1	73.6	52.6
< PHI +3 (1/16 mm)	0.1	%			25.1	11	55.2	63.8	38.7
< PHI +4 (1/32 mm)	0.1	70			23.7	10.5	47.7	57.7	35.1
< PHI +6 (1/64 mm)	0.1				21	10.1	37.4	46.8	28.4
< PHI +7 (1/128 mm)	0.1				18.1	9.4	29.6	34.4	22.1
< PHI +8 (1/256 mm)	0.1				16.5	9	24.5	29.7	19.9
< PHI +9 (1/512 mm)	0.1				14.6	8.6	20.5	25.5	17.6
Gravel	1				9	5	<1	1	9
Sand	1				66	84	45	35	53
Silt	1				9	2	31	34	19
Clay	1				17	9	25	30	20
Other				<u> </u>					
Moisture	1.0	%			28	27	47	61	43
Fraction Organic Carbon	0.003	NA			0.013	0.011	0.040	0.052	0.028
Sodium Adsorption Ratio	NA	NA	5	12	18.8 ^{2,3}	14.8 ^{2,3}	22.3 ^{2,3}	36.4 ^{2,3}	26.6 ^{2,3}
Conductivity	1.0	uS/cm	2,000	4,000	5,130 ^{2,3}	2,810 ²	9,380 ^{2,3}	18,500 ^{2,3}	9,640 ^{2,3}
рН	NA	рН	6-8	6-8	8.20 ^{2,3}	8.84 ^{2,3}	7.25	8.10 ^{2,3}	8.56 ^{2,3}

Notes:

value ^x - guideline exceedance

NA = Not Applicable

¹ Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines for the Protection of Human and Environmental Health (2017 online).

² Value exceeds, or is outside of the range of, the CCME Soil Quality Guideline for the Protection of Human and Environmental Health, for agricultural and residential/parkland settings.

³ Value exceeds, or is outside of the range of, the CCME Soil Quality Guideline for the Protection of Human and Environmental Health, for commercial and industrial settings.

Table B.6. Leachable PAHs Analytical Results for Sediment Samples - Val-Comeau DFO-SCH Site, NB

					CCME Water Q	uality Guidelines ¹			Sample I	D and Date		
Parameter	RDL (TCLP)	RDL (SPLP)	Units	Aquati	c Life	Agric	culture	Health Canada GCDWQ ²	VC-SED4	VC-SED4		
	(ICLI)	(31 L1)		Freshwater	Marine	Irrigation	Livestock	GCDWQ	(TCLP)	(SPLP)		
Dalususiis Ausmatia Hudus cod	non (DAU) Deculto					Ů			18	18-Jul-17		
Polycyclic Aromatic Hydrocart			1				T	1	0.00	0.01		
1-Methylnaphthalene	0.08	0.01							<0.08	<0.01		
2-Methylnaphthalene	0.03	0.01							<0.03	<0.01		
Acenaphthene	0.01	0.04		5.8					0.04	< 0.04		
Acenaphthylene	0.02	0.04							<0.02	< 0.04		
Acridine	0.10			4.4					<0.10			
Anthracene	0.012	0.012		0.012					<0.012	< 0.012		
Benzo(a)anthracene	0.018	0.018		0.018					0.02 ³	0.023		
Benzo(a)pyrene	0.015	0.01		0.015				0.04 (MAC)	<0.015	<0.01		
Benzo(b)fluoranthene	0.05	0.05							< 0.05	< 0.05		
Benzo(b+j)fluoranthene	0.01	0.01							<0.01	<0.01		
Benzo(e)pyrene	0.06	0.06							<0.06	<0.06		
Benzo(g,h,i)perylene	0.03	0.02	μg/L						<0.03	<0.02		
Benzo(k)fluroanthene	0.03	0.04							< 0.03	< 0.04		
Chrysene	0.04	0.04							<0.04	< 0.04		
Dibenz(a,h)anthracene	0.01	0.01							<0.01	<0.01		
Fluoranthene	0.03	0.03		0.04					0.75 ³	0.83 3		
Fluorene	0.05	0.01		3					<0.05	<0.01		
Indeno(1,2,3-cd)pyrene	0.08	0.04							<0.08	< 0.04		
Naphthalene	0.02	0.01		1.1					<0.02	<0.01		
Perylene	0.06	0.05							<0.06	< 0.05		
Phenanthrene	0.04	0.02		0.4					<0.04	<0.02		
Pyrene	0.01	0.01		0.025					0.38 ³	0.42 3		

Notes:

TCLP = Toxicity Characteristic Leaching Procedure

SPLP = Synthetic Precipitation Leaching Procedure

MAC = Maximum Acceptable Concentration

¹ CCME Water Quality Guidelines (WQGs) for the Protection of Freshwater and Marine Aquatic Life and Agriculture (2017 online).

² Health Canada Guidelines for Canadian Drinking Water Quality (GCDWG) (February 2017).

³ Value exceeds the CCME WQG for the Protection of Freshwater Aquatic Life.

$Table\ B.7.\ Leachable\ Metals,\ pH\ and\ Hardness\ Analytical\ Results\ for\ Sediment\ Samples\ -\ Val-Comeau\ DFO-SCH\ Site,\ NB$

						CCME Water Qu	ality Guidelines ¹			Healt	h Canada	Sample IE	and Date
Parameter	RDL (TCLP)	RDL (SPLP)	Units		Aquat	ic Life		Agric	culture	GC	CDWQ ²	VC-SED4	VC-SED4
				Fresh			rine	Irrigation	Livestock			(TCLP)	(SPLP)
				Short Term	Long Term	Short Term	Long Term	irrigation	LiveStock	MAC	AO / Other	18-Jul-17	
Metals Results													
Muminum	0.02	0.02			See note 3			5	5			0.04	0.12
Antimony	0.006	0.006								0.006		<0.006	<0.006
Arsenic	0.005	0.005			0.005		0.0125	0.1	0.025	0.010		0.027 15,16,17,18	0.009 15
Barium	0.02	0.02								1.0		0.09	<0.02
Beryllium	0.05	0.05						0.1	0.1			<0.05	< 0.05
Bismuth	0.02	0.02										<0.02	<0.02
Boron	0.05	0.05		29	1.5			0.5-6 9	5	5		2.00 ¹⁵	1.02
Cadmium	0.0001	0.0001		See note 4	See note 5		0.00012	0.0051	0.08	0.005		<0.0001	< 0.0001
Chromium (Total)	0.02	0.02								0.05		<0.02	<0.02
Cobalt	0.01	0.01						0.05	1			<0.01	<0.01
Copper	0.002	0.002			See note 6			0.2-1 ¹⁰	0.5-5 14		1.0	<0.002	<0.002
on	0.2	0.2			0.3			5			0.3	14.5 ^{15,19}	0.4 15,20
ead	0.001	0.001			See note 7			0.2	0.1	0.01		<0.001	<0.001
ithium	0.02	0.02	mg/L					2.5				0.03	<0.02
Magnesium	0.05	0.05	-										20.9
Manganese	0.02	0.02						0.2			0.05	0.54 19,20	<0.02
Nolybdenum	0.02	0.02			0.073			0.01-0.05 11	0.5			0.02	0.03
lickel	0.02	0.02			See note 8			0.2	1			<0.02	<0.02
Selenium	0.001	0.001			0.001			0.02-0.05 12	0.05	0.05		0.015 ¹⁵	0.012 ¹⁵
Silver	0.0001	0.0001			0.00025	0.0075						0.0005 ¹⁵	< 0.0001
odium	200	200									200		414 ²⁰
Strontium	0.02	0.02										0.88	0.14
'hallium	0.0008	0.0008			0.0008							<0.0008	<0.0008
in	0.02	0.02										<0.02	<0.02
Iranium	0.001	0.001		0.033	0.015			0.01	0.2	0.02		<0.001	0.001
anadium	0.02	0.02						0.1	0.1			<0.02	<0.02
inc	0.02	0.02			0.03			See note 13	50		5.0	<0.02	<0.02
H and Hardness Re		0.02											
inal pH	T	NA	NA		6.5-9.0		7.0-8.7				7-10.5		8.29
lardness	1	0.7	mg/L										111

value ^x

- guideline exceedance

MAC = Maximum Acceptable Concentration

AO = Aesthetic Objective

NA = Not Applicable

¹ CCME Water Quality Guidelines (WQGs) for the Protection of Freshwater and Marine Aquatic Life and Agriculture (2017 online).

 $^{2}\,\mbox{Health}$ Canada Guidelines for Canadian Drinking Water Quality (GCDWG) (February 2017).

 3 Aluminum: 0.005 mg/L if pH <6.5, 0.1 mg/L if pH $\underline{>}$ 6.5.

 $^{4} \ \text{Cadmium: when hardness is 0 to } < 5.3 \ \text{mg/L}, \ \text{guideline} = 0.000111 \ \text{mg/L}; \ \text{at hardness} \\ \ge 5.3 \ \text{to} \\ \le 360 \ \text{mg/L}, \ \text{guideline} \ (\text{ug/L}) = 10^{[1.076(\log[\text{hardness}]-1.77)]}; \ \text{at hardness} \\ \times 360 \ \text{mg/L}, \ \text{guideline} = 0.00077 \ \text{mg/L}.$

 $^{5} \ \text{Cadmium: when hardness is 0 to <17 \,mg/L, guideline = 0.00004 \,mg/L; at hardness} \, \underline{>} 17 \ \text{to} \, \underline{<} 280 \,\text{mg/L, guideline (ug/L)} = 10^{(0.83)[log[hardness]) \cdot 2.46)}; at hardness > 280 \,mg/L, guideline = 0.00037 \,mg/L.}$

 $^{6} \, \text{Copper: when hardness is 0 to < 82 \, mg/L, guideline = 0.002 \, mg/L; at hardness $\ge 82 \, \text{to } \le 180 \, \text{mg/L, guideline } (\text{ug/L}) = 0.2 ^{\circ} e^{(0.8545)[\text{in/hardness}]-1.465)}, at hardness > 180 \, \text{mg/L, guideline} = 0.004 \, \text{mg/L}; 0.002 \, \text{mg/L} \text{ when hardness is unknown.} }$

The Lead: when hardness is 0 to \leq 60 mg/L, guideline = 0.001 mg/L; at hardness \geq 60 to \leq 180 mg/L, guideline (ug/L) = $e^{(1.273[h(hardness)]-4.705))}$; at hardness >180 mg/L, guideline = 0.001 mg/L; 0.001 mg/L when hardness is unknown.

 $^{8} \text{Nickel: when hardness is 0 to } \underline{\leq} 60 \text{ mg/L}, \text{ guideline} = 0.025 \text{ mg/L}; \text{ at hardness } \underline{\geq} 60 \text{ to } \underline{\leq} 180 \text{ mg/L}, \text{ guideline (ug/L)} = e^{(0.74[\text{n(hardness)}]+1.060]}; \text{ at hardness } > 180 \text{ mg/L}, \text{ guideline} = 0.15 \text{ mg/L}; 0.025 \text{ mg/L} \text{ when hardness is unknown.}$

9 Boron: 0.5-6 mg/L, value depends on crop type.

10 Copper: 0.2 mg/L for cereals, 1 mg/L for tolerant crops.

 11 Molybdenum: 0.01 mg/L for continuous use on all soils, 0.05 mg/L for short-term use on acidic soils.

 12 Selenium: 0.02 mg/L for continuous use on all soils, 0.05 mg/L for intermittent use on all soils.

 13 Zinc: 1 mg/L when soil pH<6.5, 5 mg/L when soil pH>6.5

¹⁴ Copper: 0.5 mg/L for sheep, 1 mg/L for cattle, 5 mg/L for swine and poultry.

 $^{\rm 15}$ Value exceeds the CCME WQG for the Protection of Aquatic Life, Freshwater (long-term).

¹⁶ Value exceeds the CCME WQG for the Protection of Aquatic Life, Marine (long-term).

 $^{\rm 17}$ Value exceeds the CCME WQG for the Protection of Agriculture, Livestock.

¹⁸ Value exceeds the GCDWG MAC.

 $^{\rm 19}$ Value exceeds the CCME WQG for the Protection of Agriculture, Irrigation.

²⁰ Value exceeds the GCDWG AO.

APPENDIX C - Laboratory Certificate of Analysis and COC

CLIENT NAME: ENGLOBE CORP 97 TROOP AVE

DARTMOUTH, NS B3B2A7

(902) 468-6486

ATTENTION TO: Christina Caldwell

PROJECT: P-0011130-0-19-200

AGAT WORK ORDER: 17X238910

SOIL ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

TRACE ORGANICS REVIEWED BY: Kelly Hogue, B.Sc, P.Chem, Operations Manager

DATE REPORTED: Aug 11, 2017

PAGES (INCLUDING COVER): 33

VERSION*: 3

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

*NOTES
VERSION 3:Version 3.0 supersedes Version 2.0- Complete report; Issued Aug 11, 2017 Version 2.0 supersedes Version 1.0. Updated report to include final parameters (minus additional analysis request). Issued, August 2, 2017. Partial report. Issued, July 27, 2017.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V3)

Page 1 of 33

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell SAMPLED BY:

Available Metals & Hg in Soil

DATE RECEIVED: 2017-07-19								DATE REPORTED: 2017-08-11
		SAMPLE DESCRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18	
Parameter	Unit	G/S RDL	8567169	8567313	8567321	8567329	8567336	
Aluminum	mg/kg	10	7930	5630	7820	14400	7510	
Antimony	mg/kg	1	<1	<1	<1	<1	<1	
Arsenic	mg/kg	1	3	3	5	11	6	
Barium	mg/kg	5	32	11	24	69	34	
Beryllium	mg/kg	2	<2	<2	<2	<2	<2	
Boron	mg/kg	2	17	5	9	99	36	
Cadmium	mg/kg	0.3	<0.3	<0.3	0.3	0.5	<0.3	
Chromium	mg/kg	2	13	9	18	35	20	
Cobalt	mg/kg	1	8	5	9	13	9	
Copper	mg/kg	2	7	3	13	29	14	
Iron	mg/kg	50	16400	12000	18700	31700	20700	
Lead	mg/kg	0.5	3.5	2.4	15.7	15.5	7.8	
Lithium	mg/kg	5	24	19	23	31	23	
Manganese	mg/kg	2	227	152	180	360	263	
Molybdenum	mg/kg	2	<2	<2	<2	4	3	
Nickel	mg/kg	2	17	12	21	34	23	
Selenium	mg/kg	1	<1	<1	<1	<1	<1	
Silver	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Strontium	mg/kg	5	65	18	14	50	86	
Thallium	mg/kg	0.1	<0.1	<0.1	0.1	0.2	0.1	
Tin	mg/kg	2	3	3	2	5	4	
Uranium	mg/kg	0.1	0.4	0.3	8.0	1.4	1.0	
Vanadium	mg/kg	2	21	15	25	44	27	
Zinc	mg/kg	5	36	26	54	86	52	
Mercury	mg/kg	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8567169-8567336 Results are based on the dry weight of the sample.

Certified By:

Josan Coughtry

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell SAMPLED BY:

Grain Size Analysis (Sieve & Pipette)

					•	•		
DATE RECEIVED: 2017-07-19								DATE REPORTED: 2017-08-11
Parameter	SAN Unit	MPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	VC-SED1 Soil 2017-07-18 8567169	VC-SED2 Soil 2017-07-18 8567313	VC-SED3 Soil 2017-07-18 8567321	VC-SED4 Soil 2017-07-18 8567329	VC-SED5 Soil 2017-07-18 8567336	
Particle Size Distribution (<12.5mm, -4 PHI)	%	0.1	98.6	100	100	100	97.5	
Particle Size Distribution (<9.5mm, -3 PHI)	%	0.1	97.7	100	100	100	96.7	
Particle Size Distribution (<4.75mm, -2 PHI	%	0.1	95.3	100	100	100	94.1	
Particle Size Distribution (<2mm, -1 PHI)	%	0.1	90.9	94.8	99.8	98.6	91.2	
Particle Size Distribution (<1mm, 0 PHI)	%	0.1	82.6	85.9	99.2	97.5	89.9	
Particle Size Distribution (<1/2mm, 1 PHI)	%	0.1	70.8	62.4	95.8	94.9	87.8	
Particle Size Distribution (<1/4mm, 2 PHI)	%	0.1	42.1	22.5	83.4	86.1	73.1	
Particle Size Distribution (<1/8mm, 3 PHI)	%	0.1	29.1	13.7	71.1	73.6	52.6	
Particle Size Distribution (<1/16mm, 4 PHI)	%	0.1	25.1	11.0	55.2	63.8	38.7	
Particle Size Distribution (<1/32mm, 5 PHI)	%	0.1	23.7	10.5	47.7	57.7	35.1	
Particle Size Distribution (<1/64mm, 6 PHI)	%	0.1	21.0	10.1	37.4	46.8	28.4	
Particle Size Distribution (<1/128mm, 7 PHI)	%	0.1	18.1	9.4	29.6	34.4	22.1	
Particle Size Distribution (<1/256mm, 8 PHI)	%	0.1	16.5	9.0	24.5	29.7	19.9	
Particle Size Distribution (<1/512mm, 9 PHI)	%	0.1	14.6	8.6	20.5	25.5	17.6	
Particle Size Distribution (Gravel)	%	1	9	5	<1	1	9	
Particle Size Distribution (Sand)	%	1	66	84	45	35	53	
Particle Size Distribution (Silt)	%	1	9	2	31	34	19	
Particle Size Distribution (Clay)	%	1	17	9	25	30	20	
Particles >75um	%	1	74	88	41	34	58	
Classification	Coarse/Fine		Coarse	Coarse	Fine	Fine	Coarse	

Certified By:

Josephan Coaghtray

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

Grain Size Analysis (Sieve & Pipette)

DATE RECEIVED: 2017-07-19 DATE REPORTED: 2017-08-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Jasan Coughtry

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

o o							o, ==		
				Hexa	valent Chro	mium in Sc	oil		
DATE RECEIVED: 2017-07-19									DATE REPORTED: 2017-08-11
		SAMPLE DES	CRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18	
Parameter	Unit	G/S	RDL	8567169	8567313	8567321	8567329	8567336	
Chromium, Hexavalent	mg/kg		0.4	<0.4	<0.4	<0.4	<0.4	<0.4	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLING SITE:			SAMPLED BY:	
			In-hous	se Leachable Metals
DATE RECEIVED: 2017-07-19				DATE REPORTED: 2017-08-11
		SAMPLE DESCRIPTION:	VC-SED4	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	2017-07-18	
Parameter	Unit	G/S RDL	8567329	
Aluminum Leachate	mg/L	0.02	0.04	
Antimony Leachate	mg/L	0.006	<0.006	
Arsenic Leachate	mg/L	0.005	0.027	
Barium Leachate	mg/L	0.02	0.09	
Beryllium Leachate	mg/L	0.05	<0.05	
Bismuth Leachate	mg/L	0.02	<0.02	
Boron Leachate	mg/L	0.05	2.00	
Cadmium Leachate	mg/L	0.0001	<0.0001	
Chromium Leachate	mg/L	0.02	<0.02	
Cobalt Leachate	mg/L	0.01	<0.01	
Copper Leachate	mg/L	0.002	<0.002	
Iron Leachate	mg/L	0.2	14.5	
Lead Leachate	mg/L	0.001	<0.001	
Lithium Leachate	mg/L	0.02	0.03	
Manganese Leachate	mg/L	0.02	0.54	
Molybdenum Leachate	mg/L	0.02	0.02	
Nickel Leachate	mg/L	0.02	<0.02	
Selenium Leachate	mg/L	0.001	0.015	
Silver Leachate	mg/L	0.0001	0.0005	
Strontium Leachate	mg/L	0.02	0.88	
Thallium Leachate	mg/L	0.0008	<0.0008	
Tin Leachate	mg/L	0.02	<0.02	
Uranium Leachate	mg/L	0.001	<0.001	
Vanadium Leachate	mg/L	0.02	<0.02	
Zinc Leachate	mg/L	0.02	<0.02	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Casar Coaghtry

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell SAMPLED BY:

Inorganic C	Chemistry	(Soil)
-------------	-----------	--------

	morganic endinions (Sen)											
DATE RECEIVED: 2017-07-19									DATE REPORTED: 2017-08-11			
		SAMPLE DES	CRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5				
		SAMPLE TYPE:		Soil Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18				
Parameter	Unit	G/S	RDL	8567169	8567313	8567321	8567329	8567336				
Electrical Conductivity	mS/cm		0.005	5.13	2.81	9.38	18.5	9.64				
Sodium Adsorption Ratio	NA		NA	18.8	14.8	22.3	36.4	26.6				
Fraction Organic Carbon-1	NA		0.003	0.013	0.011	0.039	0.052	0.028				
Fraction Organic Carbon-2	NA		0.003	0.013	0.011	0.041	0.052	0.027				
Fraction Organic Carbon-3	NA		0.003	0.012	0.011	0.041	0.053	0.028				
Fraction Organic Carbon-Avg	NA		0.003	0.013	0.011	0.040	0.052	0.028				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8567169-8567336 EC & SAR were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). FOC - Samples were analysed and are reported in triplicate.

Certified By:

Josephan Coaghtry

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLING SITE:		SAMPLED BY:									
			SPLF	P Leachable Metals							
DATE RECEIVED: 2017-07-19				DATE REPORTED: 2017-08-11							
		SAMPLE DESCRIPTION:	VC-SED4								
		SAMPLE TYPE:	Soil								
		DATE SAMPLED:	2017-07-18								
Parameter	Unit	G/S RDL	8567329								
Aluminum Leachate	mg/L	0.02	0.12								
Antimony Leachate	mg/L	0.006	<0.006								
Arsenic Leachate	mg/L	0.005	0.009								
Barium Leachate	mg/L	0.02	<0.02								
Beryllium Leachate	mg/L	0.05	<0.05								
Bismuth Leachate	mg/L	0.02	<0.02								
Boron Leachate	mg/L	0.05	1.02								
Cadmium Leachate	mg/L	0.0001	<0.0001								
Chromium Leachate	mg/L	0.02	<0.02								
Cobalt Leachate	mg/L	0.01	<0.01								
Copper Leachate	mg/L	0.002	<0.002								
Iron Leachate	mg/L	0.2	0.4								
Lead Leachate	mg/L	0.001	<0.001								
Lithium Leachate	mg/L	0.02	<0.02								
Magnesium Leachate	mg/L	0.05	20.9								
Manganese Leachate	mg/L	0.02	<0.02								
Molybdenum Leachate	mg/L	0.02	0.03								
Nickel Leachate	mg/L	0.02	<0.02								
Selenium Leachate	mg/L	0.001	0.012								
Silver Leachate	mg/L	0.0001	<0.0001								
Sodium Leachate	mg/L	200	414								
Strontium Leachate	mg/L	0.02	0.14								
Thallium Leachate	mg/L	0.0008	<0.0008								
Tin Leachate	mg/L	0.02	<0.02								
Uranium Leachate	mg/L	0.001	0.001								
Vanadium Leachate	mg/L	0.02	<0.02								
Zinc Leachate	mg/L	0.02	<0.02								
Initial pH	NA	NA	NA								
Final pH	NA	NA	8.29								
% Moisture	%		61								

Certified By:

Josephan Coaghtray

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200

SPLP Leachable Metals

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

DATE RECEIVED: 2017-07-19

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

•· -·		
		DATE REPORTED: 2017-08-11

	;	SAMPLE DES	CRIPTION:	VC-SED4	
		SAM	PLE TYPE:	Soil	
		DATE:	SAMPLED:	2017-07-18	
Parameter	Unit	G/S	RDL	8567329	
Total Sample Mass	g			64.21	
Hardness	mg/L		0.7	111	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Josephan Coaghtry

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

o	Ç, === =												
	pH in Soil												
DATE RECEIVED: 2017-07-19									DATE REPORTED: 2017-08-11				
		SAMPLE DES	CRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5					
	SAMPLE TYPE:			Soil	Soil	Soil	Soil	Soil					
		DATE	SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18					
Parameter	Unit	G/S	RDL	8567169	8567313	8567321	8567329	8567336					
pH				8.20	8.84	7.25	8.10	8.56					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell SAMPLED BY:

SAMPLING SITE.												
	Englob	Englobe - P-0011130 - Atlantic RBCA Tier 1 Hydrocarbons in Soil - Field Preserved + Silica Gel + Creosote										
DATE RECEIVED: 2017-07-19								DATE REPORTED: 2017-08-11				
		SAMPLE DESCRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5					
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil					
		DATE SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18					
Parameter	Unit	G/S RDL	8567169	8567313	8567321	8567329	8567336					
Benzene - by Headspace	mg/kg	0.005	< 0.005	<0.005	<0.005	<0.005	<0.005					
Toluene - bt Headspace	mg/kg	0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025					
Ethylbenzene - by Headspace	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01					
Xylene (Total) - by Headspace	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05					
C6-C10 (less BTEX) - by Headspace	mg/kg	3	<3	<3	<3	<3	<3					
>C10-C16 Hydrocarbons - 1X silica gel	mg/kg	15	<15	<15	<15	<15	<15					
>C16-C21 Hydrocarbons - 1X silica gel	mg/kg	15	<15	<15	<15	19	<15					
>C21-C32 Hydrocarbons - 1X silica gel	mg/kg	15	<15	<15	<15	25	<15					
Modified TPH (Tier 1) - 1X silica gel	mg/kg	20	<20	<20	<20	44	<20					
Resemblance Comment			NR	NR	NR	UC	NR					
Creosote Comment			N	N	N	N	N					
Return to Baseline at C32			Υ	Υ	Υ	Υ	Υ					
Silica Gel Cleanup			Υ	Υ	Υ	Υ	Υ					
Surrogate	Unit	Acceptable Limits										
Isobutylbenzene - EPH	%	60-140	114	117	133	128	121					
Isobutylbenzene - VPH	%	60-140	91	74	93	104	102					
n-Dotriacontane - EPH	%	60-140	127	126	140	139	131					

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

Englobe - P-0011130 - Atlantic RBCA Tier 1 Hydrocarbons in Soil - Field Preserved + Silica Gel + Creosote

DATE RECEIVED: 2017-07-19 DATE REPORTED: 2017-08-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8567169-8567336 Results are based on the dry weight of the soil.

Resemblance Comment Key: GF - Gasoline Fraction

WGF - Weathered Gasoline Fraction

GR - Product in Gasoline Range

FOF - Fuel Oil Fraction

WFOF - Weathered Fuel Oil Fraction

FR - Product in Fuel Oil Range

LOF - Lube Oil Fraction

LR - Lube Range

UC - Unidentified Compounds

NR - No Resemblance

NA - Not Applicable

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell SAMPLED BY:

Fnalohe -	P-0011130 -	DDT in Soil
LIIGIODE -	1 -0011130 -	ווטט ווו ושם

				9.00			O 0		
DATE RECEIVED: 2017-07-19									DATE REPORTED: 2017-08-11
		SAMPLE DES		VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18	
Parameter	Unit	G/S	RDL	8567169	8567313	8567321	8567329	8567336	
Dieldrin	μg/kg		0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
o,p'-DDD	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDE	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDT	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
p,p'-DDD	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
p,p'-DDE	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
p,p'-DDT	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDT + p,p'-DDT	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDD + p,p'-DDD	ug/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o,p'-DDE + p,p'-DDE	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Total DDT	μg/kg		1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell SAMPLED BY:

Englobe - P-0011130 - Polycyclic Aromatic Hydrocarbons in Soil

DATE RECEIVED: 2017-07-19								DATE REPORTED: 2017-08-11
		SAMPLE DESCRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18	
Parameter	Unit	G/S RDL	8567169	8567313	8567321	8567329	8567336	
1-Methylnaphthalene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	
Acenaphthene	mg/kg	0.00671	< 0.00671	< 0.00671	< 0.00671	0.0097	0.0153	
Acenaphthylene	mg/kg	0.004	< 0.004	< 0.004	0.024	0.030	0.014	
Acridine	mg/kg	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Anthracene	mg/kg	0.03	< 0.03	< 0.03	0.06	0.10	0.17	
Benzo(a)anthracene	mg/kg	0.01	<0.01	<0.01	0.24	0.52	0.31	
Benzo(a)pyrene	mg/kg	0.01	<0.01	<0.01	0.13	0.35	0.18	
Benzo(b)fluoranthene	mg/kg	0.05	<0.05	< 0.05	0.24	0.37	0.19	
Benzo(b+j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.3	0.6	0.3	
Benzo(e)pyrene	mg/kg	0.05	< 0.05	< 0.05	0.17	0.29	0.15	
Benzo(ghi)perylene	mg/kg	0.01	<0.01	<0.01	0.08	0.17	0.10	
Benzo(k)fluoranthene	mg/kg	0.01	<0.01	<0.01	0.11	0.19	0.10	
Chrysene	mg/kg	0.01	<0.01	<0.01	0.30	0.52	0.41	
Dibenzo(a,h)anthracene	mg/kg	0.006	<0.006	< 0.006	< 0.006	<0.006	< 0.006	
Fluoranthene	mg/kg	0.05	< 0.05	< 0.05	1.19	1.96	1.70	
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	0.02	0.01	
ndeno(1,2,3)pyrene	mg/kg	0.01	<0.01	<0.01	0.10	0.18	0.11	
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Perylene	mg/kg	0.05	< 0.05	< 0.05	0.05	0.13	0.06	
Phenanthrene	mg/kg	0.03	< 0.03	< 0.03	<0.03	0.07	0.12	
Pyrene	mg/kg	0.05	< 0.05	< 0.05	0.74	1.21	1.00	
Quinoline	mg/kg	0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	
otal PAH	mg/Kg	0.5	<0.5	<0.5	2.5	4.5	3.4	
Surrogate	Unit	Acceptable Limits						
Nitrobenzene-d5	%	50-140	78	85	81	90	97	
2-Fluorobiphenyl	%	50-140	75	82	86	96	94	
Terphenyl-d14	%	50-140	93	83	83	96	113	

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

Englobe - P-0011130 - Polycyclic Aromatic Hydrocarbons in Soil

DATE RECEIVED: 2017-07-19 DATE REPORTED: 2017-08-11

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8567169-8567336 Results are based on the dry weight of the soil.

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

Englobe - P-0011130 - Total Polychlorinated Biphenyls in Soil											
DATE RECEIVED: 2017-07-19	ECEIVED: 2017-07-19 DATE REPORTED: 2017-08-11										
		SAMPLE DESCRIPTION:		VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5			
		SAMPLE TYPE:		Soil	Soil	Soil	Soil	Soil			
		DATE	SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18			
Parameter	Unit	G/S	RDL	8567169	8567313	8567321	8567329	8567336			
Total Polychlorinated Biphenyls	mg/kg		0.02	<0.02	<0.02	<0.02	<0.02	<0.02			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

8567169-8567336 Results are based on the dry weight of the soil.

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

Moisture												
DATE RECEIVED: 2017-07-19									DATE REPORTED: 2017-08-11			
		SAMPLE DES	CRIPTION:	VC-SED1	VC-SED2	VC-SED3	VC-SED4	VC-SED5				
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil				
		DATE	SAMPLED:	2017-07-18	2017-07-18	2017-07-18	2017-07-18	2017-07-18				
Parameter	Unit	G/S	RDL	8567169	8567313	8567321	8567329	8567336				
% Moisture	%			28	27	47	61	43				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200 11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

ATTENTION TO: Christina Caldwell

SAMPLED BY:

SAMPLING SITE:				SAMPLED BY:
		Polycyc	lic Aromatic Hyd	drocarbons - In-house Leachate
DATE RECEIVED: 2017-07-19				DATE REPORTED: 2017-08-11
		SAMPLE DESCRIPTION:	VC-SED4	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	2017-07-18	
Parameter	Unit	G/S RDL	8567329	
1-Methylnaphthalene	ug/L	0.08	<0.08	
2-Methylnaphthalene	ug/L	0.03	<0.03	
Acenaphthene	ug/L	0.01	0.04	
Acenaphthylene	ug/L	0.02	<0.02	
Anthracene	ug/L	0.012	<0.012	
Benzo(a)anthracene	ug/L	0.018	0.02	
Benzo(a)pyrene	ug/L	0.015	<0.015	
Benzo(b)fluoranthene	ug/L	0.05	<0.05	
Benzo(b+j)fluoranthene	μg/L	0.01	<0.01	
Benzo(ghi)perylene	ug/L	0.03	< 0.03	
Benzo(k)fluoranthene	ug/L	0.03	< 0.03	
Chrysene	ug/L	0.04	<0.04	
Dibenzo(a,h)anthracene	ug/L	0.01	<0.01	
Fluoranthene	ug/L	0.03	0.75	
Fluorene	ug/L	0.05	<0.05	
Indeno(1,2,3-cd)pyrene	ug/L	0.08	<0.08	
Naphthalene	ug/L	0.02	<0.02	
Perylene	ug/L	0.06	<0.06	
Phenanthrene	ug/L	0.04	<0.04	
Pyrene	ug/L	0.01	0.38	
Acridine	ug/L	0.10	<0.10	
Benzo(e)pyrene	ug/L	0.06	<0.06	
Surrogate	Unit	Acceptable Limits		
Nitrobenzene-d5	%	50-140	62	
2-Fluorobiphenyl	%	50-140	62	
Terphenyl-d14	%	50-140	67	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

CLIENT NAME: ENGLOBE CORP

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 17X238910 PROJECT: P-0011130-0-19-200

ATTENTION TO: Christina Caldwell

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Polycyclic Aromatic Hydrocarbons in SPLP Leachate

DATE RECEIVED: 2017-07-1	9			DATE REPORTED: 2017-08-
	(SAMPLE DESCRIPTION:	VC-SED4	
		SAMPLE TYPE:	Soil	
		DATE SAMPLED:	2017-07-18	
Parameter	Unit	G/S RDL	8567329	
1-Methylnaphthalene	ug/L	0.01	<0.01	
2-Methylnaphthalene	ug/L	0.01	<0.01	
Acenaphthene	ug/L	0.04	<0.04	
Acenaphthylene	ug/L	0.04	<0.04	
Anthracene	ug/L	0.012	<0.012	
Benzo(a)anthracene	ug/L	0.018	0.02	
Benzo(a)pyrene	ug/L	0.01	<0.01	
Benzo(b)fluoranthene	ug/L	0.05	<0.05	
Benzo(b+j)fluoranthene	μg/L	0.01	<0.01	
Benzo(e)pyrene	ug/L	0.06	<0.06	
Benzo(ghi)perylene	ug/L	0.02	<0.02	
Benzo(k)fluoranthene	ug/L	0.04	<0.04	
Chrysene	ug/L	0.04	<0.04	
Dibenzo(a,h)anthracene	ug/L	0.01	<0.01	
Fluoranthene	ug/L	0.03	0.83	
Fluorene	ug/L	0.01	<0.01	
Indeno(1,2,3-cd)pyrene	ug/L	0.04	<0.04	
Naphthalene	ug/L	0.01	<0.01	
Perylene	ug/L	0.05	<0.05	
Phenanthrene	ug/L	0.02	<0.02	
Pyrene	ug/L	0.01	0.42	
Total PAH	μg/L	2	<2	
Surrogate	Unit	Acceptable Limits		
Nitrobenzene-d5	%	50-140	63	
2-Fluorobiphenyl	%	50-140	62	
Terphenyl-d14	%	50-140	67	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Quality Assurance

CLIENT NAME: ENGLOBE CORP

AGAT WORK ORDER: 17X238910

PROJECT: P-0011130-0-19-200

ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

				Soi	l Ana	alysis	3								
RPT Date: Aug 11, 2017			Г	DUPLICATE	<u> </u>		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits Upper	Recovery		ptable mits Upper	Recovery		ptable nits Uppe
Grain Size Analysis (Sieve & Pipe	tte)	•	•								•		•		
Particle Size Distribution (<12.5mm, -4 PHI)	1	7336	97.5	100	2.5%	< 0.1		60%	140%						
Particle Size Distribution (<9.5mm, 3 PHI)	1	7336	96.7	94.9	1.9%	< 0.1		60%	140%						
Particle Size Distribution <4.75mm, -2 PHI	1	7336	94.1	89.9	4.6%	< 0.1		60%	140%						
Particle Size Distribution (<2mm, -1 PHI)	1	7336	91.2	88.1	3.5%	< 0.1		60%	140%						
Particle Size Distribution (<1mm, 0 PHI)	1	7336	89.9	87.1	3.2%	< 0.1		60%	140%						
Particle Size Distribution (<1/2mm, 1 PHI)	1	7336	87.8	84.9	3.4%	< 0.1		60%	140%						
Particle Size Distribution (<1/4mm, 2 PHI)	1	7336	73.1	71.1	2.8%	< 0.1		60%	140%						
Particle Size Distribution (<1/8mm, 3 PHI)	1	7336	52.6	50.1	4.9%	< 0.1		60%	140%						
Particle Size Distribution (<1/16mm, 4 PHI)	1	7336	38.7	39.8	2.8%	< 0.1		60%	140%						
Particle Size Distribution (<1/32mm, 5 PHI)	1	7336	35.1	36.3	3.4%	< 0.1		60%	140%						
Particle Size Distribution (<1/64mm, 6 PHI)	1	7336	28.4	29.0	2.1%	< 0.1		60%	140%						
Particle Size Distribution (<1/128mm, 7 PHI)	1	7336	22.1	22.6	2.2%	< 0.1		60%	140%						
Particle Size Distribution (<1/256mm, 8 PHI)	1	7336	19.9	20.4	2.5%	< 0.1		60%	140%						
Particle Size Distribution (<1/512mm, 9 PHI)	1	7336	17.6	18.0	2.2%	< 0.1		60%	140%						
Particle Size Distribution (Gravel)	1	7336	9	12	28.6%	< 1		60%	140%						
Particle Size Distribution (Sand)	1	7336	53	48	9.9%	< 1	120%	60%	140%						
Particle Size Distribution (Silt)	1	7336	19	19	0.0%	< 1	86%		140%						
Particle Size Distribution (Clay)	1	7336	20	20	0.0%	< 1	114%	60%	140%						
Particles >75um Classification	1 1	7336 7336	58 Coarse	58 Coarse	0.0% 0.0%	< 1 <									
Available Metals & Hg in Soil															
Aluminum	7212017		9200	8990	2.3%	< 10	105%	80%	120%	109%	80%	120%	112%	70%	130%
Antimony	7212017		< 1	< 1	NA	< 1	99%	80%	120%	92%	80%		NA		130%
Arsenic	7212017		7	7	0.0%	< 1	95%		120%	101%		120%	93%	70%	
Barium	7212017		38	39	2.6%	< 5	98%	80%	120%	101%		120%	103%	70%	
Beryllium	7212017		< 2	< 2	NA	< 2	106%			113%		120%	106%	70%	
Boron	7212017		< 2	< 2	NA	< 2	108%		120%	111%	80%	120%	104%		130%
Cadmium	7212017		< 0.3	< 0.3	NA	< 0.3	98%	80%	120%	103%	80%	120%	95%	70%	130%
Chromium	7212017		9	8	NA	< 2	98%	80%	120%	101%		120%	106%		130%
Cobalt	7212017		4	4	NA	< 1	101%	80%	120%	104%	80%	120%	103%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 20 of 33

Quality Assurance

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

			Soil	Analy	/sis	(Con	tinue	d)							
RPT Date: Aug 11, 2017			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper	, , ,	Lower	Upper	, , ,	Lower	Upper
Copper	7212017		11	11	0.0%	< 2	103%	80%	120%	108%	80%	120%	102%	70%	130%
Iron	7212017		14700	14300	2.8%	< 50	101%	80%	120%	105%	80%	120%	101%	70%	130%
Lead	7212017		40.0	42.1	5.1%	< 0.5	103%	80%	120%	108%	80%	120%	97%	70%	130%
Lithium	7212017		11	12	NA	< 5	103%	70%	130%	113%	70%	130%	98%	70%	130%
Manganese	7212017		440	431	2.1%	< 2	100%	80%	120%	105%	80%	120%	101%	70%	130%
Molybdenum	7212017		3	3	NA	< 2	98%	80%	120%	100%	80%	120%	90%	70%	130%
Nickel	7212017		5	4	NA	< 2	103%	80%	120%	108%	80%	120%	104%	70%	130%
Selenium	7212017		< 1	< 1	NA	< 1	98%	80%	120%	103%	80%	120%	89%		130%
Silver	7212017		< 0.5	< 0.5	NA	< 0.5	102%	80%	120%	104%	80%	120%	93%		130%
Strontium	7212017		7	7	NA	< 5	97%	80%	120%	103%	80%	120%	103%		130%
Thallium	7212017		< 0.1	< 0.1	NA	< 0.1	103%	80%	120%	111%	80%	120%	82%		130%
Tin	7212017		3	3	NA	< 2	95%	80%	120%	100%	80%	120%	84%	70%	130%
Uranium	7212017		0.5	0.5	0.0%	< 0.1	102%	80%	120%	104%	80%	120%	103%		130%
Vanadium	7212017		27	29	7.1%	< 2	95%	80%	120%	100%	80%	120%	105%		130%
Zinc	7212017		39	39	0.0%	< 5	100%	80%	120%	105%	80%	120%	102%		130%
Comments: If RPD value is NA, the	e results of the	duplicates	s are less	than 5x the	RDL and	I the RPD	will not be	calcula	ted.						
pH in Soil															
pH	1 8	8563717	4.03	3.86	4.3%	<	102%	80%	120%						
Inorganic Chemistry (Soil)															
Electrical Conductivity	8578291		2.40	2.58	7.2%	< 0.005	95%	90%	110%						
Sodium Adsorption Ratio	8580045		0.105	0.096	9.5%	NA									
Comments: NA signifies Not Applie	cable.														
In-house Leachable Metals															
Aluminum Leachate	8042017	3567329	0.04	0.03	NA	< 0.02	108%	80%	120%	106%	80%	120%	101%	70%	130%
Antimony Leachate	8042017		< 0.006	< 0.006	NA	< 0.006		80%	120%	87%	80%	120%	83%		130%
Arsenic Leachate	8042017		0.027	0.026	3.8%	< 0.005		80%	120%	98%	80%	120%	95%	70%	130%
Barium Leachate	8042017		0.09	0.09	NA	< 0.02	101%	80%	120%	98%	80%	120%	95%	70%	130%
Beryllium Leachate	8042017		< 0.05	< 0.05	NA	< 0.05	108%	80%	120%	109%	80%	120%	100%		130%
Bismuth Leachate	8042017	3567329	< 0.02	< 0.02	NA	< 0.02	98%	80%	120%	106%	80%	120%	91%	70%	130%
Boron Leachate	8042017		2.00	2.04	2.0%	< 0.05	107%		120%	110%	80%		96%		130%
Cadmium Leachate	8042017		< 0.0001	< 0.0001	NA	< 0.0001			120%	95%		120%	93%		130%
Chromium Leachate	8042017		< 0.02	< 0.02	NA	< 0.02	93%		120%	93%		120%	101%		130%
Cobalt Leachate	8042017		< 0.01	< 0.01	NA	< 0.01	96%		120%	95%		120%	102%		130%
Copper Leachate	8042017	8567320	< 0.002	< 0.002	NA	< 0.002	101%	2 ∩0/₋	120%	96%	80%	120%	99%	70%	130%
Iron Leachate	8042017		14.5	15.2	4.7%	< 0.002	95%		120%	98%		120%	93%		130%
Lead Leachate	8042017		< 0.001	< 0.001	4.7 % NA	< 0.20	105%		120%	103%		120%	101%		130%
Lithium Leachate	8042017		0.03	0.001	NA	< 0.001	103%		120%	110%		120%	105%		130%
Littiviii Leachate	0042017	5501328	0.03	0.03	INA	< 0.02	107.70	00%	12070	11070	0070	12070	10070	1070	100/0

AGAT QUALITY ASSURANCE REPORT (V3)

Page 21 of 33

Quality Assurance

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE: SAMPLED BY:															
	Soil Analysis (Continued)														
RPT Date: Aug 11, 2017			С	UPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lir	ptable nits	Recovery	Lir	ptable nits	Recovery	Lir	eptable mits
Manganese Leachate	8042017	8567320	0.54	0.55	1.8%	< 0.02	94%	Lower 80%	120%	91%	Lower 80%	120%	86%	Lower 70%	Upper 130%
ivialigaliese Leachate	0042017	0307329	0.54	0.55	1.0 /6	< 0.02	34 /0	00 /6	12076	9170	00 /6	12076	00 /6	1076	130 /6
Molybdenum Leachate	8042017		0.02	0.02	NA	< 0.02	92%	80%	120%	94%	80%	120%	103%	70%	130%
Nickel Leachate	8042017		< 0.02	< 0.02	NA	< 0.02	98%	80%	120%	96%	80%	120%	101%	70%	130%
Selenium Leachate	8042017		0.015	0.014	6.9%	< 0.001	112%	80%	120%	102%	80%	120%	92%	70%	130%
Silver Leachate	8042017		0.0005	0.0001	NA	< 0.0001	97%	80%	120%	98%	80%	120%	94%	70%	130%
Strontium Leachate	8042017	8567329	0.88	0.90	2.2%	< 0.02	95%	80%	120%	94%	80%	120%	86%	70%	130%
Thallium Leachate	8042017	8567329	< 0.0008	< 0.0008	NA	< 0.0008	104%	80%	120%	106%	80%	120%	101%	70%	130%
Tin Leachate	8042017	8567329	< 0.02	< 0.02	NA	< 0.02	97%	80%	120%	97%	80%	120%	99%	70%	130%
Uranium Leachate	8042017	8567329	< 0.001	< 0.001	NA	< 0.001	102%	80%	120%	101%	80%	120%	102%	70%	130%
Vanadium Leachate	8042017	8567329	< 0.02	< 0.02	NA	< 0.02	92%	80%	120%	92%	80%	120%	107%	70%	130%
Zinc Leachate	8042017	8567329	< 0.02	< 0.02	NA	< 0.02	102%	80%	120%	99%	80%	120%	93%	70%	130%
SPLP Leachable Metals															
Aluminum Leachate	8042017	8567329	0.12	0.23	62.9%	< 0.02	108%	80%	120%	106%	80%	120%	105%	70%	130%
Antimony Leachate	8042017	8567329	< 0.006	< 0.006	0.0%	< 0.006	93%	80%	120%	87%	80%	120%	86%	70%	130%
Arsenic Leachate	8042017	8567329	0.009	0.011	20.0%	< 0.005	103%	80%	120%	98%	80%	120%	96%	70%	130%
Barium Leachate	8042017		< 0.02	0.03	NA	< 0.02	101%	80%	120%	98%	80%	120%	97%	70%	130%
Beryllium Leachate	8042017		< 0.05	< 0.05	0.0%	< 0.05	108%	80%	120%	109%	80%	120%	98%	70%	130%
Bismuth Leachate	8042017	8567329	< 0.02	< 0.02	0.0%	< 0.02	98%	80%	120%	106%	80%	120%	100%	70%	130%
Boron Leachate	8042017	8567329	1.02	1.19	15.4%	< 0.05	107%	80%	120%	110%	80%	120%	89%	70%	130%
Cadmium Leachate	8042017	8567329	< 0.0001	0.0004	NA	< 0.0001	99%	80%	120%	95%	80%	120%	94%	70%	130%
Chromium Leachate	8042017	8567329	< 0.02	< 0.02	0.0%	< 0.02	93%	80%	120%	93%	80%	120%	101%	70%	130%
Cobalt Leachate	8042017	8567329	< 0.01	< 0.01	0.0%	< 0.01	96%	80%	120%	95%	80%	120%	101%	70%	130%
Copper Leachate	8042017	8567329	< 0.002	0.011	NA	< 0.002	101%	80%	120%	96%	80%	120%	101%	70%	130%
Iron Leachate	8042017	8567329	0.4	< 0.2	NA	< 0.2	95%	80%	120%	98%	80%	120%	102%	70%	130%
Lead Leachate	8042017		< 0.001	0.005	NA	< 0.001	105%	80%	120%	103%	80%	120%	101%	70%	130%
Lithium Leachate	8042017		< 0.02	0.06	NA	< 0.02	107%	80%	120%	110%	80%	120%	101%	70%	130%
Magnesium Leachate	8042017		20.9	20.8	0.5%	< 0.05	107%	80%	120%	104%	70%	130%	93%	70%	130%
Manganese Leachate	8042017	8567329	< 0.02	< 0.02	0.0%	< 0.02	94%	80%	120%	91%	80%	120%	98%	70%	130%
Molybdenum Leachate	8042017		0.03	0.03	0.0%	< 0.02	92%	80%	120%	94%	80%	120%	100%	70%	130%
Nickel Leachate	8042017		< 0.02	< 0.02	0.0%	< 0.02	98%	80%	120%	96%	80%	120%	99%	70%	130%
Selenium Leachate	8042017		0.012	0.023	NA	< 0.001	112%		120%	102%		120%	86%		130%
Silver Leachate	8042017			0.0008	NA	< 0.001			120%	98%		120%	98%		130%
Sodium Leachate	8042017	8567320	414	438	NA	< 200	107%	800/	120%	105%	80%	120%	NA	70%	130%
Strontium Leachate	8042017								120%						130%
			0.14	0.14	0.0%	< 0.02	95%			94%	80%		99%		
Thallium Leachate	8042017		< 0.0008	< 0.0008	0.0%	< 0.0008			120%	106%		120%	104%		130%
Tin Leachate	8042017		< 0.02	< 0.02	0.0%	< 0.02	97%		120%	97% 101%		120%	98%		130%
Uranium Leachate	8042017	000/329	0.001	0.002	NA	< 0.001	102%	80%	120%	101%	80%	120%	106%	70%	130%
Vanadium Leachate	8042017		0.02	0.02	0.0%	< 0.02	92%		120%	92%		120%	100%		130%
Zinc Leachate	8042017	8567329	< 0.02	0.06	NA	< 0.02	102%	80%	120%	99%	80%	120%	91%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 22 of 33

Quality Assurance

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

Soil Analysis (Continued)															
RPT Date: Aug 11, 2017	E		REFEREN	NCE MA	ΓERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	KE				
PARAMETER Batch Sample Dup #1 Dup #2 RPD					RPD	Method Blank	Measured		otable nits	Recovery	Acceptable Limits		Recovery		otable nits
		ld		'			Value	Lower	Upper		Lower	Upper		Lower	Upper

Certified By:

Joseph Coaghtray

Quality Assurance

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

			Trac	e Or	ganio	cs An	alysi	is							
RPT Date: Aug 11, 2017			С	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	منا ا	ptable	Recovery	1 1 1 1	ptable nits
		ld	,	·			Value	Lower	Upper		Lower	Upper		Lower	Upper
Englobe - P-0011130 - Atlantic RB	CA Tier 1	Hydrocar	bons in S	oil - Field	Preserve	ed + Silica	Gel + Cr	eosote)						
Benzene - by Headspace	1	8567169	< 0.005	< 0.005	NA	< 0.005	72%	60%	140%	95%	60%	140%			
Toluene - bt Headspace	1	8567169	< 0.025	< 0.025	NA	< 0.025	73%	60%	140%	92%	60%	140%			
Ethylbenzene - by Headspace	1	8567169	< 0.01	< 0.01	NA	< 0.01	81%	60%	140%	98%	60%	140%			
Xylene (Total) - by Headspace	1	8567169	< 0.05	< 0.05	NA	< 0.05	72%	60%	140%	84%	60%	140%			
C6-C10 (less BTEX) - by Headspace	1	8567169	< 3	< 3	NA	< 3	89%	60%	140%	80%	60%	140%	NA	30%	130%
>C10-C16 Hydrocarbons - 1X silica gel	1	8561854	< 15	< 15	NA	< 15	100%	60%	140%	109%	60%	140%	125%	30%	130%
>C16-C21 Hydrocarbons - 1X silica gel	1	8561854	< 15	< 15	NA	< 15	101%	60%	140%	109%	60%	140%	125%	30%	130%
>C21-C32 Hydrocarbons - 1X silica gel	1	8561854	< 15	< 15	NA	< 15	101%	60%	140%	109%	60%	140%	125%	30%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Englobe - P-0011130	- Polycyclic Aromatic	Hydrocarbons in Soil
---------------------	-----------------------	----------------------

Lingiobe - 1 -0011130 - 1 diyeyel	ic Albinatio	o i iyurucar	00113 111 0	JII											
1-Methylnaphthalene	1	8564878	< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	71%	50%	140%	81%	50%	140%
2-Methylnaphthalene	1	8564878	< 0.01	< 0.01	NA	< 0.01	96%	50%	140%	70%	50%	140%	79%	50%	140%
Acenaphthene	1	8564878	< 0.00671	< 0.00671	NA	< 0.00671	98%	50%	140%	71%	50%	140%	78%	50%	140%
Acenaphthylene	1	8564878	< 0.004	< 0.004	NA	< 0.004	93%	50%	140%	66%	50%	140%	77%	50%	140%
Acridine	1	8564878	< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	57%	50%	140%	63%	50%	140%
Anthracene	1	8564878	< 0.03	< 0.03	NA	< 0.03	92%	50%	140%	64%	50%	140%	68%	50%	140%
Benzo(a)anthracene	1	8564878	0.04	0.03	NA	< 0.01	90%	50%	140%	62%	50%	140%	70%	50%	140%
Benzo(a)pyrene	1	8564878	0.03	0.03	NA	< 0.01	84%	50%	140%	61%	50%	140%	63%	50%	140%
Benzo(b)fluoranthene	1	8564878	0.07	0.06	NA	< 0.05	91%	50%	140%	68%	50%	140%	79%	50%	140%
Benzo(b+j)fluoranthene	1	8564878	< 0.1	< 0.1	NA	< 0.1	78%	50%	140%	69%	50%	140%	73%	50%	140%
Benzo(e)pyrene	1	8564878	0.06	0.06	NA	< 0.05	87%	50%	140%	71%	50%	140%	73%	50%	140%
Benzo(ghi)perylene	1	8564878	0.04	0.04	NA	< 0.01	92%	50%	140%	65%	50%	140%	88%	50%	140%
Benzo(k)fluoranthene	1	8564878	0.03	0.03	NA	< 0.01	70%	50%	140%	56%	50%	140%	57%	50%	140%
Chrysene	1	8564878	0.06	0.06	0.0%	< 0.01	97%	50%	140%	68%	50%	140%	77%	50%	140%
Dibenzo(a,h)anthracene	1	8564878	< 0.006	< 0.006	NA	< 0.006	75%	50%	140%	54%	50%	140%	62%	50%	140%
Fluoranthene	1	8564878	0.08	0.08	NA	< 0.05	95%	50%	140%	67%	50%	140%	74%	50%	140%
Fluorene	1	8564878	< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	68%	50%	140%	76%	50%	140%
Indeno(1,2,3)pyrene	1	8564878	0.04	0.04	NA	< 0.01	77%	50%	140%	59%	50%	140%	65%	50%	140%
Naphthalene	1	8564878	< 0.01	< 0.01	NA	< 0.01	98%	50%	140%	72%	50%	140%	81%	50%	140%
Perylene	1	8564878	0.16	0.14	NA	< 0.05	95%	50%	140%	73%	50%	140%	78%	50%	140%
Phenanthrene	1	8564878	< 0.03	< 0.03	NA	< 0.03	95%	50%	140%	68%	50%	140%	76%	50%	140%
Pyrene	1	8564878	0.09	0.10	NA	< 0.05	94%	50%	140%	69%	50%	140%	72%	50%	140%
Quinoline	1	8564878	< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	57%	50%	140%	69%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 24 of 33

Quality Assurance

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Aug 11, 2017			С	UPLICAT	E		REFEREN	NCE MAT	ΓERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Englobe - P-0011130 - Total Polychlorinated Biphenyls in Soil

Total Polychlorinated Biphenyls 1 8567169 < 0.02 < 0.02 NA < 0.02 91% 70% 130% 90% 60% 130% 106% 60% 130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Englobe - P-0011130 -	DDT in Soil	
-----------------------	-------------	--

Dieldrin	1	8567169	< 0.5	< 0.5	NA	< 0.5	80%	60%	130%	88%	70%	130%	72%	60%	130%
o,p'-DDD	1	8567169	< 1.0	< 1.0	NA	< 1.0	83%	60%	130%	89%	70%	130%	74%	60%	130%
o,p'-DDE	1	8567169	< 1.0	< 1.0	NA	< 1.0	80%	60%	130%	88%	70%	130%	72%	60%	130%
o,p'-DDT	1	8567169	< 1.0	< 1.0	NA	< 1.0	91%	60%	130%	104%	70%	130%	71%	60%	130%
p,p'-DDD	1	8567169	< 1.0	< 1.0	NA	< 1.0	85%	60%	130%	104%	70%	130%	90%	60%	130%
p,p'-DDE	1	8567169	< 1.0	< 1.0	NA	< 1.0	76%	60%	130%	93%	70%	130%	78%	60%	130%
p,p'-DDT	1	8567169	< 1.0	< 1.0	NA	< 1.0	86%	60%	130%	112%	70%	130%	80%	60%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Po	lycyclic	Aromatic	Hydrocarbons	- In-house	Leachate

1-Methylnaphthalene	1	8597217	< 0.01	< 0.01	NA	< 0.08	102%	50%	140%	78%	50%	140%	70%	50%	140%
2-Methylnaphthalene	1	8597217	< 0.01	< 0.01	NA	< 0.03	100%	50%	140%	77%	50%	140%	71%	50%	140%
Acenaphthene	1	8597217	< 0.01	< 0.01	NA	< 0.01	102%	50%	140%	70%	50%	140%	69%	50%	140%
Acenaphthylene	1	8597217	< 0.01	< 0.01	NA	< 0.02	98%	50%	140%	70%	50%	140%	69%	50%	140%
Anthracene	1	8597217	< 0.012	< 0.012	NA	< 0.012	94%	50%	140%	61%	50%	140%	58%	50%	140%
5 () 4															4.4007
Benzo(a)anthracene	1	8597217	< 0.018	< 0.018	NA	< 0.018	88%	50%	140%	61%	50%	140%	58%	50%	140%
Benzo(a)pyrene	1	8597217	< 0.010	< 0.010	NA	< 0.015	112%	50%	140%	73%	50%	140%	61%	50%	140%
Benzo(b)fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.05	81%	50%	140%	71%	50%	140%	59%	50%	140%
Benzo(b+j)fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.01	78%	50%	140%	66%	50%	140%	59%	50%	140%
Benzo(ghi)perylene	1	8597217	< 0.01	< 0.01	NA	< 0.03	116%	50%	140%	76%	50%	140%	63%	50%	140%
Benzo(k)fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.03	101%	50%	140%	69%	50%	140%	58%	50%	140%
Chrysene	1	8597217	< 0.01	< 0.01	NA	< 0.04	105%	50%	140%	69%	50%	140%	68%	50%	140%
Dibenzo(a,h)anthracene	1	8597217	< 0.01	< 0.01	NA	< 0.01	104%	50%	140%	74%	50%	140%	62%	50%	140%
Fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.03	90%	50%	140%	64%	50%	140%	61%	50%	140%
Fluorene	1	8597217	< 0.01	< 0.01	NA	< 0.05	97%	50%	140%	70%	50%	140%	68%	50%	140%
Indeno(1,2,3-cd)pyrene	1	8597217	< 0.01	< 0.01	NA	< 0.08	89%	50%	140%	76%	50%	140%	59%	50%	140%
Naphthalene	1	8597217	< 0.01	< 0.01	NA	< 0.02	104%	50%	140%	77%	50%	140%	69%	50%	140%
Perylene	1	8597217	< 0.01	< 0.01	NA	< 0.06	125%	50%	140%	78%	50%	140%	65%	50%	140%
Phenanthrene	1	8597217	< 0.01	< 0.01	NA	< 0.04	101%	50%	140%	61%	50%	140%	57%	50%	140%
Pyrene	1	8597217	< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	64%	50%	140%	60%	50%	140%
Acridine	1	8597217	< 0.01	< 0.01	NA	< 0.10	82%	50%	140%	61%	50%	140%	58%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 25 of 33

Quality Assurance

CLIENT NAME: ENGLOBE CORP

AGAT WORK ORDER: 17X238910

PROJECT: P-0011130-0-19-200

ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)																	
RPT Date: Aug 11, 2017				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits				Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		Id					Value	Lower	Upper		Lower	Upper	,	Lower	Upper		
Benzo(e)pvrene	1	8597217	< 0.01	< 0.01	NA	< 0.06	109%	50%	140%	68%	50%	140%	57%	50%	140%		

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

•	•														
Polycyclic Aromatic Hydroca	arbons in SPI	P Leachate	Э												
1-Methylnaphthalene	1	8597217	< 0.01	< 0.01	NA	< 0.01	102%	50%	140%	78%	50%	140%	70%	50%	140%
2-Methylnaphthalene	1	8597217	< 0.01	< 0.01	NA	< 0.01	100%	50%	140%	77%	50%	140%	71%	50%	140%
Acenaphthene	1	8597217	< 0.01	< 0.01	NA	< 0.04	102%	50%	140%	70%	50%	140%	69%	50%	140%
Acenaphthylene	1	8597217	< 0.01	< 0.01	NA	< 0.04	98%	50%	140%	70%	50%	140%	69%	50%	140%
Anthracene	1	8597217	< 0.012	< 0.012	NA	< 0.012	94%	50%	140%	61%	50%	140%	58%	50%	140%
Benzo(a)anthracene	1	8597217	< 0.018	< 0.018	NA	< 0.018	88%	50%	140%	61%	50%	140%	58%	50%	140%
Benzo(a)pyrene	1	8597217	< 0.010	< 0.010	NA	< 0.01	112%	50%	140%	73%	50%	140%	61%	50%	140%
Benzo(b)fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.05	81%	50%	140%	71%	50%	140%	59%	50%	140%
Benzo(e)pyrene	1	8597217	< 0.01	< 0.01	NA	< 0.06	109%	50%	140%	68%	50%	140%	57%	50%	140%
Benzo(ghi)perylene	1	8597217	< 0.01	< 0.01	NA	< 0.02	116%	50%	140%	76%	50%	140%	63%	50%	140%
Benzo(k)fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.04	101%	50%	140%	69%	50%	140%	58%	50%	140%
Chrysene	1	8597217	< 0.01	< 0.01	NA	< 0.04	105%	50%	140%	69%	50%	140%	68%	50%	140%
Dibenzo(a,h)anthracene	1	8597217	< 0.01	< 0.01	NA	< 0.01	104%	50%	140%	74%	50%	140%	62%	50%	140%
Fluoranthene	1	8597217	< 0.01	< 0.01	NA	< 0.03	90%	50%	140%	64%	50%	140%	61%	50%	140%
Fluorene	1	8597217	< 0.01	< 0.01	NA	< 0.01	97%	50%	140%	70%	50%	140%	68%	50%	140%
Indeno(1,2,3-cd)pyrene	1	8597217	< 0.01	< 0.01	NA	< 0.04	89%	50%	140%	76%	50%	140%	59%	50%	140%
Naphthalene	1	8597217	< 0.01	< 0.01	NA	< 0.01	104%	50%	140%	77%	50%	140%	69%	50%	140%
Perylene	1	8597217	< 0.01	< 0.01	NA	< 0.05	125%	50%	140%	78%	50%	140%	65%	50%	140%
Phenanthrene	1	8597217	< 0.01	< 0.01	NA	< 0.02	101%	50%	140%	61%	50%	140%	57%	50%	140%
Pyrene	1	8597217	< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	64%	50%	140%	60%	50%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Kelly Hogue

AGAT QUALITY ASSURANCE REPORT (V3)

Page 26 of 33

Method Summary

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Aluminum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Antimony	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Arsenic	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Barium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Beryllium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Boron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cadmium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Chromium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Cobalt	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Copper	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Iron	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Lead	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Lithium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP-MS
Manganese	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Molybdenum	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Nickel	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Selenium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Silver	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Strontium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Thallium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Tin	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Uranium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Vanadium	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Zinc	MET-121-6105 & MET-121-6103	EPA SW 846 6020A/3050B & SM 3125	ICP/MS
Mercury	MET-121-6101 & MET-121-6107	EPA 245.5	CVAAS
Particle Size Distribution (<12.5mm, -4 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<9.5mm, -3 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<4.75mm, -2 PHI	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<2mm, -1 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE
Particle Size Distribution (<1mm, 0 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE

Method Summary

CLIENT NAME: ENGLOBE CORP

AGAT WORK ORDER: 17X238910

PROJECT: P-0011130-0-19-200

ATTENTION TO: Christina Caldwell

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Particle Size Distribution (<1/2mm, 1 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/4mm, 2 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/8mm, 3 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/16mm, 4 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/32mm, 5 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/64mm, 6 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/128mm, 7 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/256mm, 8 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (<1/512mm, 9 PHI)	INOR-121-6034	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (Gravel)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (Sand)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (Silt)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE		
Particle Size Distribution (Clay)	INOR-121-6031	ASTM D-422-63	SIEVE & PIPETTE		
Particles >75um	INOR-121-6031, INOR-121-6034	ASTM D-422-63	CALCULATED		
Classification	INOR-121-6031, INOR-121-6031	Atlantic RBCA	CALCULATED		
Chromium, Hexavalent	INOR-121-6029	SSSA 5;25 p. 683	SPECTROPHOTOMETER		
Aluminum Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Antimony Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Arsenic Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Barium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Beryllium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Bismuth Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Boron Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Cadmium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Chromium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Cobalt Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Copper Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Iron Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Lead Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Lithium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Manganese Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Molybdenum Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Nickel Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		
Selenium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS		

Method Summary

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE.		SAIVIPLED DT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Silver Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Strontium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Thallium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Tin Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Uranium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Vanadium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Zinc Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Electrical Conductivity	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES
Fraction Organic Carbon-1	INOR-93-6062	Skjemstad & Baldock, 2008 & Walkley & Balck 1934	SPECTROPHOTOMETER
Fraction Organic Carbon-2	INOR-93-6062	Skjemstad & Baldock, 2008 & Walkley & Balck 1934	SPECTROPHOTOMETER
Fraction Organic Carbon-3	INOR-93-6062	Skjemstad & Baldock, 2008 & Walkley & Balck 1934	SPECTROPHOTOMETER
Fraction Organic Carbon-Avg	INOR-93-6062	Skjemstad & Baldock, 2008 & Walkley & Balck 1934	SPECTROPHOTOMETER
Magnesium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Sodium Leachate	MET-121-6108, MET-121-6105	EPA SW-846 6020A/SM1325 In-house leachate	ICP-MS
Initial pH	MET-121-6108		pH METER
Final pH	MET-121-6108		pH METER
% Moisture			GRAVIMETRIC
Total Sample Mass			
Hardness		SM 2340B	CALCULATION
рН	INOR-121-6006	modified from Canadian Society of Soil Science p15	pH METER

Method Summary

CLIENT NAME: ENGLOBE CORP PROJECT: P-0011130-0-19-200 AGAT WORK ORDER: 17X238910
ATTENTION TO: Christina Caldwell

PARAMETER	AGAT S.O.P	S.O.P LITERATURE REFERENCE ANALYT	
Trace Organics Analysis			
Benzene - by Headspace	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Toluene - bt Headspace	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Ethylbenzene - by Headspace	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Xylene (Total) - by Headspace	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
C6-C10 (less BTEX) - by Headspace	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
>C10-C16 Hydrocarbons - 1X silica gel	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C16-C21 Hydrocarbons - 1X silica gel	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
>C21-C32 Hydrocarbons - 1X silica gel	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Modified TPH (Tier 1) - 1X silica gel	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Resemblance Comment	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Creosote Comment		Allertie DDOA Orideliere for	GC/FID
Return to Baseline at C32	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Silica Gel Cleanup			GC/FID
Isobutylbenzene - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
n-Dotriacontane - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Dieldrin	ORG-120-5108		GC/ECD
o,p'-DDD	ORG-120-5108		GC/ECD
o,p'-DDE	ORG-120-5108		GC/ECD
o,p'-DDT	ORG-120-5108		GC/ECD
p,p'-DDD	ORG-120-5108		GC/ECD
p,p'-DDE	ORG-120-5108		GC/ECD
p,p'-DDT o,p'-DDT + p,p'-DDT	ORG-120-5108 ORG-120-5108	Based on EPA SW-846/6510	GC/ECD GC/ECD
o,p'-DDD + p,p'-DDD	ORG-120-5108	C-8080-8081 A Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD
o,p'-DDE + p,p'-DDE	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD
Total DDT	Calculation	Calculation	GC/FID
1-Methylnaphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
2-Methylnaphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acenaphthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acenaphthylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Acridine	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(a)anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(a)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(b)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS

Method Summary

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzo(b+j)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(e)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(ghi)perylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Benzo(k)fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Chrysene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Fluoranthene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Fluorene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Indeno(1,2,3)pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Naphthalene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Perylene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Phenanthrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Pyrene	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Quinoline	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Total PAH			CALCULATION
Nitrobenzene-d5	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
2-Fluorobiphenyl	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Terphenyl-d14	ORG-120-5104	EPA SW846/3541/3510/8270C	GC/MS
Total Polychlorinated Biphenyls	ORG-120-5106	EPA SW846/8081/8080	GC/ECD
% Moisture		Calculation	GRAVIMETRIC
1-Methylnaphthalene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
2-Methylnaphthalene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Acenaphthene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Acenaphthylene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Anthracene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(a)anthracene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(a)pyrene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(b)fluoranthene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(b+j)fluoranthene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(ghi)perylene	ORG-120-5104/INOR-121-6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(k)fluoranthene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Chrysene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Fluoranthene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Fluorene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Naphthalene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS

Method Summary

CLIENT NAME: ENGLOBE CORP AGAT WORK ORDER: 17X238910
PROJECT: P-0011130-0-19-200 ATTENTION TO: Christina Caldwell

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Perylene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Phenanthrene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Pyrene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Acridine	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Benzo(e)pyrene	ORG-120-5104/INOR-121- 6039	EPA SW846/3510/8270D/1311	GC/MS
Nitrobenzene-d5	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
2-Fluorobiphenyl	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
Terphenyl-d14	ORG-120-5104	EPA SW846/3510/8270C	GC/MS
1-Methylnaphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
2-Methylnaphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Acenaphthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Acenaphthylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(a)anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(a)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(b)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(b+j)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(e)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(ghi)perylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Benzo(k)fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Chrysene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Dibenzo(a,h)anthracene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Fluoranthene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Fluorene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Naphthalene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Perylene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Phenanthrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS
Pyrene	ORG-120-5104/INOR-121- 6040	CGSB 164-GP-IMP/EPA SW846/3510/8270D/354	GC/MS

97 Troop Avenue Darmouth, NS B3B 2A7

P-0011130-0-19-200

Same (Y/N) - Circle

902-468-4919

July 18/17

Unit 122 - 11 Morris Dr. Dartmouth, Nova Scotia B3B 1M2 http://webearth.agatlabs.com

Christina Caldwell

A09616

902-468-6486 FAX:

158369

Report To:

Contact:

Address:

Phone:

PO#:

Company: Englobe

AGAT Quotation:

Client Project #:

PO#/Credit Card #:

SAMPLE IDENTIFICATION

Sample Relinquished By (print name & sign)

Sample Kellingujshed By (print name & sign)

Leeusio Thomson

Invoice to:

Company:

Contact:

Address:

VC-SED1

VC-SED2

VC-SED3

VC-SED4

VC-SED5

Fax: 902-468-8924

Phone: 902-468-8718 www.agatlabs.com

1. Name:

2. Name:

☐ PIRI

□ ССМЕ

Email:

Email:

Report Information

☐ List Guidelines on Report

Other

OF CONTAINERS

BRL

order

B11

Date/Time

Date/Time

MATRIX

sed./soil

sed./soil

sed./soil

sed./soil

sed./soil

Regulatory Requirements (Check):

es	Arri	val Co val Te	nditio	n:	Onl දුරි	У		Good	d			(comp		notes')	17	X	23	89	10)
	Dri	nking) Wa	iter S	Samp	le (y,	/n):		N		Reg	. No.								
	Wat	erworl	ks Nu	mber			_													
formation Christina Caldwell Christina caldwell Christina caldwell Genglobecorp.com Jenna Walker Genglobecorp.com Requirements (Check): Tier 1	idelines k all that	apply): Coars		Rep	Single sample page Multip sample page	PDF e per le PDF es per	Reg Rusi Date	ular 1 h TA1	FAT: 5 - F: 1 da 3 - 4	7 day	ys	TAT)			s Day	/S	100			
CDWQ	Other -	Available Metals(w Sn,Se- LL)	Hexavalent Chromium	Mercury	PSA - Sieve & Pipette	FOC	TIC (Burnaby)	Pentachlorophenol	Silica Gei Cleanup + MIBE + Creosote Comment	ow-level TPH/BTEX (PIRI) Tier	Total PAH (LL.)	Total PCB's (Calculation)	Total Cyanide (Miss.)	Hot Water Soluble Boron (Miss.)	Extract and Hold for Potential BTEX/VPH Leachate	pH (1:2 ratio)	Conductivity	Sodium Adsarption Ratio	DDT Suite	Lab Sample #
marine sediment		X	X	X	X	X	-		X	X	X	X	E	IE	iii in	X	X	X	X	
marine sediment	les :	X	X	X	X	X			X	X	X	X				x	X	X	X	
marine sediment	3	Х	X	Х	Х	Х			X	Х	X	X				X	×	X	X	
marine sediment		Х	X	Х	X	Х			X	Х	X	Х				Х	Х	X	X	
marine sediment		Х	X	X	X	Х			X	Х	×	Х				Х	X	Х	X	
Samples Received By (print name and	sign)						Da	te/TI	me			tructio		STRUMPORT .						
Samples Received By (print name and sign)					13 Da	ite/Ti	me	of cr	eosot	e in s	ampl	es as	e com well as for po	s pro	vide ti	ne res	ults i	resence n GIS- sis.		

Page

1 of 1

APPENDIX D – Transect Surveys

Table D.1 Transect T1 (125 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances²)	Macrofloral Life Observed (Estimated % Coverage)				
0-5	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
5-10	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
10-15	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (<1% to 100%). Eelgrass leaf debris common.				
15-20	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (<10%). Eelgrass leaf debris common.				
		Periwinkles, Littorina sp. (A)					
20-25	Sandy-Silt (100%)	Barnacles, Balanus sp. (A).	Eelgrass, Zostera marina (<10%). Eelgrass leaf debris common.				
		Blue mussel, Mytilus edulis (A).					
		Periwinkles, Littorina sp. (A).					
25-30	Sandy-Silt (100%)	Barnacles, Balanus sp. (A).	Eelgrass, Zostera marina (<1% to 30%). Eelgrass leaf debris common.				
		Blue mussel, Mytilus edulis (A).					
20.25	Cond. Cilt (1000/)	Periwinkles, Littorina sp. (A).	Folgrand Zantara marina (10/ to 200/) Folgrand last debrie common				
30-35	Sandy-Silt (100%)	Blue mussel, Mytilus edulis (A).	Eelgrass, Zostera marina (<1% to 80%). Eelgrass leaf debris common.				
35-40	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (80% to 100%).				
40-45	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (80% to 100%).				
45-50	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
50-55	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
55-60	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
60-65	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
65-70	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).				
70-75	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (0% to 100%). Some barren grounds with dead eel grass.				
75-80	Sandy-Silt (100%)	, , ,	Barren grounds with dead eel grass.				
80-85	Sandy-Silt (100%)		Barren grounds with dead eel grass.				
85-90	Sandy-Silt (100%)	Periwinkles, Littorina sp. (C).	Barren grounds with dead eel grass.				
90-95	Sandy-Silt (100%)	,					
95-100	Sandy-Silt (100%)	Periwinkles, Littorina sp. (C).	Barren grounds with dead eel grass.				
100-105			at. No benthic visibility for assessment.				
105-110		Shallow intertidal mudfla	at. No benthic visibility for assessment.				
110-115		Shallow intertidal mudflat. No benthic visibility for assessment.					
115-120		Shallow intertidal mudflat. No benthic visibility for assessment.					
120-125		Shallow intertidal mudfla	at. No benthic visibility for assessment.				

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
- C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
- O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
- U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

¹ Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

² A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.2 Transect T2 (45 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
5-10	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
10-15	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
15-20	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
20-25	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
25-30	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
30-35	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
35-40	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
40-45	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
- C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
 O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
- U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

¹ Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

²A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.3 Transect T3 (75 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Likely sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp.</i> (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
5-10	Likley sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp</i> .(A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp</i> . (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
10-15	Likley sandy-Silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp</i> .(A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp</i> . (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
15-20	Likely sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp</i> .(A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp</i> . (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
20-25	Likely sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp</i> . (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp</i> . (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<1%).
25-30	Likely sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp</i> .(A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp</i> . (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<1%).
30-35	Likely sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp</i> . (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp</i> . (A). Moon snail, <i>Lunatia heros</i> (O).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%). Tuffs of eelgrass, <i>Zostera marina</i> (<1%).

Table D.3 Transect T3 (75 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
35-40	Likely sandy-silt (100%) covered by dense, heavy shell debris carpet comprised of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp.</i> (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O). Brown shrimp, <i>Crangon sp.</i> (U). Rock crab, <i>Cancer irroratus</i> (U).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<10%).
40-45	Likely sandy-silt (100%) covered with dense but decreasing shell debris.	Barnacles, <i>Balanus sp.</i> (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O).	Patches of dense eelgrass (<i>Zostera marina</i>), overall (<50%). Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<20%).
45-50	Likely sandy-silt (100%) covered with dense but decreasing shell debris.	Barnacles, <i>Balanus sp.</i> (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O).	Patches of dense eelgrass (<i>Zostera marina</i>), overall (<50%). Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<20%).
50-55	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
55-60	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
60-65	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
65-70	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
70-75	Sandy-Silt (100%) . Molluscan shell field begins at end of transect.	Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (20% to 100%).

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
- C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
- O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
- U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

¹ Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

²A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.4 Transect T4 (100 m Survey July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%)
5-10	Sandy-Silt (100%)	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (100%)
10-15	Sandy-Silt (100%)	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (80%)
15-20	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (80%)
		Periwinkles, Littorina sp. (A).	
20-25	Sandy-Silt (95%) with gravel (5%), some shell debris.	Barnacles, Balanus sp. (C).	Eelgrass, Zostera marina (0% to 80%). Eelgrass leaf debris common
		Blue mussel, Mytilus edulis (C).	
		Periwinkles, Littorina sp. (A).	
25-30	Sandy-Silt (95%) with gravel (5%), heavy shell debris.	Barnacles, Balanus sp. (C).	Eelgrass, Zostera marina (<5%) in patches. Eelgrass leaf debris commor
		Blue mussel, Mytilus edulis (C).	
		Barnacles, Balanus sp. (A).	
		Blue mussel, Mytilus edulis (A).	
30-35	Sandy-Silt (95%) with gravel (5%), heavy shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass leaf debris common.
		Moon snail, Lunatia heros (C).	
		Rock crab, Cancer irroratus (U).	
		Barnacles, Balanus sp. (A).	
		Blue mussel, <i>Mytilus edulis</i> (A).	
35-40	Sandy-Silt (95%) with gravel (5%), heavy shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass leaf debris common.
		Moon snail, Lunatia heros (C).	
		Barnacles, Balanus sp. (A).	
		Blue mussel, <i>Mytilus edulis</i> (A).	
40-45	Sandy-Silt (95%) with gravel (5%), heavy shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass leaf debris common.
		Moon snail, Lunatia heros (C).	
		Barnacles, Balanus sp. (A).	
45-50	Sandy-Silt (90%) with gravel (10%), moderate shell	Blue mussel, <i>Mytilus edulis</i> (A).	Eelgrass leaf debris common.
	debris.	Periwinkles, <i>Littorina sp.</i> (A).	Longrado rodi dobrio common.
		Barnacles, <i>Balanus sp.</i> (A).	
50-55	Sandy-Silt (90%) with gravel (10%), moderate shell	Blue mussel, <i>Mytilus edulis</i> (A).	Eelgrass, Zostera marina (<1%) in patches. Eelgrass leaf debris commo
	debris.	Periwinkles, <i>Littorina sp.</i> (A).	
	0 1 00 (050) 10 1 (50)	Barnacles, Balanus sp. (A).	
55-60	Sandy-Silt (95%) with gravel (5%), moderate shell	Blue mussel, <i>Mytilus edulis</i> (A).	Eelgrass, Zostera marina (<1%) in patches. Eelgrass leaf debris commo
	debris.	Periwinkles, <i>Littorina sp.</i> (A).	
	0 1 00 (050)	Barnacles, Balanus sp. (A).	
60-65	Sandy-Silt (95%) with gravel (5%), moderate shell	Blue mussel, <i>Mytilus edulis</i> (A).	Eelgrass, Zostera marina (<1%) in patches. Eelgrass leaf debris commo
	debris.	Periwinkles, <i>Littorina sp.</i> (A).	
		Periwinkles, Littorina sp. (A).	
65-70	Sandy-Silt (100%) with minor shell debris.	Barnacles, <i>Balanus sp.</i> (0).	Eelgrass leaf debris common.
	, (,	Blue mussel, <i>Mytilus edulis</i> (O).	y
		Periwinkles, Littorina sp. (A).	
70-75	Sandy-Silt (100%) with minor shell debris.	Barnacles, <i>Balanus sp.</i> (0).	Eelgrass leaf debris common.
70 70	Janay Jiit (10070) With Hillion Shell debits.	Blue mussel, <i>Mytilus edulis</i> (0).	

Table D.4 Transect T4 (100 m Survey July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
75-80	Sandy-Silt (100%) with minor shell debris.	Periwinkles, Littorina sp. (A). Barnacles, <i>Balanus sp.</i> (O). Blue mussel, <i>Mytilus edulis</i> (O).	Eelgrass leaf debris common.
80-85	Sandy-Silt (100%) with minor shell debris.	Periwinkles, Littorina sp. (A). Barnacles, <i>Balanus sp.</i> (O). Blue mussel, <i>Mytilus edulis</i> (O).	Eelgrass leaf debris common.
85-90	Sandy-Silt (100%) with minor shell debris.	Periwinkles, Littorina sp. (A). Barnacles, <i>Balanus sp.</i> (O). Blue mussel, <i>Mytilus edulis</i> (O).	Eelgrass leaf debris common.
90-95	Sandy-Silt (100%) with minor shell debris.	Periwinkles, Littorina sp. (A). Barnacles, <i>Balanus sp.</i> (O). Blue mussel, <i>Mytilus edulis</i> (O).	Eelgrass leaf debris common.
95-100	Sandy-Silt (100%), barren grounds.	-	-

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
 C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
- O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
 U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

[&]quot; - " = None Observed

¹Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

²A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.5 Transect T5 (50 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Sandy-Silt (100%) covered by heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>) and oyster (<i>Crassostrea virginica</i>).	Blue mussels, <i>Mytilus edulis</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Barnacles, <i>Balanus sp.</i> (U). Rock crab, <i>Cancer irroratus</i> (U).	-
5-10	Sandy-Silt (100%) covered by heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>) and oyster (Crassostrea virginica).	Blue mussels, <i>Mytilus edulis</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Barnacles, <i>Balanus sp.</i> (U). Rock crab, <i>Cancer irroratus</i> (U).	-
10-15	Sandy-Silt (100%) covered by heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>) and oyster (<i>Crassostrea virginica</i>).	Periwinkles, <i>Littorina sp.</i> (A). Anemone, <i>Tealia feline</i> (U). Barnacles, <i>Balanus sp.</i> (U). Rock crab, <i>Cancer irroratus</i> (U).	-
15-20	Sandy-Silt (95%) with gravel (5%), some shell debris.	Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (U).	Eelgrass, Zostera marina (<1%). Eelgrass leaf debris common
20-25	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
25-30	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
30-35	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
35-40	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
40-45	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
45-50	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
 C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
 O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
- U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

[&]quot; -" = None Observed

¹Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

²A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.6 Transect T6 (100 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Sandy-Silt (100%), little shell debris.	-	Eelgrass, Zostera marina, leaf debris common.
5-10	Sandy-Silt (100%), little shell debris.	=	Eelgrass, Zostera marina, leaf debris common.
10-15	Sandy-Silt (100%)	-	Eelgrass, Zostera marina, leaf debris common.
15-20	Sandy-Silt (100%)	Rock crab, Cancer irroratus (U).	-
20-25	Sandy-Silt (100%)	-	-
25-30	Sandy-Silt (100%) with gravel matrix.	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (<5%) in patches. Eelgrass leaf debris common.
30-35	Sandy-Silt (100%) with gravel matrix.	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (<5%) in patches. Eelgrass leaf debris common.
35-40	Sandy-Silt (100%) with gravel matrix.	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (<5%) in patches. Eelgrass leaf debris common.
40-45	Sandy-Silt (100%) with gravel matrix.	-	-
45-50	Sandy-Silt (100%) with gravel matrix.	-	Eelgrass, Zostera marina, leaf debris common.
50-55	Sandy-Silt (100%), little shell debris.	Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (U).	Eelgrass, Zostera marina (0% to 80%).
55-60	Sandy-Silt (100%), heavy shell debris.	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (0% to <1%).
60-65	Sandy-Silt (100%), moderate shell debris.	Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (U).	Eelgrass, Zostera marina (0% to 1%). Eelgrass leaf debris common.
65-70	Sandy-Silt (100%), little shell debris.	Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (U). Rock crab, <i>Cancer irroratus</i> (U).	Eelgrass, Zostera marina (90%).
70-75	Sandy-Silt (100%), little shell debris.	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
75-80	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (0% to 90%). Eelgrass leaf debris common.
80-85	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (0% to 90%). Eelgrass leaf debris common.
85-90	Sandy-Silt (100%)	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina, leaf debris common.
90-95	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (0% to 90%). Eelgrass leaf debris common.
95-100	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
- C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
 O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
- U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

[&]quot; - " = None Observed

¹Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

² A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.7 Transect T7 (150 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O). Based on shell debris evidence.	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
5-10	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp.</i> (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O). Based on shell debris evidence.	Tuffs of eelgrass, Zostera marina (<5%).
10-15	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Barnacles, <i>Balanus sp.</i> (A). Blue mussel, <i>Mytilus edulis</i> (A). Horse mussel, <i>Modiolus modiolus</i> (A). Periwinkles, <i>Littorina sp.</i> (A). Moon snail, <i>Lunatia heros</i> (O). Based on shell debris evidence.	Tuffs of eelgrass, Zostera marina (<5%).
15-20	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A). Rock crab, <i>Cancer irroratus</i> (U).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
20-25	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
25-30	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
30-35	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis)</i> , horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
35-40	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).

Table D.7 Transect T7 (150 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances²)	Macrofloral Life Observed (Estimated % Coverage)
40-45	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
45-50	Sandy-Silt (100%) covered by dense, heavy shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
50-55	Sandy-Silt (100%) covered by moderate shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	-	-
55-60	Sandy-Silt (100%) covered by moderate shell debris carpet which consists of blue mussel (<i>Mytilus edulis</i>), horse mussel (<i>Modiolus modiolus</i>) and moon snail (<i>Lunatia heros</i>).	Periwinkles, <i>Littorina sp.</i> (A).	Tuffs of low relief leafy algae possibly Irish moss, <i>Chondrus cripsis</i> (<5%). Tuffs of eelgrass, <i>Zostera marina</i> (<5%).
60-65	Sandy-Silt (100%) covered by moderate shell debris.	Periwinkles, <i>Littorina sp.</i> (A). Rock crab, <i>Cancer irroratus</i> (U).	Tuffs of eelgrass, Zostera marina (<5%).
65-70	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Patch of eelgrass, Zostera marina (<10%).
70-75	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Patch of eelgrass, Zostera marina (<20%).
75-80	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (<1%). Eelgrass leaf debris common.
80-85	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (<1%). Eelgrass leaf debris common.
85-90	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (20%). Eelgrass leaf debris common.
90-95	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (20%). Eelgrass leaf debris common.
95-100	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (20%). Eelgrass leaf debris common.
100-105	Sandy-Silt (100%)		
105-110	dedris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (<5%). Eelgrass leaf debris common.
110-115	Sandy-Silt (100%) covered by reduced amounts of shell debris.	Periwinkles, <i>Littorina sp.</i> (A).	Eelgrass, Zostera marina (50%). Eelgrass leaf debris common.
115-120	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
120-125	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (0% to 90%). Eelgrass leaf debris common.
125-130	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).

Table D.7 Transect T7 (150 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances ²)	Macrofloral Life Observed (Estimated % Coverage)
130-135	Sandy-Silt (100%)	Periwinkles, <i>Littorina sp.</i> (A). Rock crab, <i>Cancer irroratus</i> (U).	Eelgrass, Zostera marina (100%).
135-140	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (100%).
140-145	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (90%).
145-150	Sandy-Silt (100%)	Periwinkles, Littorina sp. (A).	Eelgrass, Zostera marina (80%).

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
 C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
- O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
 U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

[&]quot; - " = None Observed

¹ Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

²A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

Table D.8 Transect T8 (75 m Survey, July 17, 2017) - Val-Comeau DFO-SCH, NB

Transect Distance / Interval (m)	Substrate (Estimated % Coverage ¹)	Macrofaunal Life Observed (Estimated Abundances²)	Macrofloral Life Observed (Estimated % Coverage)
0-5	Sandy-Silt (100%)	-	Eelgrass, Zostera marina (100%).
5-10	Sandy-Silt (100%)	Brown shrimp, Crangon sp. (O).	Eelgrass, Zostera marina (100%).
10-15	Sandy-Silt (100%)	-	Eelgrass, Zostera marina (95%).
15-20	Sandy-Silt (100%)	-	Dead eelgrass, Zostera marina.
20-25	Sandy-Silt (100%)	-	Dead eelgrass, Zostera marina.
25-30	Sandy-Silt (100%)	-	Dead eelgrass, Zostera marina.
30-35	Sandy-Silt (100%)	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (<1%).
35-40	Sandy-Silt (100%)	-	Eelgrass, Zostera marina (<1%).
40-45	Sandy-Silt (100%)	-	Eelgrass, Zostera marina (<1%).
45-50	Sandy-Silt (100%)	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (<1%).
50-55	Sandy-Silt (100%)	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (<1%).
55-60	Sandy-Silt (100%) with some shell debris.	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (<1%).
60-65	Sandy-Silt (100%) with increasing amounts of shell debris.	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (<1%).
65-70	Sandy-Silt (100%) with increasing amounts of shell debris.	-	Eelgrass, Zostera marina (<1%).
70-75	Sandy-Silt (100%) with shell debris.	Rock crab, Cancer irroratus (U).	Eelgrass, Zostera marina (<1%).

- A = Abundant; Numerous (not quantifiable) observations made throughout the entire 5 m segment.
 C = Common; Numerous (not quantifiable) observations made intermittently along the 5 m segment.
- O = Occasional; Quantifiable observations made intermittently along the 5 m segment.
- U = Uncommon; Quantifiable observations made infrequently along the 5 m segment.

[&]quot; - " = None Observed

¹ Boulder (>256 mm), Cobble (>64-256 mm), Gravel (>2-64 mm), Sand (0.06-2 mm), Silt (<0.06 mm).

² A = Abundant, C = Common, O = Occasional, U = Uncommon (see below).

APPENDIX E – Photos of Typical Habitat Types Along Transects

Photo 19: At 35 m from the start of transect T1, a typical eelgrass bed growing in sandy-silt sediment. Close examination shows the common periwinkle which is usually abundant on eelgrass when eelgrass is present.

Photo 20: At 75 m from the start of transect T1, typical barren ground within this transect. There is no live marine algal growth in such areas and no evidence of marine fauna.

Photo 21: At 5 m from the start of transect T2, typical eelgrass growing in sandy-silt sediment on this transect. Close examination shows the common periwinkle which is usually abundant on eelgrass when eelgrass is present and can be seen on the exposed sandy-silt sediment.



Photo 22: At 40 m from the start of transect T2, very dense eelgrass growing in the shallows of this transect.

Photo 23: At 10 m from the start of transect T3, typical cobble-gravel substrate (over silty-sand) and covered with molluscs and low relief leafy algae. Barnacles, blue mussel, horse mussel, moon snail and periwinkles are abundant here, based on shell debris evidence. Tuffs of low relief leafy algae possibly Irish moss is shown.

Photo 24: At 25 m from the start of transect T3, typical cobble-gravel substrate (over silty-sand) and covered with molluscs and low relief leafy algae. Barnacles, blue mussel, horse mussel, moon snail and periwinkles are abundant here based on shell debris evidence. Tuffs of low relief leafy algae possibly Irish moss is shown.

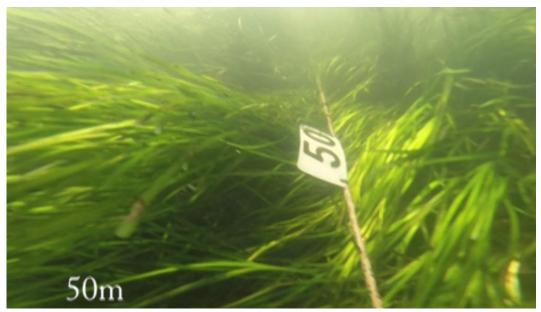


Photo 25: At 50 m from the start of transect T3, a dense bed of eelgrass known to grow on sandy-silt substrates. Periwinkles are usually abundant on eelgrass when eelgrass is present.

Photo 26: At the end (75 m) of transect 3, a gravel sandy-silt substrate with a few sprigs of eelgrass. Barnacles, blue mussel, horse mussel, and periwinkles typify the fauna here.



Photo 27: At 5 m from the start of transect 4, a dense bed of eelgrass which is known to grow on sandy-silt substrates. Periwinkles usually are abundant on eelgrass when eelgrass is present.

Photo 28: At 15 m from the start of transect T4, a largely sandy-silt substrate covered with limited amounts of eelgrass.

Photo 29: At 25 m from the start of transect T4, a largely gravel sandy-silt substrate is covered with moderate amounts of eelgrass. Some mollusc shells can be seen on the substrate surface and periwinkles can been seen on the blades of eelgrass.

Photo 30: At 35 from the start of transect T4, a dense bivalve shell bed on gravel sandy-silt substrate. The majority of the shell bed appears to be composed of dead blue mussels. Molluscs that could be living in the shell include the moon snail and periwinkles. Barnacles also are usually found on this dead shell debris.

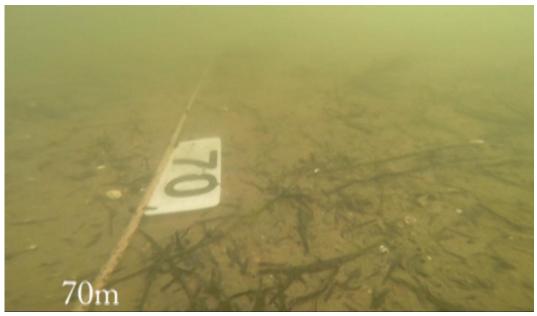


Photo 31: At 70 m from the start of transect T4, a typical flat sandy-silt substrate showing dead eelgrass.

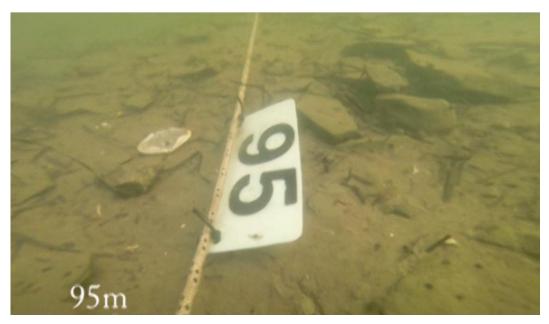


Photo 32: At 95 m from the start of transect T4, a typical flat sandy-silt substrate showing dead eelgrass.

Photo 33: At 10 m from the start of transect T5, very dense molluscan shell bed with purple anemone.

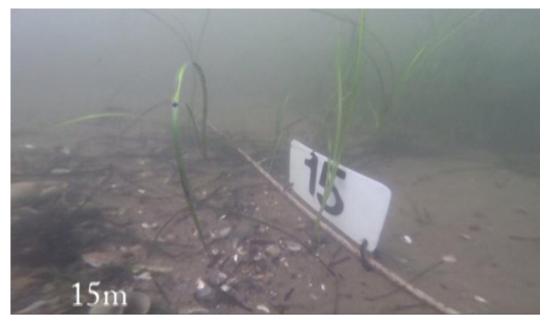


Photo 34: At 15 m from the start of transect T5, sandy-silt substrate with some molluscan shell debris and isolated patches of eelgrass present.

Photo 35: At 25 from the start of transect T5, dense eelgrass growing in sandy-silt sediment.

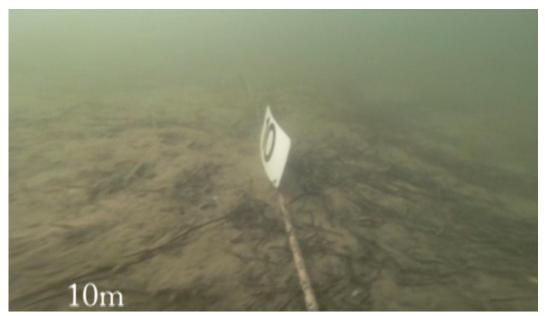


Photo 36: At 10 m from the start of transect T6, flat sandy-silt substrate showing dead eelgrass.

Photo 37: At 35 m from the start of transect T6, sandy-silt substrate showing a few live sprigs of eelgrass.

Photo 38: At 60 m from the start of transect T6, considerable shell debris composed primarily of blue mussel, horse mussel, giant scallop, and periwinkles.

Photo 39: At 105 m from the start of transect T6, dense eelgrass growing in sandy-silt sediment.

Photo 40: At 10 m from the start of transect T7, sandy-silt substrate covered by dense, heavy shell debris comprised of blue mussel, horse mussel, moon snail, barnacles and periwinkles.

Photo 41: At 35 m from the start of transect T7, sandy-silt sediment with dense shell debris cover which is comprised primarily of blue mussel, horse mussel, moon snail, barnacles and periwinkles.

Photo 42: At 35 m from the start of transect T7, sandy-silt sediment with moderate shell debris cover which is comprised primarily of blue mussel, horse mussel, moon snail, barnacles and periwinkles.

Photo 43: At 80 m from the start of transect T7, sandy-silt sediment with low shell debris cover which is comprised primarily of blue mussel, horse mussel, moon snail, barnacles and periwinkles.

Photo 44: At 95 m from the start of transect T7, moderate eelgrass cover over sandy-silt substrate with some shell debris.

Photo 45: At 130 m from the start of transect T7, a high density of eelgrass which is known to grow on sandy-silt substrates. Periwinkles are usually are abundant on eelgrass.

Photo 46: At 140 m from the start of transect T7, a low density of eelgrass which is known to grow on sandy-silt substrates. Periwinkles are usually abundant on eelgrass.

Photo 47: At 5 m from the start of transect T8, a high density of eelgrass which is known to grow on sandy-silt substrates. Periwinkles are usually abundant on eelgrass.

Photo 48: At 35 m from the start of transect T8, flat sandy-silt substrate with dead eelgrass.

Photo 49: At 55 m from the start of transect T8, flat sandy-silt substrate with dead eelgrass.

Photo 50: At 75 m from the start of transect T8, cobble gravel substrate with dead eelgrass.

