The Crossing Traffic Impact Study

Horizon Management Ltd.

Type of Document:
Draft Report
Project Number:
FRE-00235545-A0
Prepared By:
Kaitlin Hazzard, MIT
Reviewed By:
Don Good, P.Eng
exp Services Inc.
1133 Regent Street, Suite 300
Fredericton, NB, E3B $3 Z 2$
Canada
T: +1.506.452.9000
www.exp.com

Date Submitted:
2017-06-27

Legal Notification

This report was prepared by \exp Services Inc. for the account of Horizon Management Ltd.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Exp Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

exp Quality System Checks	
Project No.: FRE-00235545-A0	Date: June 27, 2017
Type of Document: Draft Report	Revision No.:01
Prepared By: Kaitlin Hazzard, MIT	Katie Hayzard
Reviewed By: Don Good, P.Eng	Klun Fool

Table of Contents

Legal Notification i
Table of Contents. ii
List of Tables iii
List of Figures iv
Executive Summary v
1 Introduction 1
1.1 Background 1
1.2 Study Objectives 1
1.3 Study Area 2
1.4 Horizon Period 2
2 Information Gathering4
2.1 Existing Traffic Volumes 4
2.2 Horizon Year Traffic Volumes 7
2.3 Street and Intersection Characteristics 14
2.4 Active Transportation Characteristics 16
2.5 Transit Characteristics 17
2.6 Development Characteristics. 18
3 Existing and Future Background Traffic Operations 19
3.1 Introduction 19
3.2 Existing and Horizon Year LOS without Development 20
4 Trip Generation and Assignment 38
4.1 Trip Generation 38
4.2 Trip Assignment 42
$5 \quad$ Future Traffic Operations - Phase 1 46
5.1 2023 Horizon Year Levels of Service (Phase 1) 46
6 Impact of Ashburn Underpass 64
6.1 Redistribution of Existing Traffic 64
6.2 Revised Trip Assignment 68
7 Future Traffic Operations - Phase 2 and 3 72
7.1 2033 Horizon Year Levels of Service (Full Build Out) 72
8 Conclusions 86
Appendix A - Site Plan
Appendix B - LOS Results without Development
Appendix C - LOS Results with Phase 1 (2023) of Development
Appendix D - LOS Results with Phase 2 \& 3 (2033) of Development
List of Tables
Table 1 - Level of Service Criteria for Intersections 19
Table 2 - LOS Summary for Foster Thurston Dr/Ashburn Rd without Development 20
Table 3 - LOS Summary for Foster Thurston Dr/Rte 1 Ramps without Development 22
Table 4 - LOS Summary for Ashburn Lake Rd/Rte 1 Ramps without Development. 23
Table 5 - LOS Summary for Rothesay Ave/Retail Dr without Development 24
Table 6 - LOS Summary for Rothesay Ave/Ashburn Lake Rd without Development 26
Table 7 - LOS Summary for Rothesay Rd/Fulton Ln without Development 27
Table 8 - LOS Summary for Ashburn Rd/Jones Dr without Development 28
Table 9 - LOS Summary for Ashburn Rd/Drury Cover Rd without Development 29
Table 10 - LOS Summary for Rothesay Rd/Rothesay Ave without Development 30
Table 11 - LOS Summary for Rothesay Rd/Ashburn Rd without Development 31
Table 12 - LOS Summary for Rothesay Ave/Rte 1 off-ramp without Development 33
Table 13 - LOS Summary for Rothesay Ave/Rte 1 on-ramp (furthest west) without Development 34
Table 14 - LOS Summary for Rothesay Ave/Rte 1 on-ramp (furthest east) without Development 35
Table 15 - LOS Summary for Rothesay Rd/Rt 1 Ramps without Development 36
Table 16 - LOS Summary for Rothesay Ave/Rte 1 Ramps without Development 37
Table 17 - Trip Generation for Development 38
Table 18 - LOS Summary for Foster Thurston Dr/Ashburn Rd with Development (Ph 1) 47
Table 19 - LOS Summary for Foster Thurston Dr/Rte 1 Ramps with Development (Ph 1) 47
Table 20 - LOS Summary for Ashburn Lake Rd/Rte 1 Ramps with Development (Ph 1) 48
Table 21 - LOS Summary for Rothesay Ave/Retail Dr with Development (Ph 1) 50
Table 22 - LOS Summary for Rothesay Rd/Fulton Ln/Access with Development (Ph 1) 52
Table 23 - LOS Summary for Ashburn Rd/Jones Dr/Access with Development (Ph 1) 52
Table 24 - LOS Summary for Ashburn Rd/Drury Cove Rd with Development (Ph 1) 53
Table 25 - LOS Summary for Rothesay Rd/Rothesay Ave with Development (Ph 1) 56
Table 26 - LOS Summary for Rothesay Rd/Ashburn Rd with Development (Ph 1) 58
Table 27 - LOS Summary for Rothesay Ave/Rte1 off-ramp with Development (Ph 1) 59
Table 28 - LOS Summary for Rothesay Ave/Rte 1 on-ramp intersections with Development (Ph 1) 60
Table 29 - LOS Analysis for Rothesay Rd/Rte 1 Access Ramps 60
Table 30 - LOS Summary for Rothesay Ave/Rte 1 Access Ramps (Ph 1) 61
Table 31 - LOS Summary for Ashburn Road Access Points with Development (Ph 1) 63
Table 32 - LOS Summary for Foster Thurston Dr/Ashburn Rd with Development (Full Build Out) 73
Table 33 - LOS Summary for Foster Thurston Dr/Rte 1 Access Ramps with Development (Full Build Out) 73
Table 34 - LOS Summary for Ashburn Lake Rd/Rte 1 Access Ramps (Full Build Out). 74
Table 35 - LOS Summary for Rothesay Ave/Retail Dr/Ashburn Lake Rd with Development (Full Build Out) 75
Table 36 - LOS Summary for Rothesay Rd/Fulton Ln/Access with Development (Full Build Out) 76
Table 37 - LOS Summary for Ashburn Rd/Jones Dr/Access with Development (Full Build Out) 76
Table 38 - LOS Summary for Ashburn Rd/Drury Cove Rd with Development (Full Build Out) 77
Table 39 - LOS Summary for Rothesay Rd/Rothesay Ave with Development (Full Build Out) 78
Table 40 - LOS Summary for Rothesay Rd/Ashburn Rd with Development (Full Build Out) 78
Table 41 - LOS Summary for Rothesay Ave/Rte1 off-ramp with Development (Full Build Out) 79
Table 42 - LOS Summary for Rothesay Ave/Rte 1 on-ramp with Development (Full Build Out) 80
Table 43 - LOS Summary for Rothesay Rd/Rte 1 Access Ramps (Full Build Out) 81
Table 44 - LOS Summary for Rothesay Ave/Rte 1 Access Ramps (Full Build Out) 81
Table 45 - LOS Summary for Ashburn Road Access Points with Development (Full Build Out) 84
Table 46 - LOS Summary for Ashburn underpass/Ashburn Lake Rd Ramp Terminal (Full Build Out) 85

List of Figures

Figure 1 - Study Area 3
Figure 2 - Existing 2016 Traffic Volumes (1 of 2) AM/PM/SAT 5
Figure 3 - Existing 2016 Traffic Volumes (2 of 2) AM/PM/SAT 6
Figure 4 - Projected 2023 Horizon Year Traffic Volumes (1 of 2) AM/PM/SAT 8
Figure 5 - Projected 2023 Horizon Year Traffic Volumes (2 of 2) AM/PM/SAT 9
Figure 6 - Projected 2028 Horizon Year Traffic Volumes (1 of 2) AM/PM/SAT 10
Figure 7 - Projected 2028 Horizon Year Traffic Volumes (2 of 2) AM/PM/SAT 11
Figure 8 - Projected 2033 Horizon Year Traffic Volumes (1 of 2) AM/PM/SAT 12
Figure 9 - Projected 2033 Horizon Year Traffic Volumes (2 of 2) AM/PM/SAT 13
Figure 10 - Proposed Development Phasing 41
Figure 11 - Trip Assignment - Development Phase 1 (2023 Horizon Year) (1 of 3) 43
Figure 12 - Trip Assignment - Development Phase 1 (2023 Horizon Year) (2 of 3) 44
Figure 13 - Trip Assignment - Development Phase 1 (2023 Horizon Year) (3 of 3) 45
Figure 14 - Projected Volumes for Realigned Rothesay Ave / Retail Dr (2023 w/ Development) - PM/SAT 50
Figure 15 - Anticipated Traffic Redistribution attributed to new Ashburn Underpass 65
Figure 16 - Redistributed Existing (2016) Traffic with Ashburn Underpass (1 of 2) - PM/SAT 66
Figure 17 - Redistributed Existing (2016) Traffic with Ashburn Underpass (2 of 2) - PM/SAT 67
Figure 18 - Revised Trip Assignment Full Build Out with Ashburn Underpass (1 of 3) - PM/SAT 69
Figure 19 - Revised Trip Assignment Full Build Out with Ashburn Underpass (2 of 3) - PM/SAT 70
Figure 20 - Revised Trip Assignment Full Build Out with Ashburn Underpass (3 of 3) - PM/SAT 71

Executive Summary

Background	- In November of 2016, Exp Services was hired by Horizon Management Ltd to undertake a traffic impact study for a proposed mixed use development in northeast Saint John, referred to as "The Crossing". - It is estimated that The Crossing will ultimately consist of approximately 850,000 ft2 of building floor area, including commercial, retail, residential, and recreational space. - Full build out is expected to occur in three phases, over a 15-year horizon as follows: - Phase 1 completed by 2023 (approximately $250,000 \mathrm{ft}^{2}$) - Phase 2 completed by 2028 (approximately 260,000 ft²) - Phase 3 completed by 2033 (approximately 340,000 ft^{2})
TIS Study Area	- The City of Saint John requested that the TIS consider the impact that newly generated traffic from The Crossing would have on the following intersections: 1. Foster Thurston Drive / Ashburn Road 2. Foster Thurston Drive / NB Route 1 Access Ramps (Exit 128) 3. Ashburn Lake Road / NB Route 1 Access Ramps (Exit 128) 4. Rothesay Avenue / Retail Drive 5. Rothesay Avenue / Ashburn Lake Road 6. Rothesay Road / Fulton Lane 7. Ashburn Road / Jones Drive 8. Ashburn Road / Drury Cove Road 9. Ashburn Road / Rothesay Road 10. Rothesay Avenue / Rothesay Road / NB Route 1 interchange 11. All site access driveway intersections with Ashburn Road
Existing Traffic Counts	- Full turning movement counts were undertaken at each intersection within the study area using Miovision's automated video detection equipment.
Peak Hour	- From the counts, it was determined that the peak traffic hours were 7:30 am - 8:30 am for the weekday morning, 4:15 pm - 5:15 pm for the weekday evening, and from 1:00 pm - 2:00 pm on Saturday. - An annual growth rate of 1% was applied to all existing peak hour counts to project background traffic for future horizon years.
Projected Traffic Operations without development	- Existing and horizon year traffic operations were projected for the Study Area without the development in place. The following summarizes locations where operational issues (high delays and/or queueing) already exist or are projected: - Rothesay Ave./Retail Dr. - westbound (Retail Dr.) left-turn movement \& SB (Rothesay Ave) left-turn movement (existing); - Rothesay Ave./Ashburn Lake Rd. - northbound (Rothesay Ave.) movement (by 2028);

- Rothesay Ave./Rothesay Rd. - westbound movement (existing);
- Foster Thurston Dr./Ashburn Rd. - northbound and southbound (Ashburn Rd.) through movements (existing);
- Rothesay Ave./Rte 1 off-ramp - eastbound and westbound (Rothesay Ave.) movements (existing); and
- Rothesay Rd./Rte 1 on-ramp (by 2033).
Recommended
Upgrades to
Address
Current/Future
Operational Issues
without
development
- The following improvements are recommended to address existing and/or future operational issues within the study area regardless of whether the development proceeds:
- Rothesay Rd./Rothesay Ave. - upgrade intersection from current stop-controlled configuration to either traffic signals or a roundabout.
- Rothesay Ave./Rte 1 off-ramp - upgrade intersection from current stop-controlled configuration to either traffic signals or a roundabout.
- Rothesay Rd./Rte 1 on-ramp - construct weaving lane between Route 100 on-ramp and Foster Thurston off-ramp.
- Rothesay Ave./Retail Dr./Ashburn Lake Rd. - realign existing intersections into a 4-leg, fully actuated signalized intersection, with dedicated left turn lanes.

Trip Generation

- The number of newly generated vehicle trips for each phase of the proposed development were estimated as follows using standard trip generation rates published by the Institute of Transportation Engineers:

Phase 1

- AM Peak Hour - entering: 758, exiting: 641
- PM Peak Hour- entering: 841, exiting: 834
- Saturday Peak Hour - entering: 1071, exiting: 1052

Phase 2

- AM Peak Hour- entering: 268, exiting: 180
- PM Peak Hour- entering: 428, exiting: 389
- Saturday Peak Hour - entering: 1063, exiting: 915

Phase 3

- AM Peak Hour - entering: 239, exiting: 121
- PM Peak Hour- entering: 220, exiting: 287
- Saturday Peak Hour - entering: 291, exiting: 251
- Generated trips were adjusted using a 20% synergy rate and a 25% pass-by rate and were assigned to the Study Area road network based on existing traffic patterns.

Projected Traffic Operations with development

- Horizon year traffic operations were subsequently projected for the Study Area with the development in place. The following summarizes additional operational issues projected to occur by 2023 with Phase 1 of the development:
- Rothesay Rd. / Rothesay Ave. - westbound (Rothesay Ave), northbound (Route 1 off-ramp), and eastbound (development access) approaches.
- Rothesay Rd./Fulton Ln./Access - eastbound (access) and westbound (Fulton Ln.) movements.
- Rothesay Rd./Ashburn Rd. - eastbound (Ashburn Rd.) approach.
- Rothesay Ave./Rte 1 on-ramp intersections - eastbound approaches.
- It was determined that additional traffic generated by Phase 2 and 3 of the development could not be adequately accommodated without major modifications to the existing road network such as:

1. Major upgrades to the Route 100 interchange area to increase capacity; or
2. Construction of a new underpass near Ashburn Lake Road and Foster Thurston Road.
Impact of Ashburn
Lake / Foster
Thurston
Underpass

Impact of Ashburn
Lake / Foster
Underpass

- The NB Department of Transportation \& Infrastructure has been assessing the long-term need for a new underpass connection in the vicinity of the Ashburn Lake Road and Foster Thurston Drive ramps.
- If/when a new underpass is built, a significant amount of existing traffic is expected to divert away from the Route 100 Interchange, thus alleviating some of the existing operational issues at this location.
- While a significant portion of newly generated traffic from the development would also use the new Ashburn Lake Road underpass, its construction has merit regardless of whether the development proceeds.

Recommended Upgrades to Accommodate Phase 1 Traffic

- The following improvements are recommended to provide acceptable levels of service and delays for Phase 1 of the development:
- Rothesay Rd./Rothesay Ave. - implement actuated-coordinated traffic signals and additional turn lanes at approaches.
- Rothesay Rd./Ashburn Rd. - implement actuated-coordinated traffic signals and separate left turn lane on northbound (Rothesay Rd.) approach.
- Rothesay Ave./Rte 1 off-ramp - implement actuated-coordinated signal and a separate through lane pocket at the eastbound (Rothesay Ave.) approach.
- Ashburn Rd. Accesses - implement separate left turn lanes at all accesses on all approaches to accommodate future traffic demand. Implement traffic signals at the main Ashburn Road access (access in line with Rothesay Ave.).
- Foster Thurston Dr./Ashburn Rd. - addition of separate right turn lane on southbound (Ashburn Rd.) approach to accommodate increase in right turning traffic exiting the development.
- Rothesay Rd./Fulton Ln. - align truck stop access with Fulton Ln. and make access right-in/right-out (left turners use access on

	Ashburn Rd.) to prevent left turners from blocking through movement and causing queuing back to Rothesay Rd./Rothesay Ave. intersection.
-Detailed analysis related to these improvements are found in the	
Phase 1 Report	

1 Introduction

1.1 Background

Horizon Management Ltd. is proposing a mixed use development in northeast Saint John (called "The Crossing"), consisting of residential, commercial, and park land. The proposed development site, currently zoned Rural (RU) and Future Development (FD), covers approximately 163 acres. Approximately 120 acres located between Ashburn Road and Highway Route 1 is to be rezoned to Commercial Corridor (CC) and Mid-Rise Residential (RM), while the remaining land located along Marsh Creek is to be rezoned to Park (P). A more detailed breakdown of land development is as follows:

- 87.2 acres rezoned to Commercial Corridor
- 31.6 acres rezoned to Mid-Rise Residential
- 42.7 acres rezoned to Park

The proposed development is designed to promote commuters using Rothesay Road and Route 1 to visit the City of Saint John rather than pass through. The area is strategically located adjacent to Rothesay Road and Route 1, as well as several other arterial roadways within the City, making it an ideal location ideal for creating a "gateway" to the City.
It is estimated that a total of approximately $80,000 \mathrm{~m}^{2}$ of building floor area will be constructed at the development site over multiple phases during the next 15-20 years.
Although he development is expected to result in substantial economic benefits for the City of Saint John, concerns have been raised regarding its impacts on traffic circulation. Of particular concern, are the areas between Route 1 and the Kennebecasis Valley and the UNB/Regional Hospital. The development is expected to add significant traffic to this section of the roadway network which already has significant traffic flows.

The City of Saint John has requested a Traffic Impact Study (TIS) be completed and submitted by Horizon Management Ltd. before approval for the proposed development can be granted from the City. The TIS will identify any deficiencies associated with the proposed development and make recommendations to mitigate any expected long-term traffic flow deficiencies within the surrounding area.
The TIS is only one of the technical studies required for the proposed development approval. The required studies are expected to take 3 to 5 years in total to complete.

1.2 Study Objectives

The objective of this study is to evaluate existing and future transportation issues and identify any traffic impacts associated with the proposed development within the Study Area. Improvement options to address any deficiencies are to be selected, evaluated, and recommended to ensure a desired level of service to all transportation users within the Study Area over the development horizon.

1.3 Study Area

The primary Study Area was identified by the City of Saint John and includes the following intersections:
12. Foster Thurston Drive / Ashburn Road
13. Foster Thurston Drive / NB Route 1 Access Ramps (Exit 128)
14. Ashburn Lake Road / NB Route 1 Access Ramps (Exit 128)
15. Rothesay Avenue / Retail Drive
16. Rothesay Avenue / Ashburn Lake Road
17. Rothesay Road / Fulton Lane
18. Ashburn Road / Jones Drive
19. Ashburn Road / Drury Cove Road
20. Ashburn Road / Rothesay Road
21. Rothesay Avenue / Rothesay Road / NB Route 1 interchange (Exit 129)
22. All site access driveway intersections with Ashburn Road and Rothesay Road

Also included in the Study Area are the existing trails surrounding Marsh Creek, existing transit routes within the area, and parking lots associated with the proposed development. The entire Study Area is shown in Figure 1; with the labels corresponding to the intersection numbers listed above. A detailed site plan can be found in Appendix A.

1.4 Horizon Period

Construction of the development is expected to begin in 2018 and be a gradual process with a full build-out completion time of 15 years. As such, this TIS utilizes a horizon year of 2033 with and without the proposed development to determine future traffic conditions within the Study Area at full build-out (i.e. Phases 1, 2, and 3 complete). Similarly, an assumed 2023 Phase 1 horizon year (5 years after construction is expected to begin) and 2028 Phase 2 horizon year (10 years after the construction is expected to begin) were utilized to capture any traffic impacts within the Study Area throughout the construction process. Comparing future traffic both with and without the development allows for a more accurate assessment of any traffic impacts directly attributed by the proposed development.

An annual growth rate of 1% has been used to project future background traffic for the horizon periods on the Study Area street network.

Figure 1 - Study Area

2 Information Gathering

2.1 Existing Traffic Volumes

Exp staff conducted AM and PM peak hour traffic counts at Rothesay Road / Ashburn Road, Ashburn Road / Drury Cove Road, Rothesay Avenue / Retail Drive, and Rothesay Ave / Ashburn Lake on Friday, October 14 $4^{\text {th }}, 2016$ and Friday, October $21^{\text {st }}, 2016$. All other AM and PM counts required for this study were already collected by exp staff for previous studies (including the Move Saint John Transportation Plan and the Route 1 Corridor Study). A 1% per annum growth rate was applied to all counts collected prior to 2016 to project 2016 base year traffic volumes.

Exp staff conducted Saturday peak hour traffic counts at all intersections within the Study Area (excluding those estimated using Trip Generation) on Saturday, October 15 ${ }^{\text {th }}, 2016$, Saturday October 22 ${ }^{\text {nd }}, 2016$, and Saturday, October $28^{\text {th }}, 2016$.
Peak period counts were collected during the following times at all locations:

- AM Peak Period - Between 7:00 am and 9:00 am on the Friday,
- PM Peak Period - Between 4:00 pm and 6:00 pm on the Friday, and
- Saturday Peak Period - Between 1:00 pm and 5:00 pm on the Saturday.

In addition, counts were estimated using ITE's Trip Generation Manual for the intersections of Rothesay Road / Fulton Lane or Ashburn Road / Jones Drive. Figures 2 and $\mathbf{3}$ show the existing 2016 AM, PM, and Saturday peak hour traffic volumes for all Study Area intersections.

Figure 2 - Existing 2016 Traffic Volumes (1 of 2) AM/PM/SAT

Figure 3 - Existing 2016 Traffic Volumes (2 of 2) AM/PM/SAT

2.2 Horizon Year Traffic Volumes

Projected background 2023, 2028, and 2033 AM, PM, and Saturday peak hour traffic volumes were required to evaluate future traffic conditions without the proposed project. Projected volumes were estimated using a 1% per annum growth rate.
Figures 4 and 5 show the projected background 2023 AM, PM, and Saturday peak hour traffic volumes without the proposed development. Figures 6 and 7 show the projected background 2028 AM, PM, and Saturday peak hour traffic volumes without the proposed development. Figures 8 and 9 show the projected background 2033 AM, PM, and Saturday peak hour traffic volumes without the proposed development.

Figure 4 - Projected 2023 Horizon Year Traffic Volumes (1 of 2) AM/PM/SAT

Figure 5 - Projected 2023 Horizon Year Traffic Volumes (2 of 2) AM/PM/SAT

Figure 6 - Projected 2028 Horizon Year Traffic Volumes (1 of 2) AM/PM/SAT

Figure 7 - Projected 2028 Horizon Year Traffic Volumes (2 of 2) AM/PM/SAT

Figure 8 - Projected 2033 Horizon Year Traffic Volumes (1 of 2) AM/PM/SAT

Figure 9 - Projected 2033 Horizon Year Traffic Volumes (2 of 2) AM/PM/SAT

2.3 Street and Intersection Characteristics

2.3.1 Study Area Roads

NB Route 1

Route 1 is classified as a freeway and is maintained by the New Brunswick Department of Transportation and Infrastructure (NBDTI). It provides a bypass route for vehicles passing through the City of Saint John. Route 1 is a divided, 4-lane highway with a posted speed limit of $100 \mathrm{~km} / \mathrm{h}$. Four on/off ramps are present within the Study Area, which provide access to/from Rothesay Avenue, Rothesay Road, Foster Thurston Drive, and Ashburn Lake Road. The estimated average daily traffic on Route 1 is 33,900 vehicles according to traffic counts collected by NBDTI in 2013.

Rothesay Avenue

Rothesay Avenue is classified as a major arterial. This road provides a route through the commercial area on the east side of Saint John. The roadway has a 4-lane cross-section and operates with a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$. There are several driveways present along this road within the Study Area leading to commercial buildings. The three main intersecting roads with Rothesay Avenue used in this Study are Retail Drive which leads to a number of retail stores and Ashburn Lake Road which leads to the on/off ramps to/from Route 1, and Rothesay Road. Separated sidewalks are present along the west side of Rothesay Avenue throughout the entire Study Area, as well as on the east side (continuing south) beginning at the intersection with Tim Street.

Rothesay Road
Rothesay Road is classified as an arterial roadway that runs along the Kennebecasis River towards the Rothesay community area. It is a 2-lane cross-section roadway with a posted speed limit of 50 km / h for the majority of the roadway, and changes to $60 \mathrm{~km} / \mathrm{h}$ south of the intersection with Ashburn Road leading to the Route 1 on-ramp. Rothesay Road intersects with Ashburn Road, Fulton Lane, and Rothesay Avenue within the Study Area. There are no separate sidewalks on Rothesay Road, although there are paved shoulders on both sides.

Ashburn Road

Ashburn Road is classified as a collector road within the Study Area. It provides access to a number of smaller residential areas as well as a few businesses. Ashburn Road is posted at a speed limit of $60 \mathrm{~km} / \mathrm{h}$ with a 2-lane cross-section. Gravel shoulders are present along the entire length of the roadway.

Foster Thurston Drive

Foster Thurston Drive is classified as an arterial road within the Study Area. It provides access directly off/on Route 1 to/from northern Saint John. Foster Thurston Drive is posted at a speed limit of $50 \mathrm{~km} / \mathrm{h}$ with a 2 -lane cross-section. Narrow gravel shoulders are present along the entire length of the roadway.
Ashburn Lake Road
Ashburn Lake Road is classified as a collector road within the Study Area. It provides access directly off/on Route 1 to/from southern Saint John (Rothesay Avenue), which is primarily a commercial area. Ashburn Lake Road is posted a speed limit of $50 \mathrm{~km} / \mathrm{h}$ with a 2-lane cross section. Railway tracks are present on Ashburn Lake Road approximately 50 m north of Rothesay Avenue.

2.3.2 Study Area Intersections

Route 1 Ramps

Four on and four off ramps to/from Route 1 are present within the Study Area. These ramps connect to Rothesay Road (exit 129), Rothesay Avenue (exit 129), Ashburn Lake Road (northbound exit 128), and Foster Thurston Drive (southbound exit 128). All ramps are free flowing.

Foster Thurston Drive / Ashburn Road

Foster Thurston Drive / Ashburn Road is a four-legged two-way stop controlled intersection located adjacent to the on/off ramps of Foster Thurston Drive and Route 1. All approaches consist of a shared one lane configuration with no separate turn or slip lanes present.

Rothesay Avenue / Retail Drive
Retail Drive / Rothesay Avenue is a three-leg signalized intersection operating under fixed control with an offset of zero seconds. The northbound approach has one separate through lane and one shared through/right turn lane, the southbound approach has one separate through lane and one shared through/left turn lane, and the westbound approach has separate left and right turn lanes.

Rothesay Avenue / Ashburn Lake Road

Rothesay Avenue / Ashburn Lake Road is a three-leg signalized intersection operating under fixed control. The northbound approach has one separate through and one shared through/left turn lane, the southbound approach has one separate through and one shared through/right turn lane, and the westbound approach has a shared left turn/right turn lane. The eastbound leg (Ashburn Lake Road) provides access to/from Route 1. This intersection is coordinated with the Retail Drive / Rothesay Avenue intersection so that motorists receive a green light in progression on Rothesay Avenue. The Rothesay Avenue / Ashburn Lake Road intersection is set at an offset of 45 seconds to the Retail Drive / Rothesay Avenue intersection.

Rothesay Road / Fulton Lane

Rothesay Road and Fulton Lane is a three-legged unsignalized intersection with the stop control located on the westbound approach (exiting Fulton Lane). Each approach is made up of a simple one lane configuration. Fulton Lane consists of a second hand clothing store, a single-detached family home, and a land survey and survey engineering company office building. Existing traffic volumes from Fulton Lane were generated in TripGen using this existing development information.

Ashburn Road / Jones Drive

Ashburn Road / Jones Drive is a three-legged unsignalized intersection with the stop control located on the eastbound approach (exiting Jones Drive). Each of the approaches consists of a shared one lane configuration. Jones Drive is a small residential area with ten single-detached houses present. Existing traffic volumes from Jones Drive were generated in TripGen using this information.

Ashburn Road / Drury Cove Road

Ashburn Road / Drury Cove Road is a three-legged unsignalized intersection with the stop control located on the eastbound approach (exiting Drury Cove Road). Each approach consists of a shared one lane configuration. Drury Cove Road leads to a residential area and connects with smaller, local roads within the area.

Ashburn Road / Rothesay Road

Ashburn Road / Rothesay Road is a three-legged unsignalized intersection with the stop control located on the eastbound approach (exiting Ashburn Road). Each approach consists of a shared one lane configuration.

2.4 Active Transportation Characteristics

The existing Trans Canada Trail that runs through the Study Area is Line 11, which is part of Zone 10 in New Brunswick. This trail currently runs adjacent to Ashburn Road and into Rockwood Park.
Figure 7 shows the Trans Canada Trail Line 11 through the Study Area.

Figure 7 - Existing Trans Canada Trail Through Study Area (Line 11)

2.5 Transit Characteristics

Saint John Transit is Saint John's public transit system that provides bus routes through the Study Area. There are currently two existing routes where a section runs through the Study Area that includes: the main line (blue), and the comex routes (green). These routes are shown in Figure 8.

Figure 8 - Existing Transit Routes in Study Area
The section of the main line that runs through the Study Area is the Fairville Boulevard Plaza via Rothesay Avenue, which provides service along Rothesay Avenue and Retail Drive. The bus runs in this area every half hour from 6:10 am to 10:40 pm on weekdays, every half hour from 7:10 am to 10:40 pm on Saturday's, and every hour from 10:40 am to $5: 40 \mathrm{pm}$ on Sunday's. A bus stop for this route is located within the Study Area adjacent to the intersection of Rothesay Avenue and Retail Drive.

The section of the comex route that runs through the Study Area is the Kennebecasis Valley Comex, which provides service through the Rothesay Area. The route runs along Route 1 and continues onto Rothesay Road using Exit 129. The bus runs Monday to Friday at 7:05 am, 8:15 am, 4:05 pm, 4:40 $\mathrm{pm}, 5: 15 \mathrm{pm}$, and 6:25 pm. There are currently no bus stops located within the Study Area for this route.

2.6 Development Characteristics

The proposed development consists of commercial corridor, mid-rise residential, and parkland rezoning. A detailed layout of the developments can be found in Appendix A.

The commercial corridor will consist of the following developments:

- Highway Service Stop - 26,000 SF
- Various Fast Food Restaurants - 11,400 SF
- Outdoor Anchor - 36,000 SF
- Entertainment Anchor - 40,000 SF
- Health Club - 40,000 SF
- Two hotels - 125 rooms each
- Six Sit-Down Restaurants - 31,400 SF total
- Garage-6,300 SF
- Car Wash - 2,400 SF
- Convenience Retail - 24,075 SF
- Tourist Information Centre - 9,000 SF
- Museum - 15,000 SF
- Two banks - 9,300 SF total
- Various Retail Centres - 123,000 SF total
- Entertainment Centre - 40,000 SF
- Entertainment/Recreation Area - 15 acres
- Dealership - 6 acres
- Storage Facility - 4 acres
- Dealership - 3 acres
- Four offices - 18,000 SF/level, 15,000 SF/level, 15,000 SF/level, and 8,300 SF/level
- Gas Station

The residential area will consist of the following developments:

- 12 mid-rise residential buildings - 20 dwelling units each

3 Existing and Future Background Traffic Operations

3.1 Introduction

Existing and horizon year operational conditions were established to determine how the street network within the Study Area is currently functioning and how it will function by the horizon years for Phase 1, 2, and 3 without the proposed development. Traffic operations within the Study Area were evaluated using current traffic volumes, road configuration, and traffic control. The intersection performance was measured using the traffic analysis software, Synchro 9, a deterministic model that employs Highway Capacity Manual and procedures are accepted by provincial and municipal agencies throughout North America.

The intersection operations were primarily evaluated in terms of the Level of Service (LOS). Level of Service is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e., less than 10 seconds per vehicle) and LOS F represents very high delay (i.e., greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection). The ramps were analyzed in terms of LOS, which is measured in terms of density, or passenger cars / km / lane ($\mathrm{pc} / \mathrm{km} / \mathrm{ln}$). Similar to intersections, LOS is expressed on a scale of A to F. The Highway Capacity Manual (HCM) software was used to evaluate the ramp operations.
Usually LOS D or better is considered acceptable in urban areas before improvements are considered, although some communities accept LOS E. The LOS criteria for signalized and stop sign controlled intersections are shown in Table 1. A description of traffic performance characteristics is included for each LOS.

Table 1 - Level of Service Criteria for Intersections

LOS	LOS Description	Control Delay (seconds per vehicle)	
	Signalized Intersections	Stop Controlled Intersections	
A	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0
B	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0
C	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0
E	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0

3.2 Existing and Horizon Year LOS without Development

3.2.1 Foster Thurston Drive / Ashburn Road

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table $\mathbf{2}$ for the Foster Thurston Drive / Ashburn Road intersection. The analysis output can be found in Appendix B.

Table 2 - LOS Summary for Foster Thurston Dr/Ashburn Rd without Development

Overall, the Foster Thurston Drive / Ashburn Road intersection is currently operating at an excellent LOS A with an intersection delay of 8 seconds/vehicle and 5 seconds/vehicle during the AM and Saturday peak period, respectively and at an overall very good LOS B with an intersection delay of 11 seconds/vehicle during the PM peak period. The eastbound and westbound movements are operating at LOS B or better with average delays of 10 seconds/vehicle or less during the AM, PM, and Saturday peak periods. The northbound approach is operating the lowest in terms of LOS, particularly during the PM peak period. It is operating at satisfactory LOS D (average delay of 31 seconds/vehicle) and LOS B (average delay of 11 seconds/vehicle) during the AM and Saturday peak period, respectively. During the PM peak period the northbound approach operates at an unacceptable LOS F with an average delay of 86 seconds/vehicle. The southbound approach operates at LOS D or better with an average delay of 30 seconds/vehicle or less during the AM, PM, and Saturday peak period. The v / c ratios are all 0.65 or less, indicating that there is sufficient capacity.

By the 2023, 2028, and 2033 horizon years without development, the Foster Thurston Drive / Ashburn Road intersection is projected to operate at an overall LOS C or better with an intersection delay of 19 seconds/vehicle or less during the AM, PM, and Saturday peak period. All movements during the Saturday peak period are projected to operate at LOS B or better with an average delay of 12 seconds/vehicle or better for the 2023, 2028, and 2033 horizon years. During the AM peak period, all westbound and eastbound movements are projected to operate at LOS B or better with an average delay of 11 seconds/vehicle or lower by the 2023, 2028, and 2033 horizon years. By 2028 and 2033, the northbound and southbound approaches are projected to operate at LOS F with average delays of 109 seconds/vehicle or less. By 2033 during the PM peak period the northbound and southbound movements are projected to operate at LOS F with average delays of 216 seconds/vehicle or less. The v/c ratios at each movement for all three peak periods do not exceed 0.95 .

Operational deficiencies currently exist at the northbound movement of the Foster Thurston Drive / Ashburn Road intersection during the PM peak period, and are projected to occur at the northbound and southbound movements during the AM peak period by 2028 without development as well as in the northbound and southbound movements during the PM peak period by 2033 without development.

3.2.2 Foster Thurston Drive /NB Route 1 Access Ramps (Exit 128)

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 3 for the Foster Thurston Drive Access Ramps to Route 1. The analysis output can be found in Appendix B

The Foster Thurston Drive off-ramp from Route 1 is currently operating at LOS C, LOS B, and LOS A during the AM, PM, and Saturday peak period, respectively. By the 2023 horizon year without development, the Foster Thurston Drive off-ramp is projected is operating at LOS D (density of 17.6 $\mathrm{pc} / \mathrm{km} / \mathrm{ln}$) during the AM peak period; minimal changes are projected for the PM and Saturday peak periods. By the 2028 and 2033 horizon years without development, the Foster Thurston Drive offramp is projected to continue operating at LOS D, LOS B, and LOS A during the AM, PM, and Saturday peak periods, respectively.

The Foster Thurston Drive on-ramp from Route 1 is currently operating at LOS C, LOS B, and LOS A during the AM, PM, and Saturday peak period, respectively. By the 2023 horizon year without development the on-ramp is projected to operate at LOS D (density of $17.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$), LOS B (density of $8.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$), and LOS B (density of $6.0 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$) during the AM , PM, and Saturday peak period, respectively. Minimal changes are projected for the Foster Thurston Drive on-ramp from Route 1 by the 2028 and 2033 horizon year without development during all three peak periods.

No operational deficiencies are projected for the Foster Thurston on-ramp or off-ramp for Route 1 during the AM, PM, or Saturday peak period by the 2033 horizon year without the development in place.

Table 3 - LOS Summary for Foster Thurston Dr/Rte 1 Ramps without Development

	AM Peak	PM Peak	SAT Peak
Ramp	LOS Density (pc/km/ln)	LOS Density (pc/km/ln)	LOS Density (pc/km/ln)
Existing (2016) Conditions			
Rte 1 - Foster Thurston Dr off-ramp	C	B	A
Rte 1 EB - Foster Thurston Dr on-ramp	16.5	6.8	4.4

Projected 2023 Horizon Year Conditions without Development

Rte 1 - Foster	D	B	A
Thurston Dr off-ramp	17.6	7.3	4.7
Rte 1 EB - Foster	D	B	B
Thurston Dr on-ramp	17.7	8.4	6.0

Projected 2028 Horizon Year Conditions without Development

Rte 1 - Foster	D	B	A
Thurston Dr off-ramp	18.5	7.7	5.0
Rte 1 EB - Foster	D	B	B
Thurston Dr on-ramp	18.6	8.7	6.2

Projected 2033 Horizon Year Conditions without Development			
Rte 1 - Foster	D	B	A
Thurston Dr off-ramp	19.5	8.0	5.2
Rte 1 EB - Foster	D	B	B
Thurston Dr on-ramp	19.4	9.1	6.4

3.2.3 Ashburn Lake Road / NB Route 1 Access Ramps (Exit 128)

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 4 for the Ashburn Lake Road Access Ramps to Route 1. The analysis output can be found in Appendix B

The Ashburn Lake Road off-ramp from Route 1 is currently operating at LOS A, LOS C, and LOS A during the AM, PM, and Saturday peak period, respectively. By the 2023 horizon year without development, the Ashburn Lake Road off-ramp is projected is operating at LOS D (density of 18.2 $\mathrm{pc} / \mathrm{km} / \mathrm{ln}$) during the PM peak period; minimal changes are projected for the AM and Saturday peak periods. By the 2028 and 2033 horizon years without development, the Foster Thurston Drive offramp is projected to continue operating at LOS A, LOS D, and LOS A during the AM, PM, and Saturday peak periods, respectively.

The Ashburn Lake Road on-ramp from Route 1 is currently operating at LOS A, LOS D, and LOS B during the AM, PM, and Saturday peak period, respectively. By the 2023 and 2028 horizon years without development the on-ramp is projected to continue operating at LOS A, LOS D, and LOS B during the AM, PM, and Saturday peak period, respectively. By the 2033 horizon year without development, the on-ramp is projected to operate at LOS B (density of $6.1 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$), LOS E (density
of $22.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$), and LOS B (density of $7.8 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$) during the $A M, P M$, and Saturday peak period, respectively.

No operational deficiencies are projected for the Ashburn Lake Road on-ramp or off-ramp for Route 1 during the AM, PM, or Saturday peak period by the 2033 horizon year without the development in place.

Table 4 - LOS Summary for Ashburn Lake Rd/Rte 1 Ramps without Development

	AM Peak	PM Peak	SAT Peak
Ramp	LOS	LOS	LOS
	Density (pc/km/ln)	Density (pc/km/ln)	Density (pc/km/ln)

Existing (2016) Conditions

Rte 1 - Ashburn Lake	A	C	A
Rd off-ramp	3.3	17.0	4.3
Rte 1 EB - Ashburn	A	D	B
Lake Rd on-ramp	5.4	19.1	6.8

Projected 2023 Horizon Year Conditions without Development

Rte 1 - Ashburn Lake	A	D	A
Rd off-ramp	3.6	18.2	4.7
Rte 1 EB - Ashburn	A	D	B
Lake Rd on-ramp	5.6	20.4	7.2

Projected 2028 Horizon Year Conditions without Development

Rte 1 - Ashburn Lake	A	D	A
Rd off-ramp	3.9	19.2	4.9
Rte 1 EB - Ashburn	A	D	B
Lake Rd on-ramp	5.8	21.3	7.5

Projected 2033 Horizon Year Conditions without Development

Rte 1 - Ashburn Lake	A	D	A
Rd off-ramp	4.1	20.2	5.2
Rte 1 EB - Ashburn	B	E	B
Lake Rd on-ramp	6.1	22.4	7.8

3.2.4 Rothesay Avenue / Retail Drive

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 5 for the Rothesay Avenue / Retail Drive intersection. The analysis output can be found in Appendix B.

Table 5 - LOS Summary for Rothesay Ave/Retail Dr without Development

The Rothesay Avenue / Retail Drive intersection is operating at an overall LOS C or better with an intersection delay of 24 seconds/vehicle or less during the AM, PM, and Saturday peak period. The worst movement in terms of LOS is the westbound left-turn movement, which is operating at LOS D (average delay of 41 seconds/vehicle) during the AM peak period and at an unacceptable LOS F with an average delay of 132 seconds/vehicle and 130 seconds/vehicle during the PM and Saturday peak periods, respectively. All other movements are operating at LOS B or better with average delays of 15 seconds/vehicle or less. The $95^{\text {th }}$ percentile queue lengths are the longest at the westbound left turn movement, with lengths of 36 m to 112 m . The v/c ratio at the westbound left turn movement exceeds 1.0 during the PM peak period and is approaching the threshold during the Saturday peak period.

By the 2023, 2028, and 2033 horizon years without development, the Rothesay Avenue / Retail Drive intersection is projected to operate at an overall LOS E or better with an intersection delay of 56 seconds/vehicle or less during all three peak periods. All movements are projected to operate at LOS D or better with an average delay of 54 seconds/vehicle or less during the AM, PM, and

Saturday peak periods. The exception is the westbound left turn movement during the PM and Saturday peak period which is projected to operate at LOS F (average delay of 191 seconds/vehicle or less). The $95^{\text {th }}$ percentile queue length at this movement are projected to 137 m during the PM peak period. The v / c ratio at the westbound left turn movement is projected to exceed 1.0 during both the PM and Saturday peak period, indicating that the demand exceeds the capacity. The v/c ratio at the southbound movement is projected to approach 1.0 during the PM and Saturday peak period.

Operational deficiencies currently exist at the westbound left turn movement during the PM and Saturday peak period and are projected to worsen in terms of delay and queuing by the 2033 horizon year without development.

3.2.5 Rothesay Avenue / Ashburn Lake Road

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 6 for the Rothesay Avenue / Ashburn Lake Road intersection. The analysis output can be found in Appendix B.

The Rothesay Avenue / Ashburn Lake Road intersection is currently operating at LOS B with an intersection delay of 20 seconds/vehicle or less during the AM, PM, and Saturday peak period. All individual movements are operating at LOS C or better with an average delay of 26 seconds/vehicle or less. The v / c ratios are all 0.81 or less, indicating that there is sufficient capacity. The $95^{\text {th }}$ percentile queue lengths are all 76 m or less, with the longest queues projected at the eastbound approach.

By the 2023, 2028, and 2033 horizon year without development, the Rothesay Avenue / Ashburn Lake Road intersection is projected to operate with minimal changes during the AM and Saturday peak period.

By the 2023 horizon year without development during the PM peak period, the Rothesay Avenue / Ashburn Lake Road intersection is projected to operate at an overall LOS C with an intersection delay of 33 seconds/vehicle. All individual movements are projected to operate at LOS D or better with an average delay of 37 seconds/vehicle or less. The v / c ratio at the northbound approach is approaching the threshold.

By the 2028 and 2033 horizon years without development during the PM peak period, the Rothesay Avenue / Ashburn Lake Road intersection is projected to operate at an overall LOS E or better with an intersection delay of 68 seconds/vehicle. The northbound approach is projected to operate at acceptable LOS or better, however, the v / c ratio exceeds the threshold during both horizon years, indicating that the demand exceeds the capacity. The eastbound approach v/c ratio is approaching the threshold during both horizon years.

Operational deficiencies are projected for the Rothesay Avenue / Ashburn Lake Road intersection by 2028 without development at the northbound movement during the PM peak period.

Table 6 - LOS Summary for Rothesay Ave/Ashburn Lake Rd without Development

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOSAverage Delay (seconds per vehicle)$[95 \%$ Queues (m)]									
North South Street @ East West Street	Traffic Control	Time Period		Eastbound		Westbound			Northbound		Southbound		
				Ashburn Lake Rd					Rothesay Ave		Rothesay Ave		
						$\frac{1}{4}$		$\stackrel{R}{\mathrm{R}}$		$\xrightarrow{\mathrm{R}}$	4		R
Existing (2016) Conditions													
Rothesay Ave @ Ashburn Lake		AM Peak	$\begin{gathered} \text { B } \\ 10 \end{gathered}$	$\begin{gathered} \hline B \\ 13 \\ {[0.42]} \end{gathered}$	shared				 shared 9 $[0.28]$			A 10 $[0.54]$	shared
		PM Peak	$\begin{gathered} \text { B } \\ 20 \end{gathered}$	$\begin{gathered} \hline \hline \text { C } \\ 26 \\ {[0.77]} \end{gathered}$	shared				 shared B 19 $[0.81]$			$\begin{gathered} \hline \hline \text { B } \\ 17 \\ {[0.56]} \\ \hline \end{gathered}$	shared
		Sat Peak	$\begin{gathered} B \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 20 \\ {[0.65]} \\ \hline \end{gathered}$	shared				 shared B 10 $[0.41]$			$\begin{gathered} \hline B \\ 12 \\ {[0.45]} \\ \hline \end{gathered}$	shared
Projected 2023 Horizon Year without Development Conditions													
Rothesay Ave @ Ashburn Lake		AM Peak	$\begin{gathered} B \\ 11 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 16 \\ {[0.56]} \\ \hline \end{gathered}$	shared				 shared 9 $[0.31]$			$\begin{gathered} \hline B \\ 10 \\ {[0.58]} \\ \hline \end{gathered}$	shared
		PM Peak	$\begin{gathered} \text { C } \\ 33 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 31 \\ {[0.83]} \\ \hline \hline \end{gathered}$	shared				 shared C 30 $[0.92]$			D 37 $[0.60]$	shared
		Sat Peak	$\begin{gathered} B \\ 15 \end{gathered}$	C 22 $[0.70]$	shared				 shared $\left[\begin{array}{c}B \\ \\ \\ \\ {[0.44]}\end{array}\right]$			$\begin{gathered} \hline \hline B \\ 15 \\ {[0.48]} \\ \hline \end{gathered}$	shared
Projected 2028 Horizon Year Conditions Without Development													
Rothesay Ave @ Ashburn Lake		AM Peak	$\begin{gathered} B \\ 12 \end{gathered}$	$\begin{gathered} \text { B } \\ 17 \\ {[0.59]} \\ \hline \end{gathered}$	shared				 shared A 10 $[0.33]$			$\begin{gathered} \hline \text { B } \\ 11 \\ {[0.61]} \\ \hline \end{gathered}$	shared
		PM Peak	$\begin{gathered} \mathrm{D} \\ 53 \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ 43 \\ {[0.87]} \end{gathered}$	shared				 shared D 50 $[1.00]$			E 61 $[0.63]$	shared
		Sat Peak	$\begin{gathered} B \\ 18 \end{gathered}$	C 24 $[0.74]$	shared				 shared B 11 $[0.46]$			C 22 $[0.51]$	shared
Projected 2033 Horizon Year Conditions Without Development													
Rothesay Ave @ Ashburn Lake		AM Peak	$\begin{gathered} B \\ 12 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 18 \\ {[0.62]} \\ \hline \hline \end{gathered}$	shared				 shared A 10 $[0.36]$			$\begin{gathered} \hline B \\ 12 \\ {[0.64]} \\ \hline \hline \end{gathered}$	shared
		PM Peak	$\begin{gathered} E \\ 68 \end{gathered}$	E 59 $[0.91]$	shared				 shared E 78 $[1.09]$			$\begin{gathered} \hline E \\ 61 \\ {[0.67]} \\ \hline \end{gathered}$	shared
		Sat Peak	$\begin{gathered} \mathrm{C} \\ 25 \end{gathered}$		shared				 shared B 11 $[0.49]$			D 36 $[0.54]$	shared

3.2.6 Rothesay Road / Fulton Lane

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 7 for the Rothesay Road / Fulton Lane intersection. The analysis output can be found in Appendix B.

The Rothesay Road / Fulton Lane intersection is operating at an overall excellent LOS A and an intersection delay of 0 seconds/vehicle during the AM, PM, and Saturday peak period. The southbound movement is operating at LOS A with an average delay of 10 seconds/vehicle or less during the AM, PM, and Saturday peak period. The westbound movement is operating at a good LOS B with an average delay of 13 seconds/vehicle or less during the AM and Saturday peak periods and at a satisfactory LOS D with an average delay of 26 seconds/vehicle during the PM peak period. The $95^{\text {th }}$ percentile queue lengths are 1 vehicle at all approaches and the v / c ratios are 0.06 or less at all approaches.

Minimal changes are projected at the Rothesay Road / Fulton Lane intersection by the 2023 and 2028 horizon year. By the 2033 horizon year, the westbound movement during the PM peak period is projected to operate at an acceptable LOS E with an average delay of 48 seconds/vehicle and a v/c ratio of 0.12 . The $95^{\text {th }}$ percentile queue length at this approach is projected to be 1 vehicle.

No operational deficiencies are projected at the Rothesay Road / Fulton Lane intersection by 2033 without development.

Table 7 - LOS Summary for Rothesay Rd/Fulton Ln without Development

3.2.7 Ashburn Road / Jones Drive

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 8 for the Ashburn Road / Jones Drive intersection. The analysis output can be found in Appendix B.

The Ashburn Road / Jones Drive intersection is operating at an overall excellent LOS A with virtually no overall intersection delay during all three peak periods. All individual movements are operating at LOS B or better with average delays of 14 seconds/vehicle or less during the AM, PM, and Saturday peak periods. All v/c ratios are 0.01 or lower.
By the 2033 horizon year, the eastbound movement of the Ashburn Road / Jones Drive intersection is projected to operate at LOS C with an average delay of 16 seconds/vehicle. Minimal queueing is
projected at this approach. No other major changes are projected during the AM, PM, or Saturday peak period.

No operational deficiencies are projected at the Ashburn Road / Jones Drive intersection by 2033 without development.

Table 8 - LOS Summary for Ashburn Rd/Jones Dr without Development

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]									
				Eastbound		Westbound			Northbound		Southbound		
North South Street	Traffic	Time Period		Jones Dr					Ashburn			Ashburn R	
@ East West Street	Control			4	$\stackrel{R}{\mathrm{R}}$	4	${ }^{\text {A }}$	\xrightarrow{R}	L \mathbf{T}	$\stackrel{R}{\mathrm{R}}$	4		$\stackrel{R}{\mathrm{R}}$
Existing (2016) Conditions													
Ashburn Rd @ Jones Dr	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 10 \\ {[0.01]} \\ \hline \end{gathered}$	shared				$\begin{array}{lc} \hline & A \\ \text { shared } & 8 \\ & {[0.00]} \\ \hline \hline \end{array}$			free flow	shared
		PM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} B \\ 14 \\ {[0.01]} \end{gathered}$	shared				 A shared 8 $[0.00]$ 			free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \text { A } \\ 10 \\ {[0.01]} \end{gathered}$	shared				 shared A 7 $[0.00]$			free flow	shared
Projected 2023 Horizon Year without Development Conditions													
Ashburn Rd @ Jones Dr	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \text { A } \\ 10 \\ {[0.01]} \\ \hline \end{gathered}$	shared				$\begin{array}{cc} \hline & A \\ \text { shared } & 8 \\ & {[0.00]} \\ \hline \hline \end{array}$			free flow	shared
		PM Peak	$\begin{aligned} & A \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{B} \\ 15 \\ {[0.01]} \end{gathered}$	shared				 A shared 8 $[0.00]$			free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 10 \\ {[0.01]} \end{gathered}$	shared				 shared A $[0.00]$ 			free flow	shared
Projected 2028 Horizon Year without Development Conditions													
Ashburn Rd @ Jones Dr		AM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \text { A } \\ 10 \\ {[0.01]} \\ \hline \end{gathered}$	shared				 shared A 8 $[0.00]$			free flow	shared
		PM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 15 \\ {[0.01]} \\ \hline \end{gathered}$	shared				 shared A 8 $[0.00]$			free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 10 \\ {[0.01]} \end{gathered}$	shared				$\begin{array}{lc} \hline \hline & A \\ \text { shared } & 7 \\ & {[0.00]} \\ \hline \end{array}$			free flow	shared
Projected 2033 Horizon Year without Development Conditions													
Ashburn Rd @ Jones Dr	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} B \\ 10 \\ {[0.01]} \\ \hline \end{gathered}$	shared				 shared A 8 $[0.00]$			free flow	shared
		PM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{C} \\ 16 \\ {[0.01]} \\ \hline \end{gathered}$	shared				 shared A 8 $[0.00]$			free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} \hline B \\ 10 \\ {[0.01]} \end{gathered}$	shared				 shared A $[0.00]$			free flow	shared

3.2.8 Ashburn Road / Drury Cove Road

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 9 for the Ashburn Road / Drury Cove Road intersection. The analysis output can be found in Appendix B.

Under existing conditions, the Ashburn Road / Drury Cove Road intersection is operating at an overall LOS A with an average intersection delay of 1 seconds/vehicle during both the AM, PM, and Saturday peak period. The eastbound movement is operating at an excellent LOS A with an average delay of 8 seconds/vehicle during the AM and PM peak period; there are no left-turning vehicles at this approach during the Saturday peak period, therefore, this movement experiences free flow. The southbound approach is operating at a very good LOS B with an average delay of 10 seconds/vehicle during the AM and Saturday peak period and at a good LOS C with an average delay of 15 seconds/vehicle during the PM peak period. All $95^{\text {th }}$ percentile queue lengths are 1 vehicle during all
three peak periods. Minimal changes are projected by the 2023, 2028, and 2033 horizon years without the development in place.

No operational deficiencies are projected for the Ashburn Road / Drury Cover Road by the 2023, 2028, and 2033 horizon years without the development in place.

Table 9 - LOS Summary for Ashburn Rd/Drury Cover Rd without Development

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]												
North South Street @ East West Street	Traffic Control	Time Period		Eastbound Ashburn Rd			Westbound Ashburn Rd		Northbound			Southbound				
											Cove					
				4	${ }^{\top}$	$\xrightarrow{\mathrm{R}}$					4	$\mathbf{T}^{\mathbf{T}}$	\xrightarrow{R}		${ }^{\text {T }}$	\xrightarrow{R}
Existing (2016) Conditions																
Drury Cove Rd @ Ashburn Rd	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	$\begin{gathered} \hline \text { A } \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} B \\ 10 \\ {[0.02]} \\ \hline \end{gathered}$		shared		
		PM Peak	$\begin{aligned} & A \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathbf{A} \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} C \\ 15 \\ {[0.08]} \\ \hline \end{gathered}$		shared		
		Sat Peak	$\begin{aligned} & A \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 0 \\ {[0.00]} \end{gathered}$	shared			free flow				$\begin{gathered} B \\ 10 \\ {[0.02]} \end{gathered}$		shared		
Projected 2023 Horizon Year without Development Conditions																
Drury Cove Rd @ Ashburn Rd	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	$\begin{gathered} \hline \text { A } \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} \hline B \\ 11 \\ {[0.03]} \\ \hline \end{gathered}$		shared		
		PM Peak	$\begin{aligned} & A \\ & 1 \end{aligned}$	$\begin{gathered} \hline \mathbf{A} \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} C \\ 16 \\ {[0.09]} \\ \hline \end{gathered}$		shared		
		Sat Peak	$\begin{aligned} & A \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 0 \\ {[0.00]} \end{gathered}$	shared			free flow				$\begin{gathered} \hline B \\ 10 \\ {[0.02]} \end{gathered}$		shared		
Projected 2028 Horizon Year without Development Conditions																
Drury Cove Rd @ Ashburn Rd	STOP	AM Peak	$\begin{gathered} A \\ 1 \end{gathered}$	$\begin{gathered} \hline A \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} \hline B \\ 11 \\ {[0.03]} \end{gathered}$		shared		
		PM Peak	$\begin{gathered} A \\ 1 \end{gathered}$	$\begin{gathered} \text { A } \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} \text { C } \\ 17 \\ {[0.09]} \end{gathered}$		shared		
		Sat Peak	$\begin{aligned} & A \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 0 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} \mathrm{B} \\ 10 \\ {[0.02]} \end{gathered}$		shared		
Projected 2033 Horizon Year without Development Conditions																
Drury Cove Rd @ Ashburn Rd	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	$\begin{gathered} \text { A } \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} \mathrm{B} \\ 11 \\ {[0.03]} \\ \hline \end{gathered}$		shared		
		PM Peak	$\begin{aligned} & A \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared			free flow				$\begin{gathered} C \\ 18 \\ {[0.10]} \\ \hline \end{gathered}$		shared		
		Sat Peak	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ 0 \\ {[0.00]} \end{gathered}$	shared			free flow				$\begin{gathered} B \\ 10 \\ {[0.02]} \end{gathered}$		shared		

3.2.9 Rothesay Avenue / Rothesay Road

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 10 for the Rothesay Road / Rothesay Avenue intersection. The analysis output can be found in Appendix B.

Under existing conditions, the Rothesay Road / Rothesay Avenue intersection is operating at unacceptable LOS F with intersection delays of 64 seconds/vehicle, 129 seconds/vehicle, and 51 seconds/vehicle during the AM, PM, and Saturday peak period. The westbound approach is experiencing the highest delays, which is operating at LOS F with average delays from 107 seconds/vehicle to 407 seconds/vehicle during the AM, PM, and Saturday peak period. The westbound approach also has v / c ratios that exceed 1.0 during all three peak periods, indicating that the volumes at this approach exceed the capacity. The southbound left-turn movement operates at LOS B or better with average delays of 10 seconds/vehicle or less and v / c ratios of 0.40 or less during all three peak periods.

Table 10 - LOS Summary for Rothesay Rd/Rothesay Ave without Development

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]							
North South Street @ East West Street	Traffic Control	Time Period		Eastbound		Westbound	Northbound		Southbound		
						esay Ave		Rothesay Rd		Rothesay Rd	
					$\xrightarrow{R} \quad \stackrel{L}{4}$					${ }^{\mathbf{T}}$	$\xrightarrow{\mathrm{R}}$
Existing (2016) Conditions											
Rothesay Rd @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 64 \end{gathered}$		F 241 $[1.39]$	shared		free flow shared	$\begin{gathered} \text { A } \\ 8 \\ {[0.23]} \end{gathered}$	free flow	
		PM Peak	$\begin{gathered} F \\ 129 \end{gathered}$		$\begin{gathered} \hline \text { F } \\ 407 \\ {[1.80]} \\ \hline \end{gathered}$	shared		free flow shared	$\begin{gathered} \mathrm{B} \\ 10 \\ {[0.40]} \\ \hline \end{gathered}$	free flow	
		Sat Peak	$\begin{gathered} F \\ 51 \end{gathered}$		$\begin{gathered} \hline F \\ 107 \\ {[1.10} \end{gathered}$	shared		free flow shared	$\begin{gathered} \text { A } \\ 8 \\ {[0.21]} \end{gathered}$	free flow	
Projected 2023 Horizon Year without Development Conditions											
Rothesay Rd @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 100 \end{gathered}$		$\begin{gathered} \text { F } \\ 385 \\ {[1.72]} \\ \hline \end{gathered}$	shared		free flow shared	$\begin{gathered} \text { A } \\ 8 \\ {[0.25]} \\ \hline \end{gathered}$	free flow	
		PM Peak	$\begin{gathered} F \\ 226 \end{gathered}$		$\begin{gathered} \hline F \\ 718 \\ {[2.49]} \\ \hline \end{gathered}$	shared		free flow shared	$\begin{gathered} \mathrm{B} \\ 11 \\ {[0.47]} \\ \hline \end{gathered}$	free flow	
		Sat Peak	$\begin{gathered} \text { F } \\ 57 \end{gathered}$		$\begin{gathered} \mathrm{F} \\ 149 \\ {[1.22]} \end{gathered}$	shared		free flow shared	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.21]} \end{gathered}$	free flow	
Projected 2028 Horizon Year without Development Conditions											
Rothesay Rd @ Rothesay Ave		AM Peak	$\begin{gathered} F \\ 135 \end{gathered}$		$\begin{gathered} F \\ 522 \\ {[2.02]} \end{gathered}$	shared		free flow shared	$\begin{gathered} \text { A } \\ 8 \\ {[0.26]} \end{gathered}$	free flow	
		PM Peak	$\begin{gathered} F \\ 310 \end{gathered}$		F 992 $[3.09]$	shared		free flow shared	$\begin{gathered} \text { B } \\ 12 \\ {[0.51]} \\ \hline \end{gathered}$	free flow	
		Sat Peak	$\begin{gathered} F \\ 85 \end{gathered}$		$\begin{gathered} \hline F \\ 162 \\ {[1.25]} \end{gathered}$	shared		free flow shared	$\begin{gathered} \hline \mathrm{A} \\ 8 \\ {[0.22]} \end{gathered}$	free flow	
Projected (YEAR) Horizon Year without Development Conditions											
Rothesay Rd @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 178 \end{gathered}$		F 691 $[2.39]$	shared		free flow shared	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.28]} \\ \hline \end{gathered}$	free flow	
		PM Peak	$\begin{gathered} F \\ 411 \end{gathered}$		$\begin{gathered} \hline \mathbf{F} \\ 1317 \\ {[3.79]} \end{gathered}$	shared		free flow shared	$\begin{gathered} \mathrm{B} \\ 13 \\ {[0.54]} \\ \hline \end{gathered}$	free flow	
		Sat Peak	$\begin{gathered} F \\ 151 \end{gathered}$		$\begin{gathered} \mathrm{F} \\ 231 \\ {[1.42]} \end{gathered}$	shared		free flow shared	A 8 $[0.22]$	free flow	

By the 2023, 2028, and 2033 horizon years the Rothesay Road / Rothesay Avenue intersection is projected to continue to get worse overall in terms of LOS with intersection delays of 226 seconds/vehicle or less by 2023, intersection delays of 310 seconds/vehicle or less by 2028, intersection delays of 411 seconds/vehicle or less by 2028. The southbound approach is projected to have minimal changes by 2033. The westbound approach, however, is projected to continue to get worse in terms of average delays. By 2023 the westbound approach is projected to operate at LOS with an average delay of 718 seconds/vehicle or less, by 2028 the average delay on the westbound approach is projected to be 992 seconds/vehicle or less, and by 2033 the average delay on the westbound approach is projected to be 1317 seconds/vehicle or less.

Operational deficiencies are currently experienced at the Rothesay Road / Rothesay Avenue intersection overall and particularly at the westbound approach. Operational deficiencies are projected to get worse by the 2033 horizon year without the development in place.

3.2.10 Rothesay Road / Ashburn Road

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 11 for the Rothesay Road / Ashburn Road intersection. The analysis output can be found in Appendix B.

Under existing conditions, the Rothesay Road / Ashburn Road intersection is operating at an overall LOS B or better with an intersection delay of 10 seconds/vehicle or less during the AM, PM, and Saturday peak period. The eastbound left turn and right turn movements are both operating at LOS C or better with average delays of 23 seconds/vehicle or less during all three peak periods. The westbound movement during the PM peak period is operating at LOS C (average delay of 20 seconds/vehicle). The westbound approach (parking lot exit) had no vehicles present during the AM and Saturday peak period. The $95^{\text {th }}$ percentile queue lengths are 6 vehicles or less and at each approach during the AM, PM, and Saturday peak period. The v/c ratios are 0.66 or less indicating there is sufficient capacity.

Table 11 - LOS Summary for Rothesay Rd/Ashburn Rd without Development

Intersection			Overall Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Ashburn Rd			Ashburn Rd			Rothesay Rd			Rothesay Rd		
						R						R	$\xrightarrow{4}$		
Existing (2016) Conditions															
Rothesay Rd @ Ashburn Rd	STOP	AM Peak	$\begin{aligned} & \text { A } \\ & 4 \end{aligned}$	$\begin{gathered} C \\ 16 \\ {[0.07]} \end{gathered}$		$\begin{gathered} B \\ 12 \\ {[0.26]} \\ \hline \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 9 \\ {[0.10]} \\ \hline \end{gathered}$			free flow	shared
		PM Peak	$\begin{gathered} \text { B } \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 23 \\ {[0.36]} \\ \hline \end{gathered}$	shared	$\begin{gathered} C \\ 17 \\ {[0.66]} \\ \hline \end{gathered}$	shared	C 20 $[0.01]$	shared	shared	$\begin{gathered} \hline \mathrm{A} \\ 8 \\ {[0.09]} \\ \hline \end{gathered}$			free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 4 \end{aligned}$	$\begin{gathered} \hline B \\ 13 \\ {[0.10]} \end{gathered}$		$\begin{gathered} \text { B } \\ 10 \\ {[0.20]} \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.05]} \end{gathered}$			free flow	shared
Projected 2023 Horizon Year without Development Conditions															
Rothesay Rd @ Ashburn Rd	STOP	AM Peak	$\begin{gathered} \text { A } \\ 5 \end{gathered}$	$\begin{gathered} C \\ 17 \\ {[0.08]} \end{gathered}$		$\begin{gathered} B \\ 13 \\ {[0.29]} \end{gathered}$				shared	$\begin{gathered} \text { A } \\ 9 \\ {[0.11]} \\ \hline \end{gathered}$			free flow	shared
		PM Peak	$\begin{gathered} B \\ 12 \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ 26 \\ {[0.43]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \mathrm{C} \\ 19 \\ {[0.72]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \hline \mathrm{C} \\ 24 \\ {[0.02]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline A \\ 8 \\ {[0.10]} \\ \hline \end{gathered}$			free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 5 \end{aligned}$	$\begin{gathered} \mathrm{B} \\ 13 \\ {[0.12]} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{B} \\ 10 \\ {[0.21]} \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.05]} \\ \hline \end{gathered}$			free flow	shared
Projected 2028 Horizon Year without Development Conditions															
Rothesay Rd @ Ashburn Rd	STOP	AM Peak	$\begin{gathered} \text { A } \\ 5 \end{gathered}$	$\begin{gathered} C \\ 17 \\ {[0.09]} \\ \hline \end{gathered}$		$\begin{gathered} \text { B } \\ 13 \\ {[0.31]} \\ \hline \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 9 \\ {[0.12]} \\ \hline \end{gathered}$			free flow	shared
		PM Peak	$\begin{gathered} B \\ 13 \end{gathered}$	$\begin{gathered} \hline D \\ 30 \\ {[0.48]} \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{C} \\ 11 \\ {[0.77]} \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{D} \\ 28 \\ {[0.02]} \end{gathered}$	shared	shared	$\begin{gathered} \mathrm{A} \\ 8 \\ 8 \\ {[0.11]} \end{gathered}$			free flow	shared
		Sat Peak	$\begin{gathered} \text { A } \\ 5 \end{gathered}$	$\begin{gathered} B \\ 14 \\ {[0.13]} \end{gathered}$		$\begin{gathered} \mathrm{B} \\ 11 \\ {[0.23]} \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.05]} \end{gathered}$			free flow	shared
Projected 2033 Horizon Year without Development Conditions															
Rothesay Rd @ Ashburn Rd	STOP	AM Peak	$\begin{gathered} \text { A } \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 18 \\ {[0.10]} \end{gathered}$		$\begin{gathered} \hline B \\ 14 \\ {[0.33]} \\ \hline \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 9 \\ {[0.13]} \\ \hline \end{gathered}$			free flow	shared
		PM Peak	$\begin{gathered} C \\ 15 \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ 35 \\ {[0.54]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{D} \\ 25 \\ {[0.82]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{E} \\ 35 \\ {[0.03]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \mathrm{A} \\ 8 \\ 8 \\ {[0.11]} \end{gathered}$			free flow	shared
		Sat Peak	$\begin{gathered} \text { A } \\ 5 \end{gathered}$	$\begin{gathered} B \\ 14 \\ {[0.14]} \end{gathered}$		$\begin{gathered} B \\ 11 \\ {[0.24]} \end{gathered}$				shared	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.06]} \\ \hline \end{gathered}$			free flow	shared

Minimal changes are projected at the Rothesay Road / Ashburn Road intersection during the AM and Saturday peak period by the 2023, 2028, and 2033 horizon years without the development in place.

By the 2023, 2028, and 2033 horizon years without development during the PM peak period, the Rothesay Road / Ashburn Road intersection is projected to operate at LOS C or better with an intersection delay of 15 seconds/vehicle or less. The eastbound left turn movement is projected to operate at LOS D with an average delay of 35 seconds/vehicle or less. The eastbound right turn movement is projected to operate at LOS D or better with an average delay of 25 seconds/vehicle or less. The westbound movement is projected to operate at LOS E or better with an average delay of 35 seconds/vehicle or less. All v/c ratios are projected to be 0.82 or less, indicating that demand is
approaching capacity. The $95^{\text {th }}$ percentile queue lengths are projected to be 10 vehicles or less, with the longest queues projected on the eastbound right turn lane.

No operational deficiencies are projected at the Rothesay Road / Ashburn Road intersection by the 2033 horizon year without development.

3.2.11 Rothesay Avenue / NB Route 1 interchange

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 12 for the Rothesay Avenue / Route 1 off-ramp, Table 13 for the Rothesay Avenue / Route 1 on-ramp (furthest west), and Table 14 for the Rothesay Avenue / Route 1 on-ramp (furthest east). The analysis output can be found in Appendix B.

3.2.11.1 Rothesay Avenue / Route 1 off-ramp Intersection

Under existing conditions. the Rothesay Avenue / Route 1 off-ramp intersection is operating at an unacceptable LOS F with an intersection delay of 52 seconds/vehicle and 92 seconds/vehicle during the AM and Saturday peak periods, respectively. The eastbound and westbound movements are both operating at unacceptable LOS F with an average delay of 248 seconds/vehicle or less during the Am and Saturday peak periods. During the AM and Saturday peak periods, the v/c ratios at these approaches are all approaching or exceeding 1.0, indicating the demand is approaching or exceeding capacity.

During the PM peak period the intersection is operating at good LOS C with an intersection delay of 21 seconds/vehicle. The individual movements are operating at LOS D or better with average delays of 28 seconds/vehicle or less. The v / c ratios are all 0.78 or less, indicating that there is sufficient capacity.

By the 2023, 2028, and 2033 horizon years during the AM and Saturday peak period, the Rothesay Avenue / Route 1 off-ramp is projected to operate at LOS F with an intersection delay of 214 seconds/vehicle or less. The individual movements are all projected to operate at LOS F with average delays of 529 seconds/vehicle or less during the AM and Saturday peak period. The v/c ratios are all projected to exceed 1.0 , indicating that the demand exceeds the capacity.

During the PM peak period, the Rothesay Avenue / Route 1 off-ramp intersection is projected to operate at an overall LOS D with an intersection delay of 34 seconds/vehicle or less by the 2023 and 2028 horizon year. The eastbound and westbound approaches are projected to operate at LOS E or better with an average delay of 39 seconds/vehicle or less and LOS E with an average delay of 46 seconds/vehicle or less, respectively. By the 2033 horizon year, the intersection is projected to operate at an acceptable LOS E with an average delay of 44 seconds/vehicle during the PM peak period. The eastbound and westbound approaches are projected to operate at LOS F with average delays of 109 seconds/vehicle or less. The v/c ratios at the eastbound and westbound approaches are approaching 1.0, indicating that the demand is approaching the capacity of these approaches.

Table 12 - LOS Summary for Rothesay Ave/Rte 1 off-ramp without Development

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]								
North South Street @ East West Street	Traffic Control	Time Period		Eastbound		Westbound		Northbound			Southbound	
				Rothesay Ave (towards on-ramp)		Rothesay Ave						off-ramp
					R		R	4	${ }^{\mathbf{T}}$	R	4	$\stackrel{T}{\mathbf{T}}$
Existing (2016) Conditions												
Rothesay Ave/Rte 1 Offramp @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 52 \end{gathered}$	$\begin{gathered} \hline F \\ 134 \\ {[1.17]} \\ \hline \end{gathered}$	shared	F 80 $[0.96]$						free flow
		PM Peak	$\begin{gathered} C \\ 21 \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 25 \\ {[0.77]} \\ \hline \end{gathered}$	shared	D 28 $[0.78]$						free flow
		Sat Peak	$\begin{gathered} F \\ 92 \end{gathered}$	F 92 $[1.04]$	shared	$\begin{gathered} \hline F \\ 248 \\ {[1.45]} \end{gathered}$						free flow
Projected 2023 Horizon Year without Development Conditions												
Rothesay Ave/Rte 1 Offramp @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 81 \end{gathered}$	$\begin{gathered} \text { F } \\ 206 \\ {[1.35]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline F \\ 128 \\ {[1.12]} \\ \hline \end{gathered}$						free flow
		PM Peak	$\begin{gathered} \text { D } \\ 27 \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 31 \\ {[0.84]} \end{gathered}$	shared	$\begin{gathered} \hline E \\ 36 \\ {[0.86]} \end{gathered}$						free flow
		Sat Peak	$\begin{gathered} F \\ 132 \end{gathered}$	$\begin{gathered} \hline F \\ 150 \\ {[1.21]} \end{gathered}$	shared	$\begin{gathered} \hline F \\ 345 \\ {[1.67]} \end{gathered}$						free flow
Projected 2028 Horizon Year without Development Conditions												
Rothesay Ave/Rte 1 Offramp @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 109 \end{gathered}$	$\begin{gathered} \hline F \\ 275 \\ {[1.51]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline F \\ 177 \\ {[1.25]} \\ \hline \end{gathered}$						free flow
		PM Peak	$\begin{gathered} \text { D } \\ 34 \end{gathered}$	$\begin{gathered} \hline E \\ 39 \\ {[0.90]} \\ \hline \end{gathered}$	shared	E 46 $[0.92]$						free flow
		Sat Peak	$\begin{gathered} F \\ 151 \end{gathered}$	F 204 $[1.34]$	shared	F 430 $[1.86]$						free flow
Projected 2033 Horizon Year without Development Conditions												
Rothesay Ave/Rte 1 Offramp @ Rothesay Ave	STOP	AM Peak	$\begin{gathered} F \\ 143 \end{gathered}$	$\begin{gathered} \hline F \\ 353 \\ {[1.69]} \\ \hline \end{gathered}$	shared	$\begin{gathered} F \\ 240 \\ {[1.40]} \\ \hline \end{gathered}$						free flow
		PM Peak	$\begin{gathered} E \\ 44 \end{gathered}$	$\begin{gathered} \hline F \\ 107 \\ {[0.96]} \\ \hline \hline \end{gathered}$	shared	$\begin{gathered} \hline F \\ 109 \\ {[0.99]} \\ \hline \hline \end{gathered}$						free flow
		Sat Peak	$\begin{gathered} F \\ 214 \end{gathered}$	F 269 $[1.49]$	shared	F 529 $[2.08]$						free flow

Operational deficiencies are currently experienced at the Rothesay Avenue / Route 1 off-ramp during the AM and Saturday peak period at both the eastbound and westbound approaches and are projected to be experienced during the PM peak period at the eastbound and westbound approaches by the 2033 horizon year without the development in place.

3.2.11.2 Rothesay Avenue / Route 1 on-ramp Intersections

Both of the Rothesay Avenue / Route 1 on-ramp (eastbound street) intersections are operating at LOS A with an intersection delay of 5 seconds/vehicle or better during the AM, PM, and Saturday peak period. Each individual movement (northbound and eastbound) is operating at LOS C or better at both intersections with average delays of 19 seconds/vehicle or less during both the AM, PM, and Saturday peak periods. All the v / c ratios are 0.46 or less, indicating there is sufficient capacity.

By the 2023, 2028, and 2033 horizon years without development, both the Rothesay Avenue / Route 1 on-ramp intersections are projected to operate at an overall LOS A with intersection delays of 8 seconds/vehicle or less during all peak periods. Individual movements at both intersections are projected to operate at LOS D or better with an average delay of 26 seconds/vehicle or less during all peak periods. The v / c ratios are all projected to be 0.62 or less, indicating that there is sufficient capacity.

No operational deficiencies are projected at the Rothesay Avenue / Route 1 on-ramp intersections by the 2033 horizon year without the development in place.

Table 13 - LOS Summary for Rothesay Ave/Rte 1 on-ramp (furthest west) without Development

Table 14 - LOS Summary for Rothesay Ave/Rte 1 on-ramp (furthest east) without Development

3.2.12 NB Route 1 Access with Rothesay Road / Rothesay Avenue

The LOS for existing and projected horizon years 2023, 2028, and 2033 traffic volumes for AM, PM, and Saturday peak hours without development are presented in Table 15 for the Rothesay Road Access Ramps to Route 1 and Table 16 for the Rothesay Avenue Access Ramps to Route 1. The analysis output can be found in Appendix B.

During the AM peak period, the Rothesay Road / Route $\mathbf{1}$ off-ramp is operating at LOS A (0.5 $\mathrm{pc} / \mathrm{km} / \mathrm{ln}$ density) and is projected to continue to operate at LOS A by the 2033 horizon year without development. The Rothesay Road on-ramp is operating at LOS D with a density of $18.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the AM peak period. The on-ramp is projected to continue to operate at LOS D (density of 20.7 $\mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or less) during the 2023 and 2028 horizon years without development. By the 2033 horizon year, the on-ramp is projected to operate at an unacceptable LOS F ($21.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ density) during the AM peak period.

During the PM peak period, the Rothesay Road / Route 1 off-ramp is currently operating at LOS C and is projected to continue operating at LOS C with an average density of $16.1 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower by the 2033 horizon year without the development in place. The Rothesay Road / Route 1 on-ramp is currently operating at LOS B and is projected to continue operating at LOS B with an average density of $7.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower by the 2033 horizon year without the development in place during the PM peak period.

The Rothesay Road / Route 1 on and off-ramps are currently operating at LOS A and are projected to continue operating at LOS A with an average density of $5.0 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ by the 2033 horizon year during the Saturday peak period without the development in place.

Operational deficiencies are projected at the Rothesay Road / Route 1 on-ramp during the AM peak period by 2033 horizon year without the development in place. No operational deficiencies are projected during the PM or Saturday peak periods.

Table 15 - LOS Summary for Rothesay Rd/Rt 1 Ramps without Development

	AM Peak	PM Peak	SAT Peak
Ramp	LOS Density ($\mathrm{pc} / \mathrm{km} / \mathrm{ln}$)	LOS Density ($\mathrm{pc} / \mathrm{km} / \mathrm{ln}$)	LOS Density ($\mathrm{pc} / \mathrm{km} / \mathrm{ln}$)
Existing (2016) Conditions			
Rte 1 - Rothesay Rd off-ramp	A	C	$\begin{gathered} \mathrm{A} \\ 2.9 \end{gathered}$
	0.5		
Rte 1 - Rothesay Rd	D	B	A
on-ramp	18.3	6.2	4.2
Projected 2023 Horizon Year Conditions without Development			
Rte 1 - Rothesay Rd off-ramp	A	C	A
	0.7	14.3	3.2
Rte 1 - Rothesay Rd on-ramp	D	B	A
	19.6	6.7	4.5
Projected 2028 Horizon Year Conditions without Development			
Rte 1 - Rothesay Rd off-ramp	A	C	A
	0.9	15.1	3.5
Rte 1 - Rothesay Rd on-ramp	D	B	A
	20.7	7.0	4.8
Projected 2033 Horizon Year Conditions without Development			
Rte 1 - Rothesay Rd off-ramp	A	C	A
	1.1	16.1	3.7
Rte 1 - Rothesay Rd on-ramp	F	B	A
	21.7	7.4	5.1

The Rothesay Avenue / Route $\mathbf{1}$ off-ramp is currently operating at LOS C during the AM peak period and LOS A during both the PM and Saturday peak period. By the 2023, 2028, and 2033 horizon years without the development in place, the off-ramp is projected to operate at LOS D or better with an average density of $18.1 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower during the AM peak period and is continue to operate at LOS A (density of $1.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower) during both the PM and Saturday peak periods.

The Rothesay Avenue / Route 1 on-ramp operating at LOS A (density of $5.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$), LOS D (density of $19.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$), and LOS B (density of $9.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$) during the AM, PM, and Saturday peak periods, respectively. By the 2023, 2028, and 2033 horizon years without the development in place, the on-ramp is projected to operate at LOS B or better (density of $6.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower) during the AM peak, LOS E or better (density of $22.9 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower) during the PM peak period, and continue to operate at LOS B (density of $10.8 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ or lower) during the Saturday peak period.

No operational deficiencies are projected at the Rothesay Avenue / Route 1 access ramps by the $\mathbf{2 0 3 3}$ horizon year without the development in place.

Table 16 - LOS Summary for Rothesay Ave/Rte 1 Ramps without Development

	AM Peak	PM Peak	SAT Peak
Ramp	LOS Density (pc/km/ln)	LOS Density (pc/km/ln)	LOS Density (pc/km/ln)
Existing (2016) Conditions			
Rte 1 - Rothesay Ave off-ramp	C	A	A
Rte 1 - Rothesay Ave on-ramp	15.0	3.7	1.2

Projected 2023 Horizon Year Conditions without Development			
Rte 1 - Rothesay Ave off-ramp	C	A	A
Rte 1 - Rothesay Ave	16.2	4.1	1.4
on-ramp	A	D	B

Projected 2028 Horizon Year Conditions without Development

Rte 1 - Rothesay Ave	D	A	A
off-ramp	17.1	4.4	1.5
Rte 1 - Rothesay Ave	B	D	B
on-ramp	6.1	21.9	10.4

Projected 2033 Horizon Year Conditions without Development

Rte 1 - Rothesay Ave	D	A	A
off-ramp	18.1	4.7	1.7
Rte 1 - Rothesay Ave	B	E	B
on-ramp	6.4	22.9	10.9

4 Trip Generation and Assignment

4.1 Trip Generation

In order to estimate the amount of traffic that will be generated at the new development site, trip generation rates were utilized for the proposed retail development. These rates are documented in the TripGen 2014 software and are based on the 9th edition of the Trip General Manual, published by the Institute of Transportation Engineers (ITE).

Table 17 shows the estimated traffic generation during of the development. The Table is sectioned based on which developments will be completed by the Phase 1, Phase 2, and Phase 3 horizon years. The AM, PM, and Saturday peak hours for the following components of the development are shown. Figure 10 shows a visual on the site plan of the anticipated phasing used in this study.

The proposed development is projected to generate significantly more traffic during the PM and Saturday peak periods. For this reason, only the PM and Saturday peak hours will be evaluated with respect to the traffic impacts associated with the proposed development, with the exception of the Route 1 ramps, which will be evaluated using the critical peak period based on the directional split for Route 1.

Table 17 - Trip Generation for Development

Development	$\begin{aligned} & \text { Size } \\ & \left(m^{2}\right) \end{aligned}$	AM Peak Hour			PM Peak Hour			Saturday Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL	IN	OUT	TOTAL
Phase 1 (completed by 2023)										
Highway Service Stop ITE Land Use \#950	2,415	110	102	212	184	170	354	184	170	354
$\begin{gathered} \hline \text { FF-1 (fast food \& } \\ \text { drive thru) x3 } \\ \text { ITE Land Use } \\ \# 934 \\ \hline \end{gathered}$	1,059	264	254	518	193	179	372	343	330	673
Outdoor Anchor ITE Land Use \#861	3,345	7	2	9	32	34	66	70	68	138
Restaurant ITE Land Use \#932	520	34	27	61	21	10	31	42	37	79
Garage ITE Land Use \#943	585	5	1	6	12	16	28	19	23	42
Car Wash ITE Land Use \#947	223	4	1	5	17	17	34	17	17	34
Convenience Retail ITE Land Use \#852	1059	177	177	354	193	201	394	193	201	394
$\begin{gathered} \hline \text { Museum/Tourist } \\ \text { Centre } \\ \text { ITE Land Use } \\ \text { \#580 } \end{gathered}$	2230	6	1	7	1	3	4	11	5	16

Bank ITE Land Use \#911	427	7	3	10	25	31	56	0	0	0
Small Retail ITE Land Use \#826	2,267	16	5	21	29	37	66	29	37	66
Restaurant E ITE Land Use \#932	465	30	24	54	29	20	49	37	33	70
Retail E ITE Land Use \#826	2,155	15	5	20	28	35	63	28	35	63
Restaurant F ITE Land Use \#932	465	30	24	54	29	20	49	37	33	70
Retail F ITE Land Use \#826	418	4	1	5	5	7	12	5	7	12
Dealership ITE Land Use \#841	2,264	35	12	47	26	38	64	49	49	98
Storage Facility ITE Land Use \#151	3,250	3	2	5	5	4	9	7	7	14
Phase 1 T		748	641	1,389	841	834	1,675	1,071	1,052	2,123
Phase 2 (completed by 2028)										
Restaurant H ITE Land Use \#932	465	30	24	54	29	20	49	37	33	70
Retail H ITE Land Use \#826	2,861	18	6	24	37	46	83	37	46	83
Restaurant I ITE Land Use \#932	465	30	24	54	29	20	49	37	33	70
Retail I ITE Land Use \#826	418	4	1	5	5	7	12	5	7	12
Entertainment Anchor ITE Land Use \#435	3,716	20	5	25	79	64	143	79	64	143
Health Club ITE Land Use \#492	3,716	28	28	56	80	61	141	50	61	111
$\begin{gathered} \text { Hotel } 1+2 \\ \text { ITE Land Use } \\ \text { \#310 } \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ \text { rooms } \end{gathered}$	78	55	133	77	73	150	101	79	180
Small Retail	2,564	18	6	24	33	42	75	33	42	75
Entertainment Centre ITE Land Use \#444	3716	0	0	0	0	0	0	614	482	1096

$\begin{gathered} \text { Bank } \\ \text { ITE Land Use } \\ \text { \#911 } \\ \hline \end{gathered}$	437	7	3	10	25	32	57	0	0	0
$\begin{aligned} & \text { Restaurant } \\ & \text { ITE Land Use } \\ & \# 932 \end{aligned}$	539	35	28	63	22	11	33	43	39	82
$\begin{aligned} & \text { Dealership } \\ & \text { ITE Land Use } \\ & \text { \#810 } \end{aligned}$	1,650	0	0	0	12	13	25	27	29	56
Phase 2 To		268	180	448	428	389	817	1,063	915	1,978
Phase 3 (completed by 2033)										
Entertainment / Recreation Area ITE Land Use \#481	$\begin{gathered} 15 \\ \text { acres } \end{gathered}$	6	0	6	60	37	97	164	119	283
General Office (x4) ITE Land Use \#710	10,461	154	22	176	29	140	169	26	22	48
Residential Area (12 mid-rise apartments) ITE Land Use \#223	20 units each	24	48	72	60	36	96	30	36	66
$\begin{gathered} \text { Gas Station } \\ \text { ITE Land Use } \\ \# 944 \\ \hline \end{gathered}$	8 fueling stations	49	48	97	56	55	111	56	55	111
Convenience Retail ITE Land Use \#826	1,177	6	3	9	15	19	34	15	19	34
Phase 3 Total		239	121	360	220	287	507	291	251	542
TOTAL		1,255	942	2,197	1,489	1,510	2,999	2,425	2,218	4,643

Figure 10 - Proposed Development Phasing

4.2 Trip Assignment

New developments generate new traffic, the total traffic generated is comprised of new trips, diverted trips, and pass-by trips. New traffic is generated by a new development being constructed and in operation. This is traffic that would not have been on the street network without the new development, and needs to be added to the adjacent street and intersection approaches. Diverted traffic is traffic that has been diverted from other nearby areas as a result of the development and also increases the traffic on adjacent streets and intersection approaches. Pass-by traffic is traffic that is already on the adjacent street and intersection approaches and makes an intermediate trip to the development. This traffic is not new to the adjacent street network. The percentage of pass-by trips varies between different types of developments.

For the purpose of this study, a 25% pass-by trip percentage is assumed. It should be noted that the generated traffic volumes (Table 17) were reduced by 20% when they were assigned to the network to reflect an internal synergy component.

The generated trips have been assigned to the Study Area streets and intersections based on existing traffic distribution within the Study Area during the peak periods.

The following summarizes the assumptions utilized for assigning new traffic to the development for the PM and Saturday peak hours:

Traffic generated from the north (Foster Thurston Drive): 10\% (PM) and 5\% (Saturday);
Traffic generated from the south (Rothesay Avenue): 30\% (PM) and 40\% (Saturday);
Traffic generated from the east (Route 1): 15\% (PM) and 25\% (Saturday);
Traffic generated from the east (Rothesay Road): 5\% (PM) and 5\% (Saturday), and;
Traffic generated from the west (Route 1): 40\% (PM) and 25\% (Saturday).
It is assumed that traffic generated from the east on Rothesay Road will access the development using the Rothesay Road / Ashburn Road intersection. It was assumed that 80% of traffic generated from the east and west on Route 1 will access the development using the Rothesay Road / Rothesay Avenue intersection, while 20% will access the development using the Rothesay Road / Ashburn Road intersection. Traffic generated from the south was assumed to access the development using the Rothesay Road / Rothesay Avenue intersection. Traffic generated from the north was assumed to access the development using the Foster Thurston / Ashburn Road intersection.

Figures 11, 12 and 13 show the traffic assignment for Phase 1 (2023 Horizon Year).

Figure 11 - Trip Assignment - Development Phase 1 (2023 Horizon Year) (1 of 3)

Figure 12 - Trip Assignment - Development Phase 1 (2023 Horizon Year) (2 of 3)

Figure 13 - Trip Assignment - Development Phase 1 (2023 Horizon Year) (3 of 3)

5 Future Traffic Operations - Phase 1

5.12023 Horizon Year Levels of Service (Phase 1)

Given a) the existing operational issues within the study area, and b) that full buildout of the Crossing is expected to generate significant traffic volumes; a decision was made to initially focus the traffic study on Phase 1 of the development. Consequently, this section focuses on the 2023 horizon year future traffic operations with Phase 1 of the development in place. The Synchro model was updated to reflect changes in traffic volumes and lane configurations associated with the developments for Phase 1 and then re-run to obtain LOS with Phase 1 development.

5.1.1 Foster Thurston Drive / Ashburn Road

The Foster Thurston Drive / Ashburn Road intersection is one of the access points to the proposed development. For Phase 1 of the development it was assumed that this access would be utilized by traffic generated from the north. The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with Phase 1 of the development under existing conditions as well as with recommended options are presented in Table 18 for the Foster Thurston Drive / Ashburn Road intersection. The analysis output can be found in Appendix C.

By the 2023 horizon year with Phase 1 of the development in place, the Ashburn Road / Foster Thurston intersection is projected to operate at an overall LOS C or better with an intersection delay of 15 seconds/vehicle or less during the PM and Saturday peak period. All individual movements are projected to operate at acceptable LOS E or better with average delays of 35 seconds/vehicle or less for the PM and Saturday peak period. The lone exception is the northbound movement during the PM peak period, which is projected to operate at an unacceptable LOS F (average delay of 168 seconds/vehicle). The lowest movements in terms of LOS are the northbound and southbound approaches, which currently operate under stop control conditions. All v/c ratios are below 0.57 or lower, indicating that there is sufficient capacity.

It is important to note that operational deficiencies are projected at the northbound movement during the PM peak period by the 2023 horizon year without development as well as at the southbound movement during the PM peak period by the 2033 horizon year without development.

The movements experiencing operational deficiencies (northbound and southbound through movements) have very low volumes and operate under stop control conditions. There are limited options to improve these approaches other than a change in traffic control or restricting turn movements. It is notable that trips generated as a result of Phase 1 of the development are not projected to worsen operating conditions significantly.

It is recommended to add a separate channelized right turn slip lane on the southbound approach. This is recommended because of the increase in southbound (Ashburn Road) right turning traffic volume as a result of vehicles exiting the development towards the north. These right turn movements would not be delayed by the through and left turn movements.

Synchro was updated to reflect the recommended change in lane geometry and rerun using 2023 traffic volumes with development. Results are summarized in Table 18. The northbound approach is still projected to operate at LOS F, however, this approach has very low volumes with a v/c ratio well below capacity. It is important to note that delays experienced by the through and left turn movements at the southbound approach and the delays at the northbound approach are not a result of traffic associated with Phase 1 of the development.

Table 18 - LOS Summary for Foster Thurston Dr/Ashburn Rd with Development (Ph 1)

5.1.2 Foster Thurston Drive / NB Route 1 Access Ramps

The AM peak period was analyzed for the Foster Thurston Drive / Route 1 on-ramp and off-ramp because the directional split on Route 1 westbound is significantly higher during this period, therefore, the critical operational deficiencies occurring at these access ramps as a result of the development would occur during the AM peak period.
The results of the LOS analysis under projected 2023 traffic volumes with Phase 1 of the development are presented in Table 19 for the Foster Thurston Drive / NB Route 1 Access Ramps. The detailed analysis output can be found in Appendix C.

By 2023 with Phase 1 of the development in place, the Foster Thurston Drive / Route 1 off-ramp is projected to operate at LOS D with an average density of $17.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the AM peak period. The Foster Thurston Drive / Route 1 on-ramp is projected to operate at LOS D with an average density of $17.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the AM peak period.

No operational deficiencies are projected at the Foster Thurston Drive / Route 1 Access Ramps by 2023 with Phase 1 of the development in place.

Table 19 - LOS Summary for Foster Thurston Dr/Rte 1 Ramps with Development (Ph 1)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Foster Thurston Dr off-ramp	D
(AM Peak)	17.6
Rte 1 - Foster Thurston Dr on-ramp	D
(AM Peak)	17.7

5.1.3 Ashburn Lake Road / NB Route 1 Access Ramps

The PM peak period was analyzed for the Ashburn Lake Road / Route 1 on-ramp and off-ramp because the directional split on Route 1 eastbound is significantly higher during this period, therefore, the critical operational deficiencies occurring at these access ramps as a result of the development would occur during the PM peak period.
The results of the LOS analysis under projected 2023 traffic volumes with Phase 1 of the development are presented in Table 20 for the Ashburn Lake Road / NB Route 1 Access Ramps. The detailed analysis output can be found in Appendix C.

By 2023 with Phase 1 of the development in place, the Ashburn Lake Road / Route 1 off-ramp is projected to operate at LOS D with an average density of $19.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period.
The Ashburn Lake Road / Route 1 on-ramp is projected to operate at LOS E with an average density of $22.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period.

The Ashburn Lake Road / Route 1 on-ramp will begin to experience some congestion by the 2023 horizon year with Phase 1 of the development in place. This is a result of no direct connection to Foster Thurston Drive.

Table 20 - LOS Summary for Ashburn Lake Rd/Rte 1 Ramps with Development (Ph 1)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Ashburn Lake Rd off-ramp	D
(PM Peak)	19.6
Rte 1 - Ashburn Lake Rd on-ramp	E
(PM Peak)	22.2

5.1.4 Rothesay Avenue / Retail Drive / Ashburn Lake Road

The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development under existing conditions as well as with recommended options are presented in Table 21 for the Rothesay Avenue / Retail Drive and Rothesay Avenue / Ashburn Lake Road intersections. The analysis output can be found in Appendix C.

By the 2023 horizon year with Phase 1 of the development in place, the Rothesay Avenue / Retail Drive intersection is projected to operate at an overall acceptable LOS E or better with an intersection delay of 57 seconds/vehicle or less during the PM and Saturday peak period. The westbound left turn movement is operating at an unacceptable LOS F with an average delay of 203 seconds/vehicle or less during both the PM and Saturday peak period. The v/c ratio at the westbound left turn movement exceeds 1.0 during both the PM and Saturday peak period, indicating that the demand exceeds the capacity. All other movements are projected to operate at LOS D or better with average delays of 54 seconds/vehicle or less and v / c ratios of 0.92 or less. The $95^{\text {th }}$ percentile queues are projected to reach 139 m to 141 m on the westbound left turn movement during the PM and Saturday peak period.

By the 2023 horizon year with Phase 1 of the development in place, the Rothesay Avenue /
Ashburn Lake Road intersection is projected to operate at an overall LOS D with an intersection delay of 38 seconds/vehicle during the Saturday peak period and at an unacceptable LOS F with an intersection delay of 82 seconds/vehicle during the PM peak period. All individual movements are projected to operate at acceptable LOS E or better with an average delay of 61 seconds/vehicle or less during both the PM and Saturday peak period. The exception is the northbound movement
during the PM peak period which is projected to operate at LOS F with an average delay of 124 seconds/vehicle. The v/c ratio at the northbound approach during the PM peak period is projected to exceed the 1.0 threshold indicating that the demand exceeds the capacity. The $95^{\text {th }}$ percentile queue lengths are projected to be 84 m on the eastbound approach and 98 m on the northbound approach during the PM peak period. High projected delays at the northbound approach of Rothesay Avenue / Ashburn Lake Road is a result of the assumption that traffic generated from the south (south of Retail Drive) would access the development using the Ashburn Lake Road ramps.

It is important to note that operational deficiencies are already projected by the 2023 horizon year at the westbound left turn movement of Rothesay Avenue / Retail Drive without the development in place. Additional operational deficiencies as a result of the traffic generated by the development is projected at the northbound movement of the Rothesay Avenue / Ashburn Lake Road intersection during the PM peak period by the 2023 horizon year.

The Rothesay Avenue / Retail Drive and Rothesay Avenue / Ashburn Lake Road off-set intersections cannot function properly because of the short distance between them and the high traffic volumes.

It is recommended to realign the existing Rothesay Avenue / Retail Drive and Rothesay Avenue / Ashburn Lake Road into a 4-leg signalized intersection. Although it was not within the scope of this study to do a detailed design of the potential future realignment at this location, a possible re-alignment lane configuration was completed in Synchro to determine the potential impact. The distribution of traffic by the 2023 horizon year with Phase 1 of the development at the realigned intersection is shown in Figure 14 for the PM and Saturday peak periods.

The northbound and southbound approaches each have one separate left turn lane, one separate through lane, and one shared through/right turn lane. The right turn lane at the northbound approach is channelized with free flow conditions. The eastbound and westbound approaches each have a separate left turn lane and a shared through/right turn lane. The intersection was assumed to operate under full detection. There are 8 phases, which include a protected left turn phase at each of the approaches. The realigned intersection was modelled in Synchro; results are shown in Table 21.

With the realignment by the 2023 horizon year with Phase 1 of the development in place, the Rothesay Avenue / Retail Drive / Ashburn Lake Road intersection is projected to operate at an overall LOS C with an intersection delay of 27 seconds/vehicle and 22 seconds/vehicle during the PM and Saturday peak period, respectively. All individual movements are projected to operate at satisfactory LOS D or better with an average delay of 44 seconds/vehicle or less and v/c ratios of 0.89 or less during both peak periods. The $95^{\text {th }}$ percentile queue lengths are projected to be the longest at the northbound approach during the PM peak period, at a length of 97 m .

Figure 14 - Projected Volumes for Realigned Rothesay Ave / Retail Dr (2023 w/ Development) - PM/SAT
Table 21 - LOS Summary for Rothesay Ave/Retail Dr with Development (Ph 1)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [95\% Queues (m)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound Rothesay Ave			Southbound Rothesay Ave		
				Ashburn Lake Rd			Retail Dr								
						$\stackrel{R}{>}$	4		$\stackrel{R}{R}$	4		$\stackrel{R}{R}$			$\stackrel{R}{\mathrm{R}}$
Projected 2023 Horizon Year with Development Conditions (Rothesay Ave / Retail Dr)															
Rothesay Ave @ Retail Dr /	0	PM Peak	$\begin{gathered} \mathrm{E} \\ 57 \end{gathered}$				$\begin{gathered} \hline F \\ 203 \\ {[1.30]} \end{gathered}$		$\begin{gathered} \hline \text { B } \\ 19 \\ {[0.55]} \end{gathered}$		$\begin{gathered} \hline \text { D } \\ 54 \\ {[0.56]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \text { B } \\ 17 \\ {[0.89]} \end{gathered}$	
Ashburn Lake Rd		Sat Peak	$\begin{gathered} C \\ 35 \end{gathered}$				$\begin{gathered} \hline F \\ 199 \\ {[1.29]} \\ \hline \end{gathered}$		$\begin{gathered} \hline \hline \mathrm{A} \\ 8 \\ {[0.51]} \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { A } \\ 6 \\ {[0.40]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \text { B } \\ 12 \\ {[0.92]} \end{gathered}$	
Projected 2023 Horizon Year with Development Conditions (Rothesay Ave / Ashburn Lake Rd)															
Rothesay Ave @ Retail Dr /		PM Peak	$\begin{gathered} F \\ 82 \end{gathered}$	C 33 $[0.83]$		shared				shared	$\begin{gathered} F \\ 124 \\ {[1.29]} \\ \hline \end{gathered}$			$\begin{gathered} \text { E } \\ 61 \\ {[0.67]} \\ \hline \end{gathered}$	shared
Ashburn Lake Rd		Sat Peak	$\begin{gathered} \text { D } \\ 38 \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 22 \\ {[0.70]} \\ \hline \end{gathered}$		shared				shared	$\begin{gathered} \hline \text { B } \\ 16 \\ {[0.72]} \\ \hline \end{gathered}$			E 61 $[0.58]$	shared
Projected 2023 Horizon Year with Development Conditions and Recommendations (Rothesay Ave / Retail Dr / Ashburn Lake Rd realignment)															
Rothesay Ave @ Retail Dr /		PM Peak	$\begin{gathered} C \\ 27 \end{gathered}$	$\begin{gathered} \text { D } \\ 44 \\ {[0.89]} \end{gathered}$	$\begin{gathered} \text { C } \\ 24 \\ {[0.38]} \end{gathered}$	shared	$\begin{gathered} \text { C } \\ 22 \\ {[0.58]} \end{gathered}$	$\begin{gathered} \text { C } \\ 24 \\ {[0.73]} \end{gathered}$	shared	$\begin{gathered} \text { C } \\ 20 \\ {[0.59]} \end{gathered}$	$\begin{gathered} \text { C } \\ 30 \\ {[0.82]} \end{gathered}$	shared	$\begin{gathered} \text { C } \\ 21 \\ {[0.60]} \end{gathered}$	$\begin{gathered} \text { C } \\ 24 \\ {[0.67]} \end{gathered}$	shared
Ashburn Lake Rd		Sat Peak	$\begin{gathered} \text { C } \\ 22 \end{gathered}$	C 28 $[0.73]$	C 25 $[0.42]$	shared	$\begin{gathered} \hline \hline \text { B } \\ 19 \\ {[0.55]} \end{gathered}$	$\begin{gathered} \hline \hline B \\ 18 \\ {[0.70]} \end{gathered}$	shared	$\begin{gathered} \hline B \\ 13 \\ {[0.34]} \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 22 \\ {[0.67]} \end{gathered}$	shared	C 28 $[0.78]$	$\begin{gathered} \hline \text { C } \\ 20 \\ {[0.56]} \end{gathered}$	shared

5.1.5 Rothesay Road / Fulton Lane

The Rothesay Road / Fulton Lane intersection is proposed to be slightly offset from an access point to the development on Rothesay Road (just east of Fulton Lane). The intersection was analyzed assuming it is a four-leg intersection. The majority of the traffic using this access to the development would be volumes generated from the proposed truck stop.

The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development under existing conditions as well as with recommended options are presented in Table

22 for the Rothesay Road / Fulton Lane / Access intersection. The analysis output can be found in Appendix C.

By the 2023 horizon year with Phase 1 of the development in place, the Rothesay Road / Fulton Lane / Access intersection is projected to operate at an overall LOS A during the PM and Saturday peak period. During the PM peak period, the eastbound and westbound movements are projected to operate at unacceptable LOS F with average delays of 52 seconds/vehicle and 190 seconds/vehicle, respectively. There are very small volumes associated with the westbound right and left turn movement and the eastbound left turn movement, therefore, the v / c ratios at these approaches are still well below the threshold despite the higher delays. All other movements are projected to operate at LOS B with average delays of 11 seconds/vehicle or less. During the Saturday peak period all movements are projected to operate at LOS C or better with an average delay of 22 seconds/vehicle or less. The v / c ratios are projected to be 0.66 or less during both the PM and Saturday peak period.

Operational deficiencies are projected at the Rothesay Road / Fulton Lane / Access intersection during the PM peak period at the eastbound and westbound approaches by the 2023 horizon year with Phase 1 of the development in place.

It is recommended this proposed development access be aligned with the existing Fulton Lane at Rothesay Avenue. It is also recommended to make this access a right-in/right-out only with the primary access off Ashburn Road. As this access is projected to primarily be utilized by trucks, it is recommended that during the detailed design of this access that the approach be checked to ensure the turning movements can be accommodated by the design vehicle (i.e. the largest truck that would utilize this access).

The Synchro model was updated to reflect the recommended right-in/right-out only access. Results are shown in Table 22. By the 2023 horizon year with Phase 1 of the development in place and after making the access to the development right-in/right out only, the Rothesay Road / Fulton Lane / Access intersection is projected to operate at an overall LOS A with an intersection delay of 2 seconds/vehicle during both the PM and Saturday peak period. The westbound movement during the PM peak period is still projected to operate at LOS F with an average delay of 98 seconds/vehicle. This movement, however, has a very low volume and a v/c ratio that is well below the threshold; delays are unavoidable under two-way stop controlled conditions. All other movements are projected to operate at LOS C or better with average delays of 21 seconds/vehicle or less. All v/c ratios are 0.36 or less, indicating that there is sufficient capacity.

Table 22 - LOS Summary for Rothesay Rd/Fulton Ln/Access with Development (Ph 1)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]									
North South Street @ East West Street	Traffic Control	Time Period		Eastbound	Westbound			Northbound Rothesay Rd			Southbound		
				Access	Fulton Ln						Rothesay Rd		
					4	$\hat{\mathbf{T}}$	$\stackrel{R}{R}$		T	$\stackrel{R}{R}$	4	T 1	$\stackrel{R}{ }$
Projected 2023 Horizon Year with Development Conditions													
Rothesay Rd		PM Peak	$\begin{gathered} A \\ 5 \end{gathered}$	shared F 52 shared $[0.66]$ 	shared	$\begin{gathered} \hline F \\ 190 \\ {[0.38]} \end{gathered}$	shared	shared	$\begin{gathered} \text { B } \\ 11 \\ {[0.18]} \end{gathered}$	shared	shared	$\begin{gathered} B \\ 10 \\ {[0.01]} \end{gathered}$	shared
Access		Sat Peak	A 3	 shared 14 shared $[0.26]$ 	shared	$\begin{gathered} \hline \text { C } \\ 22 \\ {[0.02]} \\ \hline \end{gathered}$	shared	shared	A 9 $[0.13]$	shared	shared	$\begin{gathered} \hline \mathrm{A} \\ 8 \\ {[0.00]} \end{gathered}$	shared
Projected 2023 Horizon Year with Development Conditions and Recommended Option													
Rothesay Rd @ Fulton Ln / Access	STOP	PM Peak	$\begin{aligned} & A \\ & 2 \end{aligned}$	C 21 shared $[0.36]$ B	shared	$\begin{gathered} \hline F \\ 98 \\ {[0.22]} \\ \hline \end{gathered}$	shared			low	shared	$\begin{gathered} \hline \text { B } \\ 11 \\ {[0.01]} \end{gathered}$	shared
		Sat Peak	A 2	B 12 shared $[0.21]$	shared	$\begin{gathered} \hline \text { C } \\ 19 \\ {[0.04]} \\ \hline \end{gathered}$	shared			low	shared	$\begin{gathered} \hline \text { A } \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	shared

5.1.6 Ashburn Road / Jones Drive

The Ashburn Road / Jones Drive intersection is to be utilized in the future as an access to the development to the south of Ashburn Road. It was assumed, however, that this access would not be utilized by development traffic by the 2023 horizon year with Phase 1 of the development in place.

The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development under existing conditions are presented in Table 23 for the Ashburn Road / Jones Drive intersection. The analysis output can be found in Appendix C.

Minimal changes are projected at the Ashburn Road / Jones Drive intersection by the 2023 horizon year with Phase 1 of the development in place. All movements are projected to operate at LOS C or better with average delays of 16 seconds/vehicle or less during both the PM and Saturday peak period.

No operational deficiencies are projected at the Ashburn Road / Jones Drive intersection by the 2023 horizon year with Phase 1 of the development in place.
The Ashburn Road / Jones Drive intersection will be an access point to the development after full build out. It is recommended to implement separate left turn lanes at all approaches of this intersection to accommodate future internal traffic demand.

Table 23 - LOS Summary for Ashburn Rd/Jones Dr/Access with Development (Ph 1)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]									
North South Street @ East West Street	Traffic Control	Time Period		Eastbound		Westbound			Northbound		Southbound		
				Jones Dr					Ashburn Rd		Ashburn Rd		
						4	${ }^{\top}$			$\xrightarrow{\text { R }}$	4	${ }^{\top}$	\xrightarrow{R}
Projected 2023 Horizon Year with Development Conditions													
Ashburn Rd @ Jones Dr	STOP	PM Peak	$\begin{aligned} & \text { A } \\ & 0 \end{aligned}$	$\begin{gathered} C \\ 16 \\ {[0.01]} \\ \hline \end{gathered}$	shared				 shared A 8 $[0.00]$			free flow	shared
		Sat Peak	A 0	$\begin{gathered} \hline \text { B } \\ 10 \\ {[0.01]} \end{gathered}$	shared				 shared A 7 $[0.00]$			free flow	shared

5.1.7 Ashburn Road / Drury Cove Road

The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development are presented in Table 24 for the Ashburn Road / Drury Cove Road intersection. The analysis output can be found in Appendix C.

Minimal changes are projected at the Ashburn Road / Drury Cove Road intersection by the 2023 horizon year with Phase 1 in place. All movements are projected to operate at LOS C or better with average delays of 20 seconds/vehicle or less during both the PM and Saturday peak periods.

No operational deficiencies are projected at the Ashburn Road / Drury Cove Road intersection by the 2023 horizon year with Phase 1 of the development in place. No recommended changes are needed at the Ashburn Road / Drury Cove Road intersection by the 2023 horizon year with Phase 1 of the development in place.

Table 24 - LOS Summary for Ashburn Rd/Drury Cove Rd with Development (Ph 1)

5.1.8 Rothesay Avenue / Rothesay Road

The Rothesay Road / Rothesay Avenue intersection is to be the main access to the proposed development. The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development are presented in Table 25 for the Rothesay Road / Rothesay Avenue intersection. The analysis output can be found in Appendix C.

By the 2023 horizon year with Phase 1 of the development in place the Rothesay Road / Rothesay Avenue intersection is projected to operate at an overall LOS F with significant queuing and delays projected at the eastbound and westbound approaches during both the PM and Saturday peak period. All other movements are projected to operate at LOS B or better with average delays of 14 seconds/vehicle or less during both the PM and Saturday peak period.

Significant operational deficiencies are projected at the Rothesay Road / Rothesay Avenue intersection on the eastbound and westbound approaches by the 2023 horizon year with development in place. It is important to note that operational deficiencies are already experienced on the westbound approach under existing conditions.

Two different options were analyzed as potential improvements for the Rothesay Road / Rothesay Avenue intersection. These options included a roundabout (single lane, two multi lane, and full double lane options) as well as a traffic signal and changes in lane geometry. Roundabout configurations for the four different options can be found in the detailed analysis outputs in Appendix C.

Roundabout Improvement Option

The option for a roundabout at the Rothesay Road / Rothesay Avenue intersection was analyzed using Sidra software. Two options were analyzed including a single lane and a double lane scenario. It is important to note that for the double lane scenario, it was assumed that the second lane at each approach were each 60 metres in length. Results are summarized in Table 25. Detailed reports of the analyses can be found in Appendix C.

The first option analyzed was a single lane roundabout implemented at the Rothesay Road /
Rothesay Avenue intersection. By the 2023 horizon year with the development in place and a single lane roundabout, the intersection is projected to operate at an overall LOS F during both the PM and Saturday peak periods. During the PM peak period, the northbound and eastbound movements are projected to operate at LOS with average delays of 141 seconds/vehicle or greater. The westbound and southbound movements are projected to operate at LOS D with an average delay of 47 seconds/vehicle or less. During the Saturday peak period all individual movements are projected to operate at LOS F with average delays of 128 seconds/vehicle or less. All v/c ratios exceed the threshold of 1.0 during both peak periods, indicating that the demand exceeds the capacity.

The second option analyzed was a multi lane roundabout implemented at the Rothesay Road /
Rothesay Avenue intersection that included two lanes at the northbound and southbound (Rothesay Road) approaches, and single lanes with separate right turn by-pass lanes at the eastbound and westbound (Rothesay Avenue) approaches. By the 2023 horizon year with development in place and a multi lane roundabout, the intersection is projected to operate at an overall LOS C or better with an intersection delay of 28 seconds/vehicle or less during the PM and Saturday peak period. During the PM peak period the northbound movements are projected to operate the lowest in terms of LOS at LOS E or better with average delays of 67 seconds/vehicle or less. The v / c ratio on the northbound left turn movement is projected to be 1.02 , indicating the demand exceeds capacity. All other movements are operating at LOS C or better with an average delay of 21 seconds/vehicle or less and a v/c ratio of 0.74 or lower. During the Saturday peak period all individual movements are projected to operate at LOS D or better with average delays of 38 seconds/vehicle or less.

The third option analyzed was a multi lane roundabout described above with the addition of a right turn by-pass lane at the northbound approach. The addition of the northbound right turn by-pass lane is projected to improve conditions at the northbound approach of the Rothesay Road / Rothesay Avenue intersection. During the PM peak period the northbound through and left turn lanes are projected to operate at LOS D with average delays of 48 seconds/vehicle or less and v / c ratios of 0.94 or better, indicating that there is sufficient capacity. The right turn slip lane is projected to operate at LOS B with an average delay of 12 seconds/vehicle. During the Saturday peak period the northbound through and left turn lanes are projected to operate at LOS C or better with an average delay of 25 seconds/vehicle or less and v / c ratios of 0.60 or lower. The right turn slip lane is projected to operate at LOS B with an average delay of 13 seconds/vehicle.

The final option analyzed was a full double lane roundabout. By the 2023 horizon year with development in place and a double lane roundabout implemented at the Rothesay Road / Rothesay Avenue intersection, the intersection is projected to operate at an overall LOS C or better with an intersection delay of 23 seconds/vehicle or less during both the PM and Saturday peak period. All individual movements are projected to operate at LOS D or better with average delays of 40 seconds/vehicle or less during both peak periods. The v/c ratios for each movement are projected to be below the threshold, indicating that there is sufficient capacity. The $95^{\text {th }}$ percentile queue lengths are all projected to be below 116 metres with the longest queues projected on the northbound approach during the PM peak period.

No operational deficiencies are projected for the multi or double lane roundabout at the Rothesay Road / Rothesay Avenue intersection by the 2023 horizon year with Phase 1 of the development in place.

5.1.8.1 Traffic Signal Improvement Option

The second improvement option involves implementing traffic signals at the Rothesay Road / Rothesay Avenue intersection. Rothesay Avenue was assumed to be a 3-lane cross section with two lanes eastbound and one lane westbound. The lane geometry used in the analysis included a separate left turn pocket and a shared through and channelized right turn lane with yield conditions on the northbound approach; a separate left turn pocket, a through lane, and a separate channelized right turn pocket (extending back as far as the bridge structure) with free flow conditions on the westbound (Rothesay Avenue) approach; a separate left turn pocket and a shared through/channelized right turn lane with free flow conditions on the southbound approach and; a separate left turn lane, a through lane, and a separate channelized right turn lane with yield control on the eastbound (development access) approach.

The signal at the Rothesay Road / Rothesay Avenue intersection was analyzed assuming full detection. If the traffic signal option is implemented it is recommended to coordinate all three recommended traffic signals along Rothesay Avenue and Rothesay Road (for the Rothesay Road / Ashburn Road, Rothesay Road / Rothesay Avenue, and Rothesay Avenue / Route 1 off-ramp intersections). The analysis was performed assuming this coordination existed amongst the three intersections. The Synchro model was updated to reflect these changes. Results are summarized in Table 25. Detailed reports of the analyses can be found in Appendix C.

By the 2023 horizon year with the development in place and coordinated traffic signals implemented at the three intersections on Rothesay Road and Rothesay Avenue, the Rothesay Road / Rothesay Avenue intersection is projected to operate at an overall LOS D or better with an intersection delay of 42 seconds/vehicle or less during the PM and Saturday peak period. The eastbound and northbound through movements are projected to operate the lowest in terms of LOS, at LOS E or better with an average delay of 72 seconds/vehicle or less during both the PM and Saturday peak period. All other movements and the southbound and westbound left turn movements are projected to operate at LOS E with an average delay of 80 seconds/vehicle or less. The v / c ratio at the northbound through and southbound left turn movement are either at capacity.

No operational deficiencies are projected by 2023 with Phase 1 of the development at the Rothesay Road / Rothesay Avenue intersection with actuated-coordinated signals and recommended geometry. The southbound left turn and northbound through movements have reached capacity.

Given the relatively high cost for the required roundabout solution, and the potential for overbuilt infrastructure if construction of the Ashburn underpass were to proceed, as well as from the operational findings for both options, it is recommended that traffic signals be the preferred solution at the Rothesay Ave / Rothesay Rd intersection to accommodate Phase 1 of the development.

Table 25 - LOS Summary for Rothesay Rd/Rothesay Ave with Development (Ph 1)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOSAverage Delay (seconds per vehicle)[Volume to Capacity Ratio (v/c)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Rothesay Ave			Rothesay Ave			Rothesay Rd			Rothesay Rd		
						$\stackrel{R}{R}$	$\stackrel{L}{4}$	${ }_{\mathbf{T}}^{\mathbf{T}}$	\xrightarrow{R}		$\hat{1}^{\text {T }}$	$\stackrel{R}{R}$	4		\xrightarrow{R}
Projected 2023 Horizon Year Conditions with Existing Configuration															
Rothesay Rd @		PM Peak	F	shared	$\begin{gathered} F \\ >300 \\ {[>2.00]} \\ \hline \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline F \\ >300 \\ {[>2.00]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \mathbf{A} \\ 9 \\ {[0.27]} \\ \hline \hline \end{gathered}$	free flow	shared	shared	$\begin{gathered} \hline B \\ 14 \\ {[0.61]} \\ \hline \hline \end{gathered}$	shared
Rothesay Ave	ST0P	Sat Peak	F	shared	F >300 $[>2.00]$	shared	shared	F >300 $[>2.00]$	shared	A 8 $[0.22]$	free flow	shared	shared	A 9 $[0.32]$	shared
Projected 2023 Horizon Year with Development Conditions with Recommendation (single lane roundabout) (option 1)															
Rothesay Rd @		PM Peak	F	shared	$\begin{gathered} \hline F \\ 141 \\ {[1.22]} \end{gathered}$	shared	shared	D 42 $[1.01]$	shared	shared	F >300 $[>2.00]$	shared	shared	D 47 $[1.02]$	shared
Rothesay Ave		Sat Peak	F	shared	$\begin{gathered} \hline F \\ 123 \\ {[1.21]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline F \\ 113 \\ {[1.20]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline F \\ 109 \\ {[1.15]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \hline F \\ 128 \\ {[1.20]} \\ \hline \end{gathered}$	shared
Projected 2023 Horizon Year with Development Conditions with Recommendation (multi lane roundabout) (option 2)															
Rothesay Rd @		PM Peak	$\begin{gathered} C \\ 28 \end{gathered}$	$\begin{gathered} \text { A } \\ 10 \\ {[0.46]} \\ \hline \end{gathered}$	shared	A 5 $[0.18]$	$\begin{gathered} \hline \text { B } \\ 10 \\ {[0.35]} \\ \hline \end{gathered}$	shared	B 10 $[0.71]$	E 67 $[1.02]$	shared	D 45 $[0.93]$	$\begin{gathered} \hline \mathrm{C} \\ 21 \\ {[0.74]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline B \\ 12 \\ {[0.43]} \\ \hline \end{gathered}$
Rothesay Ave		Sat Peak	$\begin{gathered} B \\ 19 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 16 \\ {[0.79]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline A \\ 6 \\ {[0.16]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 12 \\ {[0.74]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \mathbf{A} \\ 5 \\ {[0.28]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 25 \\ {[0.60]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \text { B } \\ 20 \\ {[0.54]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 38 \\ {[0.83]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \text { C } \\ 21 \\ {[0.42]} \\ \hline \end{gathered}$
Projected 2023 Horizon Year with Development Conditions with Recommendation (multi lane roundabout) (option 3)															
Rothesay Rd @		PM Peak	$\begin{gathered} \text { C } \\ 22 \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 10 \\ {[0.46]} \\ \hline \end{gathered}$	shared	A 5 $[0.18]$	$\begin{gathered} \hline \text { B } \\ 10 \\ {[0.35]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline B \\ 10 \\ {[0.71]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ 48 \\ {[0.94]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 35 \\ {[0.85]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline B \\ 12 \\ {[0.15]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 21 \\ {[0.75]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline B \\ 13 \\ {[0.43]} \\ \hline \end{gathered}$
Rothesay Ave	\cdots	Sat Peak	$\begin{gathered} B \\ 18 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 16 \\ {[0.79]} \end{gathered}$	shared	A 6 $[0.16]$	$\begin{gathered} \hline B \\ 12 \\ {[0.73]} \\ \hline \end{gathered}$	shared	A 5 $[0.28]$	$\begin{gathered} \hline \text { C } \\ 25 \\ {[0.60]} \end{gathered}$	B 18 $[0.39]$	$\begin{gathered} \hline B \\ 13 \\ {[0.18]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ 37 \\ {[0.83]} \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{C} \\ 21 \\ {[0.42]} \end{gathered}$
Projected 2023 Horizon Year with Development Conditions with Recommendation (double lane roundabout) (option 4)															
Rothesay Rd @ Rothesay Ave		PM Peak	$\begin{gathered} C \\ 23 \end{gathered}$	A 9 $[0.42]$	shared	A 8 $[0.31]$	$\begin{gathered} \hline \text { B } \\ 14 \\ {[0.48]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \text { B } \\ 15 \\ {[0.84]} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 40 \\ {[0.92]} \end{gathered}$	shared	$\begin{gathered} \text { D } \\ 35 \\ {[0.91]} \\ \hline \end{gathered}$	$\begin{gathered} C \\ 21 \\ {[0.79]} \end{gathered}$	shared	$\begin{gathered} \text { B } \\ 12 \\ {[0.40]} \end{gathered}$
	-	Sat Peak	$\begin{gathered} B \\ 16 \end{gathered}$	$\begin{gathered} \hline B \\ 12 \\ {[0.71]} \end{gathered}$	shared	$\begin{gathered} \hline B \\ 11 \\ {[0.36]} \end{gathered}$	$\begin{gathered} \hline B \\ 11 \\ {[0.68]} \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{A} \\ 7 \\ 7 \\ {[0.43]} \end{gathered}$	$\begin{gathered} \hline \hline \text { C } \\ 21 \\ {[0.55]} \end{gathered}$	shared	$\begin{gathered} \hline \text { B } \\ 15 \\ {[0.47]} \\ \hline \end{gathered}$	C 32 $[0.79]$	shared	$\begin{gathered} \hline \text { B } \\ 18 \\ {[0.40]} \\ \hline \end{gathered}$
Projected 2023 Horizon Year with Development Conditions and Recommended Option (Actuated Coordinated Signal)															
Rothesay Rd @ Rothesay Ave		PM Peak	$\begin{gathered} \text { D } \\ 42 \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 27 \\ {[0.01]} \\ \hline \end{gathered}$	E 80 $[0.93]$	$\begin{gathered} \hline A \\ 10 \\ {[0.43]} \\ \hline \end{gathered}$	$\begin{gathered} \hline E \\ 28 \\ {[0.65]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 42 \\ {[0.27]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline A \\ 1 \\ {[0.33]} \\ \hline \end{gathered}$	$\begin{gathered} \hline B \\ 11 \\ {[0.53]} \\ \hline \end{gathered}$	E 72 $[1.03]$	shared	$\begin{gathered} \hline E \\ 62 \\ {[1.00]} \\ \hline \end{gathered}$	B 14 $[0.27]$	shared
		Sat Peak	$\begin{gathered} \text { C } \\ 30 \end{gathered}$	C 22 $[0.02]$	D 51 $[0.89]$	A 7 $[0.26]$	$\begin{gathered} \hline \mathrm{D} \\ 48 \\ {[0.91]} \\ \hline \end{gathered}$	$\begin{gathered} \hline B \\ 11 \\ {[0.43]} \\ \hline \end{gathered}$	A 0 $[0.19]$	$\begin{gathered} \hline C \\ 21 \\ {[0.57]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 34 \\ {[0.58]} \\ \hline \end{gathered}$	shared	D 42 $[0.90]$	C 28 $[0.26]$	shared

5.1.9 Rothesay Road / Ashburn Road

The Rothesay Road / Ashburn Road intersection is a secondary access off Rothesay Road to the proposed development. The LOS for the projected 2023 horizon year volumes for PM and Saturday peak hours with development are presented in Table 26 for the Rothesay Road / Ashburn Road intersection. The analysis output can be found in Appendix C.

By the 2023 horizon year with Phase 1 in place, the Rothesay Road / Ashburn Road intersection is projected to operate at an overall LOS C with an intersection delay of 17 seconds/vehicle during the PM peak period and at an overall LOS A with an intersection delay of 5 seconds/vehicle during the Saturday peak period. During the PM peak period, the eastbound left turn movement is projected to operate at an unacceptable LOS F with an average delay of 51 seconds/vehicle, the v / c ratio, however, is below the 1.0 threshold indicating that there is sufficient capacity. The westbound movement is projected to operate at LOS E with an average delay of 38 seconds/vehicle. It is
important to note that this movement is associated with extremely low volumes and the v / c ratio is 0.03 , indicating there is sufficient capacity. During the Saturday peak period all individual movements are operating at LOS C or better with average delays of 19 seconds/vehicle or less.

Operational deficiencies are projected at the eastbound approach of the Rothesay Road / Ashburn Road intersection on the eastbound approach during the PM peak period by the 2023 horizon year with Phase 1 of the development in place.

It is recommended to implement traffic signals at the Rothesay Road / Ashburn Road intersection. The traffic signals should be fully actuated and coordinated with the Rothesay Road / Rothesay Avenue intersection traffic signals. A separate left turn lane is recommended for the northbound approach.

The Synchro model was updated with the actuated-coordinated traffic signal and recommended changes to lane geometry at the Rothesay Road / Ashburn Road intersection. Note that the traffic volumes were also updated to reflect the right-in/right-only recommendation at the Rothesay Road / Fulton Lane development access; it was assumed that left turning vehicles to and from the truck stop would utilize the Rothesay Road / Ashburn Road intersection.

By the 2023 horizon year with Phase 1 of the development in place and an actuated-coordinated traffic signal and northbound left turn lane implemented, the Rothesay Road / Ashburn Road intersection is projected to operate at an overall LOS A with an intersection delay of 9 seconds/vehicle or less during both the PM and Saturday peak period. All individual movements are projected to operate at LOS D or better with an average delay of 38 seconds/vehicle or less during both the PM and Saturday peak period. All v/c ratios are projected to be 0.78 or less, indicating that there is sufficient capacity.

No operational deficiencies are projected at the Rothesay Road / Ashburn Road intersection with actuated-coordinated traffic signal and an added left turn lane at the northbound approach by the 2023 horizon year with Phase 1 of the development in place.

Table 26 - LOS Summary for Rothesay Rd/Ashburn Rd with Development (Ph 1)

Intersection			$\begin{array}{\|c} \text { Overall } \\ \text { LOS \& } \\ \text { Delay } \\ \text { (sec/veh) } \end{array}$	Turning Movements LOSAverage Delay (seconds per vehicle)[Volume to Capacity Ratio (v/c)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Ashburn Rd			Parking Lot			Rothesay Rd			Rothesay Rd		
				L	T	R	L	T	R	L	T	R	L	T	R
Projected 2023 Horizon Year with Development Conditions															
Rothesay Rd		PM Peak	$\begin{gathered} \text { C } \\ 17 \end{gathered}$	$\begin{gathered} F \\ 51 \\ {[0.70]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { D } \\ 25 \\ {[0.82]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \mathrm{E} \\ 38 \\ {[0.03]} \\ \hline \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline A \\ 8 \\ {[0.14]} \\ \hline \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline \text { A } \\ 0 \\ {[0.0]} \\ \hline \hline \end{gathered}$	shared
@ Ashburn Rd		Sat Peak	$\begin{gathered} \text { A } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 19 \\ {[0.27]} \end{gathered}$	$\begin{gathered} \hline B \\ 10 \\ {[0.17]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \mathbf{A} \\ 0 \\ {[0.00]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \text { A } \\ 8 \\ {[0.10]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \text { A } \\ 0 \\ {[0.00]} \end{gathered}$	shared
Projected 2023 Horizon Year with Development Conditions and Recommended Option (Actuated Coordinated Signal)															
Rothesay Rd @ Ashburn Rd		PM Peak	$\begin{aligned} & \text { A } \\ & 9 \end{aligned}$	$\begin{gathered} \hline \mathrm{D} \\ 36 \\ {[0.54]} \\ \hline \end{gathered}$	A 9 $[0.78]$	shared	 shared 0 shared $[0.01]$			$\begin{gathered} \hline \mathbf{A} \\ 4 \\ {[0.52]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{A} \\ 3 \\ {[0.48]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline \text { C } \\ 22 \\ {[0.29]} \\ \hline \end{gathered}$	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 7 \end{aligned}$	$\begin{gathered} \hline \hline \mathrm{C} \\ 22 \\ {[0.42]} \end{gathered}$	$\begin{gathered} \hline \hline A \\ 0 \\ {[0.16]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \hline \mathbf{A} \\ 0 \\ {[0.00]} \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{A} \\ 3 \\ {[0.30]} \end{gathered}$	$\begin{gathered} \hline \hline A \\ 2 \\ {[0.14]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \hline B \\ 12 \\ {[0.34]} \end{gathered}$	shared

5.1.10 Rothesay Avenue / NB Route 1 Interchange

The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development are presented in Table 27 for the Rothesay Avenue / Route 1 off-ramp intersection, and Table 28 for the Rothesay Avenue / Route 1 on-ramp intersections (west and east). The analysis outputs can be found in Appendix C.

Rothesay Avenue / Route 1 off-ramp Intersection

By the 2023 horizon year with Phase 1 of the development in place, the Rothesay Avenue / Route 1 off-ramp intersection is projected to operate at an overall LOS F during the PM and Saturday peak period. The eastbound and westbound approaches are projected to operate at LOS F during both the PM and Saturday peak period. The highest delays are projected during the Saturday peak period, with delays exceeding 300 seconds/vehicle. The eastbound and westbound approaches are projected to experience significant delays and v / c ratios are either approaching or exceeding the threshold, indicating that there is not enough capacity for the demand. Significant queueing is projected at these approaches.

Significant operational deficiencies are projected by the 2023 horizon year with Phase 1 of the development in place at the eastbound and westbound approaches of the Rothesay Avenue / Route 1 off-ramp intersection during the PM and Saturday peak period. It is notable that operational deficiencies are projected at this intersection by the 2023 horizon year without the development in place, however, delays and queueing are expected to get worse with the addition of traffic to the development from both the south as well as from Route 1 westbound traffic.

It is recommended to implement traffic signals at the Rothesay Avenue / Route 1 off-ramp intersection as well as a through pocket on the eastbound approach. The signals should be fully actuated and coordinated with traffic signals at the Rothesay Road / Rothesay Avenue intersection.

The Synchro model was updated to reflect an actuated-coordinated traffic signal and change in geometry at the Rothesay Avenue / Route 1 off-ramp intersection. Results are shown in Table 27.

By the 2023 horizon year with Phase 1 of the development in place as well as actuated-coordinated traffic signals and recommended change in geometry, the Rothesay Avenue / Route 1 off-ramp
intersection is projected to operate at an overall LOS A (intersection delay of 8 seconds/vehicle) and LOS C (intersection delay of 23 seconds/vehicle) during the PM and Saturday peak period, respectively. All individual movements are projected to operate at satisfactory LOS D or better with an average delay of 40 seconds/vehicle or less during both peak periods. All v/c ratios are projected to be 0.92 or less. The $95^{\text {th }}$ percentile queue length at the southbound approach is not projected to exceed 170 m , which is well below the length of the off-ramp.

No operational deficiencies are projected at the Rothesay Avenue / Route 1 off-ramp intersection by the 2023 horizon year with Phase 1 of the development in place after an actuated-coordinated traffic signal and eastbound through pocket are implemented along with required infrastructure changes upstream at the Rothesay Road / Rothesay Avenue / Access intersection.

Table 27 - LOS Summary for Rothesay Ave/Rte1 off-ramp with Development (Ph 1)

Rothesay Avenue / Route 1 on-ramp Intersections

By the 2023 horizon year with Phase 1 of the development in place, both the Rothesay Avenue / Route 1 on-ramp intersections (east and west) are projected to operate at an overall satisfactory LOS D or better with an intersection delay of 33 seconds/vehicle or less. The eastbound movements are projected to operate at LOS F during both peak periods for the intersection furthest west and during the Saturday peak period for the intersection furthest east. The $95^{\text {th }}$ percentile queue lengths indicate that vehicles at the intersection furthest east may spill back to the intersection furthest to the west, as the projected lengths exceed the short distance between the two intersections.

Operational deficiencies are projected by the 2023 with Phase 1 of the development in place at the Rothesay Avenue / Route 1 on-ramp intersection (west) at the eastbound approach during the PM and Saturday peak periods and at the Rothesay Avenue / Route 1 on-ramp intersection (east) at the eastbound approach during the Saturday peak period.

There are limited options with respect to changes to infrastructure geometry to improve traffic conditions at the Rothesay Avenue / Route 1 on-ramp intersections because of the overpass structure just west of this location.

Table 28 - LOS Summary for Rothesay Ave/Rte 1 on-ramp intersections with Development (Ph 1)

5.1.11 NB Route 1 Access with Rothesay Road / Rothesay Avenue

The AM peak period was analyzed for the Rothesay Road / Route 1 on-ramp because the directional split on Route 1 westbound is significantly higher during the AM period. The PM peak period was analyzed for the Rothesay Road / Route 1 off-ramp because the directional split on Route 1 eastbound is significantly higher during the PM peak period. Therefore, the critical operational deficiencies occurring at these access ramps as a result of the development would occur during the AM peak period for the on-ramp and during the PM peak period for the off-ramp.

The LOS results for the Rothesay Road / Route 1 Access ramps during the critical peak period are summarized in Table 29. The results for the Rothesay Avenue / Route 1 Access ramps during the critical peak period are summarized in Table 30. Detailed results can be found in Appendix C.

By the 2023 horizon year with Phase 1 of the development in place the Rothesay Road / Route 1 on-ramp is projected to operate at LOS C with an average density of $13.9 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period. The Rothesay Road / Route 1 off-ramp is projected to operate at LOS D with an average density of $19.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the Saturday peak period.

No operational deficiencies are projected at the Rothesay Road / Route 1 Access Ramps by the $\mathbf{2 0 2 3}$ horizon year with Phase 1 of the development in place.

Table 29 - LOS Analysis for Rothesay Rd/Rte 1 Access Ramps

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Rothesay Rd off-ramp	C
(PM Peak)	13.9
Rte 1 - Rothesay Rd on-ramp	D
(AM Peak)	19.6

By the 2023 horizon year with Phase 1 of the development in place the Rothesay Avenue / Route 1 on-ramp is projected to operate at LOS C with an average density of $15.8 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period. The Rothesay Avenue / Route 1 off-ramp is projected to operate at LOS D with an average density of $21.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the Saturday peak period.

No operational deficiencies are projected at the Rothesay Avenue / Route 1 Access Ramps by the 2023 horizon year with Phase 1 of the development in place.

Table 30 - LOS Summary for Rothesay Ave/Rte 1 Access Ramps (Ph 1)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Rothesay Ave off-ramp	C
(AM Peak)	15.8
Rte 1 - Rothesay Ave on-ramp	D
(PM Peak)	21.3

5.1.12 Ashburn Road Site Access Intersections (1-5)

There are 9 proposed access locations to the development located on Ashburn Road (in addition to the Ashburn Road / Jones Drive access). For the 2023 horizon year with Phase 1 of the development in place, it was assumed that the first 5 access points beginning closest to Rothesay Road / Ashburn Road would be in operation. The LOS for the projected 2023 horizon year traffic volumes for PM and Saturday peak hours with development are presented in Table 31 for the 5 accesses on Ashburn Road. Note that the accesses have been analyzed assuming the recommended geometry described below. The analysis output can be found in Appendix C.

It is recommended to implement separate left turn lanes at all access points on all approaches to accommodate future traffic demand at the development. It is also recommended to implement a traffic signal at the main Ashburn Road access to the development (access 5 in this analysis). The traffic signals should have full detection on all approaches.

By 2023 with Phase 1 of the development in place, the first access off of Rothesay Road on Ashburn Road (primarily access to the truck stop, assuming Rothesay Road / Fulton Lane access is right-in/right-out only) is projected to operate at an overall LOS A with an intersection delay of 4 seconds/vehicle or less during both the PM and Saturday peak period. All individual movements are projected to operate at LOS A with average delays of 9 seconds/vehicle or less and v / c ratios of 0.10 or less during both the PM and Saturday peak period.

By 2023 with Phase 1 of the development in place, the second access along Ashburn Road (just south of Drury Cove Road, primarily access to Kenworth Dealership) is projected to operate at an overall LOS A with an intersection delay of 1 second/vehicle during both the PM and Saturday peak period. During the PM peak period, the eastbound left turn movement is projected to operate at LOS C (average delay of 21 seconds/vehicle). During the Saturday peak period the eastbound left turn movement is projected to operate at LOS B (average delay of 12 seconds/vehicle). All other movements during both the PM and Saturday peak period are projected to operate at LOS A with an average delay of 9 seconds/vehicle or less.

By 2023 with Phase 1 of the development in place, the third access along Ashburn Road (primarily access to a restaurant) is projected to operate at LOS A during both the PM and Saturday peak period. The westbound left turn and right turn movements are projected to operate at LOS C with an average delay of 22 seconds/vehicle or less during the PM peak period and at LOS B with an average delay of 13 seconds/vehicle or less. The southbound left turn movement is projected to operate at LOS A with an average delay of 10 seconds/vehicle or less during both peak periods.

By 2023 with Phase 1 of the development in place, the fourth access along Ashburn Road (primarily access to the UHaul Storage Facility) is projected to operate at an overall LOS A with minimal intersection delay during both the PM and Saturday peak period. During the PM peak period, the eastbound left turn movement is projected to operate at LOS C (average delay of 21 seconds/vehicle). During the Saturday peak period the eastbound left turn movement is projected to operate at LOS B (average delay of 13 seconds/vehicle). All other movements during both the PM and Saturday peak period are projected to operate at LOS A with an average delay of 10 seconds/vehicle or less.

The main Ashburn Road access from Rothesay Avenue is projected to operate at an overall LOS A with an intersection delay of 7 seconds/vehicle or less during the PM and Saturday peak period by 2023 with Phase 1 of the development in place. All individual movements are projected to operate at LOS B with an average delay of 18 seconds/vehicle or less during both peak periods. The exception is the westbound left turn movement during the PM peak period, which is projected to operate at LOS C with an average delay of 32 seconds/vehicle. The v / c ratios for each of the individual movements is 0.48 or less.

No operational deficiencies are projected at the Ashburn Road access intersections under recommended geometry and traffic control conditions by 2023 with Phase 1 of the development in place.

Table 31 - LOS Summary for Ashburn Road Access Points with Development (Ph 1)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOSAverage Delay (seconds per vehicle)[Volume to Capacity Ratio (v/c)]										
North South Street @ East West Street	Traffic Control	Time Period		Eastbound		Westbound			Northbound			Southbound		
				Access		Access			Ashburn Rd			Ashburn Rd		
				4		4		$\stackrel{R}{R}$		${ }^{\mathbf{T}}$	R	$\xrightarrow{4}$		\xrightarrow{R}
Projected 2023 Horizon Year with Development Conditions Access 1 (truck stop)														
Ashburn Rd @ Access 1	STOP	PM Peak	$\begin{aligned} & \text { A } \\ & 4 \end{aligned}$	free flow		$\begin{gathered} \hline \text { A } \\ 8 \\ {[0.10]} \\ \hline \end{gathered}$	free flow		$\begin{gathered} \mathrm{A} \\ 0 \\ {[0.00]} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{A} \\ 9 \\ {[0.01]} \\ \hline \end{gathered}$			
		Sat Peak	$\begin{aligned} & \text { A } \\ & 3 \end{aligned}$	free flow		A 8 $[0.10]$	free flow		A 0 $[0.00]$		$\begin{gathered} \hline \mathrm{A} \\ 9 \\ {[0.01]} \end{gathered}$			
Projected 2023 Horizon Year with Development Conditions Access 2 (south of Drury Cove Rd)														
Ashburn Rd @ Access 2	STOP	PM Peak	$\begin{gathered} A \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 21 \\ {[0.01]} \\ \hline \end{gathered}$	A 9 $[0.04]$				$\begin{gathered} \hline \mathrm{A} \\ 8 \\ {[0.02]} \\ \hline \end{gathered}$	free flow			free	low
		Sat Peak	A	$\begin{gathered} \hline B \\ 12 \\ {[0.00]} \\ \hline \end{gathered}$	A 9 $[0.02]$				$\begin{gathered} \hline \mathrm{A} \\ 8 \\ {[0.03]} \\ \hline \end{gathered}$	free flow			free	low
Projected 2023 Horizon Year with Development Conditions Access 3														
Ashburn Rd @ Access 3	STOP	PM Peak	$\begin{aligned} & \mathrm{A} \\ & 0 \end{aligned}$			$\begin{gathered} \hline C \\ 22 \\ {[0.08]} \\ \hline \hline \end{gathered}$		$\begin{gathered} \hline C \\ 16 \\ {[0.01]} \\ \hline \end{gathered}$	free flow			$\begin{gathered} \hline \text { A } \\ 10 \\ {[0.00]} \\ \hline \end{gathered}$	free flow	
		Sat Peak	A 1			$\begin{gathered} \hline B \\ 13 \\ {[0.07]} \\ \hline \end{gathered}$		$\begin{gathered} \hline B \\ 10 \\ {[0.01]} \\ \hline \end{gathered}$	free flow			$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	free flow	
Projected 2023 Horizon Year with Development Conditions Access 4														
Ashburn Rd @ Access 4	STOP	PM Peak	$\begin{aligned} & \mathrm{A} \\ & 0 \end{aligned}$	$\begin{gathered} \hline \text { C } \\ 21 \\ {[0.01]} \\ \hline \end{gathered}$	A 10 $[0.00]$				$\begin{gathered} \text { A } \\ 8 \\ {[0.00]} \\ \hline \end{gathered}$	free flow			free	fow
		Sat Peak	$\begin{aligned} & \mathrm{A} \\ & 0 \end{aligned}$	B 13 $[0.00]$	A 9 $[0.01]$				A 8 $[0.00]$	free flow			free	fow
Projected 2023 Horizon Year with Development Conditions Access 5 (main Rothesay Avenue access)														
Ashburn Rd @ Access 5 (main)		PM Peak	$\begin{aligned} & \text { A } \\ & 7 \end{aligned}$	$\begin{gathered} \hline \text { B } \\ 17 \\ {[0.01]} \\ \hline \hline \end{gathered}$	B 18 shared $[0.05]$ B	$\begin{gathered} \hline \text { C } \\ 32 \\ {[0.23]} \\ \hline \hline \end{gathered}$	B 11 $[0.48]$	shared	$\begin{gathered} \text { A } \\ 2 \\ {[0.00]} \\ \hline \end{gathered}$	A 6 $[0.58]$	shared	$\begin{gathered} \text { A } \\ 5 \\ {[0.25]} \\ \hline \hline \end{gathered}$	A 3 $[0.10]$	shared
		Sat Peak	$\begin{aligned} & A \\ & 6 \end{aligned}$	$\begin{gathered} \hline A \\ 10 \\ {[0.01]} \\ \hline \end{gathered}$	B 11 shared $[0.06]$	$\begin{gathered} \hline \hline B \\ 11 \\ {[0.07]} \\ \hline \end{gathered}$	A 6 $[0.42]$	shared	$\begin{gathered} \hline \hline \mathrm{A} \\ 5 \\ {[0.00]} \\ \hline \end{gathered}$	A 5 $[0.21]$	shared	$\begin{gathered} \hline \text { A } \\ 6 \\ {[0.17]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 5 \\ {[0.08]} \\ \hline \end{gathered}$	shared

6 Impact of Ashburn Underpass

Following the analysis for Phase 1, it was determined that additional traffic generated by Phase 2 and 3 of the development could not be adequately accommodated without major modifications to the existing road network such as:

1. Major upgrades to the Route 100 interchange area to increase capacity; or
2. Construction of a new underpass near Ashburn Lake Road and Foster Thurston Road.

The NB Department of Transportation \& Infrastructure has been assessing the long-term need for a new underpass connection in the vicinity of the Ashburn Lake Road and Foster Thurston Drive ramps. If/when a new underpass is built, a significant amount of existing traffic is expected to divert away from the Route 100 Interchange, thus alleviating some of the existing operational issues at this location. While a significant portion of newly generated traffic from the development would also use the new Ashburn Lake Road underpass, its construction has merit regardless of whether the development proceeds.

6.1 Redistribution of Existing Traffic

Once the new underpass structure is built, there will be an immediate redistribution of traffic. For the purposes of this study, it was assumed the following redistribution will occur:

1. 30% of existing WB off-ramp traffic at Route 100 interchange will divert to the WB off ramp at the Ashburn underpass;
2. 80% of the existing left turn movement from Foster Thurston onto Ashburn Road will divert to the new EB on-ramp at Ashburn underpass;
3. Existing traffic from Rothesay Road to Rothesay Avenue (towards Route 1 EB and Rothesay Avenue south) will also decrease by 80% (as a consequence of traffic being redistributed in Assumption \#2);
4. 30% of existing through traffic from Rothesay Road (east) to Rothesay Avenue will divert to the new Ashburn underpass, 50% of existing traffic from Rothesay Road (from Ashburn Road) to Rothesay Avenue will also divert to the new Ashburn underpass from Foster Thurston Drive / Ashburn Road.
5. Existing traffic from Rothesay Avenue to Route 1 WB will decrease by 75%
6. Traffic from Ashburn Lake Road to Route 1 WB will increase by the inverse of the current AM/PM peak hour volumes at the EB off-ramp at Ashburn Lake Road and by the estimated westbound traffic onto Ashburn Lake Road for the Saturday peak hour.

The net redistribution of existing traffic based on the above assumptions is depicted graphically in Figure 15 and applied to the intersections within the Study Area. The anticipated redistribution of existing traffic on the entire road network within the Study Area is shown in Figure 16 and Figure 17.

Figure 15 - Anticipated Traffic Redistribution attributed to new Ashburn Underpass

Figure 16 - Redistributed Existing (2016) Traffic with Ashburn Underpass (1 of 2) - PM/SAT

Figure 17 - Redistributed Existing (2016) Traffic with Ashburn Underpass (2 of 2) - PM/SAT

6.2 Revised Trip Assignment

The generated traffic was re-assigned to the Study Area assuming the Ashburn underpass is in place. Trips were assigned to the access points based on origin of the generated traffic as well as anticipated signing for the development as it is expected that Route 1 traffic will be encouraged to use the Ashburn underpass. The assumptions utilized for assigning the generated traffic to the development access points are as follows:

- Traffic from East (Rothesay Road) - 100\% use Rothesay Road / Ashburn Road access;
- Traffic from East (Route 1) - 20\% use Foster Thurston / Ashburn Road access, 65% use Rothesay Road / Rothesay Avenue access, and 15\% use Rothesay Road / Ashburn Road access;
- Traffic from West (Route 1) - 30\% use Foster Thurston / Ashburn Road access (Ashburn underpass), 60\% use Rothesay Road / Rothesay Avenue access, and 10\% use Rothesay Road / Ashburn Road access;
- Traffic from South - 50\% use Rothesay Avenue / Rothesay Road access from Rothesay Avenue, 10\% use Rothesay Road / Rothesay Avenue access from Ashburn Lake Road onramps to Route 1, and 40\% use Foster Thurston / Ashburn Road access from Ashburn underpass, and;
- Traffic from North - 100\% use Foster Thurston / Ashburn Road access.

Figure 18, Figure 19, and Figure 20 shows the traffic assignment for Phase 1, 2, and 3 (2033 Full Build Out Horizon Year).

Figure 18 - Revised Trip Assignment Full Build Out with Ashburn Underpass (1 of 3) - PM/SAT

Figure 19 - Revised Trip Assignment Full Build Out with Ashburn Underpass (2 of 3) - PM/SAT

Figure 20 - Revised Trip Assignment Full Build Out with Ashburn Underpass (3 of 3) - PM/SAT

7 Future Traffic Operations - Phase 2 and 3

7.1 2033 Horizon Year Levels of Service (Full Build Out)

The 2033 horizon year operational conditions were established to determine how the street network within the Study Area is projected to function with the full development and the Ashburn underpass in place. Traffic operations within the Study Area were evaluated using projected 2033 traffic volumes with the Ashburn underpass and development, as well as with recommended improvements to accommodate Phase 1 of the development.

It is important to note that the concept of the Ashburn underpass is in the preliminary phase and the exact configuration has not been determined. Results are based on the preliminary configuration described in the Route 1 corridor study performed by exp in 2016. Results for the development access points will not be affected, however, intersections west of the development may change as more details for the Ashburn underpass become available.

7.1.1 Foster Thurston Drive / Ashburn Road

The Foster Thurston Drive / Ashburn Road intersection is one of the access points to the proposed development. It is also one of the ramp terminals (northern end) of the potential Ashburn underpass.

At a minimum, it is recommended to implement fully-actuated signals at the Foster Thurston Drive / Ashburn Road ramp terminal intersection as well as implement separate left turn lanes at all four approaches and separate right turn lanes at the northbound and southbound (Ashburn Road) approaches to accommodate the increase in traffic that will be diverted as a result of the Ashburn underpass. All approaches should have channelization and the turning bays long enough that the $95^{\text {th }}$ percentile queues do not block any lanes. Note that the Ashburn underpass concept has not been finalized and the required ramp terminal configuration may change as a result.

The LOS for the projected 2033 horizon year traffic volumes for PM and Saturday peak hours with the Ashburn underpass and full development in place as well as the above recommended road geometry and traffic control are presented in Table 32 for the Foster Thurston Drive / Ashburn Road ramp terminal intersection. The analysis output can be found in Appendix \mathbf{D}.

By 2033 with the Ashburn underpass and full development in place and the recommended intersection geometry and traffic control, the Foster Thurston Drive / Ashburn Road ramp terminal intersection is projected to operate at an overall LOS B with an intersection delay of 19 seconds/vehicle or less during both the PM and Saturday peak periods. All individual movements are projected to operate at LOS C or better with average delays of 33 seconds/vehicle or less. All movements have a v / c ratio of 0.87 or less. The $95^{\text {th }}$ queue lengths at the westbound approach (i.e. the Route 1 off ramp) are not projected to exceed 75 m , which is well below the length of the ramp.

No operational deficiencies are projected for the Foster Thurston Drive / Ashburn Road ramp terminal intersection by 2033 with the Ashburn underpass and full development in place with the recommended intersection geometry and traffic control.

Table 32 - LOS Summary for Foster Thurston Dr/Ashburn Rd with Development (Full Build Out)

Intersection			Overall Delay (sec/veh)	Turning Movements LOSAverage Delay (seconds per vehicle)[Volume to Capacity Ratio (v/c)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound Ashburn Rd			Southbound Ashburn Rd		
					er Thu			r Thu							
				$\stackrel{L}{4}$	$\underline{\mathbf{T}}$	$\stackrel{R}{R}$	4	$\stackrel{\mathbf{T}}{\mathbf{1}}$			${ }_{\mathbf{T}}^{\mathbf{T}}$	\xrightarrow{R}	4		\xrightarrow{R}
Projected 2033 Horizon Year with Development Conditions															
Ashburn Rd @ Foster Thurston		PM Peak	$\begin{gathered} \text { B } \\ 19 \end{gathered}$	$\begin{gathered} \hline B \\ 13 \\ {[0.48]} \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ 21 \\ {[0.87]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \text { C } \\ 31 \\ {[0.76]} \\ \hline \end{gathered}$	$\begin{gathered} C \\ 22 \\ {[0.43]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \text { B } \\ 12 \\ {[0.01]} \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ 30 \\ {[0.69]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 6 \\ {[0.49]} \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ 17 \\ {[0.41]} \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ 18 \\ {[0.34]} \\ \hline \end{gathered}$	$\left.\begin{array}{c}\text { A } \\ 4 \\ {[0.29]}\end{array}\right]$
		Sat Peak	$\begin{gathered} \text { B } \\ 18 \end{gathered}$	C 20 $[0.46]$	B 16 $[0.57]$	shared	C 33 $[0.83]$	C 28 $[0.65]$	shared	A 8 $[0.01]$	C 24 $[0.71]$	A 5 $[0.57]$	B 11 $[0.35]$	$\begin{gathered} \hline \hline B \\ 14 \\ {[0.46]} \\ \hline \end{gathered}$	A 1 $[0.19]$

7.1.2 Foster Thurston Drive / NB Route 1 Access Ramps

The AM peak period was analyzed for the Foster Thurston Drive / Route 1 on-ramp and off-ramp because the directional split on Route 1 westbound is significantly higher during this period, therefore, the critical operational deficiencies occurring at these access ramps as a result of the development would occur during the AM peak period.
The results of the LOS analysis under projected 2033 traffic volumes with the Ashburn underpass and the full development are presented in Table 33 for the Foster Thurston Drive / NB Route 1 Access Ramps. The detailed analysis output can be found in Appendix D.
By 2033 with the Ashburn underpass and the full development in place, the Foster Thurston Drive / Route 1 off-ramp is projected to operate at LOS D with an average density of $18.1 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the AM peak period. The Foster Thurston Drive / Route 1 on-ramp is projected to operate at LOS D with an average density of $20.0 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the AM peak period.

No operational deficiencies are projected at the Foster Thurston Drive / Route 1 Access Ramps by 2033 with the Ashburn underpass and full development in place.

It is recommended to extend the acceleration lane from the Route 100 WB on-ramp to the start of the deceleration lane for the Foster Thurston WB off-ramp, introducing a weaving area. This recommendation was first made in the Route 1 Corridor Study performed by exp in 2016.

Table 33 - LOS Summary for Foster Thurston Dr/Rte 1 Access Ramps with Development (Full Build Out)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Foster Thurston Dr off-ramp (AM Peak) D Rte 1 - Foster Thurston Dr on-ramp 18.1 (AM Peak) D 20.0.	

7.1.3 Ashburn Lake Road / NB Route 1 Access Ramps

The PM peak period was analyzed for the Ashburn Lake Road / Route 1 on-ramp and off-ramp because the directional split on Route 1 eastbound is significantly higher during this period, therefore, the critical operational deficiencies occurring at these access ramps as a result of the development would occur during the PM peak period.

The results of the LOS analysis under projected 2033 traffic volumes with the Ashburn underpass and the full development are presented in Table 34 for the Ashburn Lake Road / NB Route 1 Access Ramps. The detailed analysis output can be found in Appendix D.

By 2033 with the Ashburn underpass and the development in place, the Ashburn Lake Road / Route 1 off-ramp is projected to operate at LOS D with an average density of $20.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period. The Ashburn Lake Road / Route 1 on-ramp is projected to operate at an unacceptable LOS F with an average density of $26.9 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period. This is primarily a result of the increase in traffic from the north using the Ashburn underpass to access Route 1 eastbound.

No operational deficiencies are projected at the Ashburn Lake Road / Route 1 off-ramp by the 2033 horizon year with the Ashburn underpass and full development in place. The Ashburn Lake Road / Route 1 on-ramp is projected to have operational deficiencies by the 2033 horizon year with the Ashburn underpass and the full development in place.

It is recommended to extend the acceleration lane from the Ashburn Lake Road EB on-ramp to the start of the deceleration lane for the Route 100 EB off-ramp, introducing a weaving area. This will reduce congestion for the EB on-ramp at Ashburn Lake Road and reduce the flow interruptions on the EB lanes. This recommendation was first made in the Route 1 Corridor Study performed by exp in 2016.

Table 34 - LOS Summary for Ashburn Lake Rd/Rte 1 Access Ramps (Full Build Out)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Ashburn Lake Rd off-ramp	D
(PM Peak)	20.6
Rte 1 - Ashburn Lake Rd on-ramp	F
(PM Peak)	26.9

7.1.4 Rothesay Avenue / Retail Drive / Ashburn Lake Road

The results of the LOS analysis under projected 2033 traffic volumes with the Ashburn underpass and full development are presented in Table 35 for the Rothesay Avenue / Retail Drive / Ashburn Lake Road intersection. The detailed analysis output can be found in Appendix D.

Although it was not within the scope of this study to do a detailed design of the potential future realignment at this location, a possible re-alignment lane configuration was completed in Synchro to determine the potential impact. In addition to Phase 1 recommendations, an additional separate right turn slip lane is recommended at the eastbound (Ashburn Lake Road) approach to accommodate the increase in traffic that will be diverted to this intersection as a result of the Ashburn underpass. This geometry may change depending on the final configuration of Ashburn Lake Road (i.e. whether it is a 2, 3, or 4 lane cross section).

By 2033 with the Ashburn underpass and full development in place as well as the additional eastbound right turn slip lane pocket, the Rothesay Avenue / Retail Drive / Ashburn Lake Road intersection is projected to operate at an overall LOS C with an intersection delay of 34 seconds/vehicle or less during both the PM and Saturday peak period. The lowest movements in
terms of LOS are the eastbound and northbound left turn movements during the Saturday peak period, which are projected to operate at LOS E with average delays of 61 seconds/vehicle or less. All other movements are projected to operate at satisfactory LOS D or better with average delays of 53 seconds/vehicle or less during both the PM and Saturday peak periods. The v/c ratio at the westbound approach is approaching capacity at 0.95 during both peak periods.

No operational deficiencies are projected at the Rothesay Avenue / Retail Drive / Ashburn Lake Road intersection by 2033 with the Ashburn underpass and full development in place with the preliminary recommended intersection geometry.

Table 35 - LOS Summary for Rothesay Ave/Retail Dr/Ashburn Lake Rd with Development (Full Build Out)

Intersection			Overall LOS \& Delay (sec/veh)	```Turning Movements LOS Average Delay (seconds per vehicle) [95\% Queues (m)]```											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Ashburn Lake Rd			Retail Dr			Rothesay Ave			Rothesay Ave		
				4		$\stackrel{R}{8}$				4		$\stackrel{R}{\text { R }}$	4		\xrightarrow{R}
Projected 2033 Horizon Year with Development Conditions															
Rothesay Ave @ Retail Dr /		PM Peak	$\begin{gathered} \text { C } \\ 29 \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 51 \\ {[0.85]} \\ \hline \end{gathered}$	$\begin{gathered} C \\ 30 \\ {[0.74]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{A} \\ 9 \\ {[0.57]} \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ 18 \\ {[0.41]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 53 \\ {[0.95]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \text { C } \\ 32 \\ {[0.73]} \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ 27 \\ {[0.81]} \\ \hline \end{gathered}$	shared	$\begin{gathered} C \\ 26 \\ {[0.55]} \\ \hline \end{gathered}$	$\begin{gathered} \hline B \\ 18 \\ {[0.65]} \\ \hline \end{gathered}$	shared
Ashburn Lake Rd		Sat Peak	$\begin{gathered} C \\ 34 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 55 \\ {[0.90]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{C} \\ 26 \\ {[0.72]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 5 \\ {[0.45]} \\ \hline \end{gathered}$	$\begin{gathered} \hline B \\ 16 \\ {[0.41]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ 52 \\ {[0.95]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline E \\ 61 \\ {[0.84]} \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 32 \\ {[0.71]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{D} \\ 54 \\ {[0.83]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 28 \\ {[0.80]} \end{gathered}$	shared

7.1.5 Rothesay Road / Fulton Lane

The LOS for the projected 2033 horizon year traffic volumes for PM and Saturday peak hours with the Ashburn underpass and development are presented in Table 36 for the Rothesay Road / Fulton Lane / Access intersection. The analysis output can be found in Appendix D.

By the 2033 horizon year with the Ashburn underpass and the full development in place, the Rothesay Road / Fulton Lane / Access intersection is projected to operate at an overall LOS A during the PM and Saturday peak period. During the PM peak period, the westbound movement is projected to operate at an unacceptable LOS F with average delays of 78 seconds/vehicle. There are very small volumes associated with the westbound right and left turn movement and the v / c ratios at this approach is still well below the threshold despite the higher delays. All other movements are projected to operate at LOS C or better with average delays of 18 seconds/vehicle or less. During the Saturday peak period all movements are projected to operate at LOS C or better with an average delay of 16 seconds/vehicle or less. The v/c ratios are projected to be 0.31 or less during both the PM and Saturday peak period.

Operational deficiencies are projected at the Rothesay Road / Fulton Lane / Access intersection during the PM peak period at the westbound approach by the 2033 horizon year with the Ashburn underpass and the full development in place. This movement is associated with a very small volume and the v / c ratio is well below the threshold of 1.0 .

Table 36 - LOS Summary for Rothesay Rd/Fulton Ln/Access with Development (Full Build Out)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOSAverage Delay (seconds per vehicle)[Volume to Capacity Ratio (v/c)]										
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound Rothesay Rd		Southbound		
				Access			Fulton Ln					Rothesay Rd		
				4	$\underline{\mathbf{T}}$					4	${ }^{\top}$	4		$\stackrel{R}{ }$
Projected 2023 Horizon Year with Development Conditions														
Rothesay Rd @ Fulton Ln / Access	STOP	PM Peak	$\begin{aligned} & A \\ & 2 \end{aligned}$		$\begin{gathered} \hline \mathrm{C} \\ 18 \\ {[0.31]} \\ \hline \end{gathered}$	shared	shared	$\begin{gathered} \hline F \\ 78 \\ {[0.18]} \\ \hline \hline \end{gathered}$	shared		free flow	shared	$\begin{gathered} \hline B \\ 11 \\ {[0.01]} \\ \hline \end{gathered}$	shared
		Sat Peak	A 1		$\begin{gathered} \hline B \\ 11 \\ {[0.05]} \end{gathered}$	shared	shared	$\begin{gathered} \hline \hline \mathrm{C} \\ 16 \\ {[0.03]} \end{gathered}$	shared		free flow	shared	A 8 $[0.00]$	shared

7.1.6 Ashburn Road / Jones Drive

The Ashburn Road / Jones Drive intersection is to be utilized by the 2033 horizon year as an access to the development from Ashburn Road.

The LOS for the projected 2033 horizon year traffic volumes for PM and Saturday peak hours with the Ashburn underpass and full development in place are presented in Table 37 for the Ashburn Road / Jones Drive intersection. The analysis output can be found in Appendix D.

By the 2033 horizon year with the Ashburn underpass and full development in place, the Ashburn Road / Jones Drive intersection is projected to operate at an overall LOS A during the PM and Saturday peak periods. The eastbound and westbound left turn movements are projected to operate the lowest in terms of LOS at LOS E or better with an average delay of 50 seconds/vehicle or less during both peak periods. These movements were analyzed assuming stop control conditions and are associated with small volumes. All other movements are projected to operate at LOS B or better with average delays of 14 seconds/vehicle or less during both peak periods.

No operational deficiencies are projected at the Ashburn Road / Jones Drive intersection by the 2033 horizon year with the Ashburn underpass and the full development in place. This access should be re-evaluated in the future as more details with respect to the development become available to determine if signals are warranted.

Table 37 - LOS Summary for Ashburn Rd/Jones Dr/Access with Development (Full Build Out)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Jones Dr							Ashburn R			Ashburn R	
				\mathbf{L}		R			$\xrightarrow{\mathrm{R}}$		${ }^{\mathbf{T}}$			${ }^{\mathbf{T}}$	\xrightarrow{R}
Projected 2023 Horizon Year with Development Conditions															
Ashburn Rd @ Jones Dr	STOP	PM Peak	$\begin{gathered} \text { A } \\ 1 \end{gathered}$	$\begin{gathered} \hline E \\ 39 \\ {[0.02]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 13 \\ {[0.00]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline E \\ 42 \\ {[0.11]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline B \\ 13 \\ {[0.01]} \\ \hline \hline \end{gathered}$	shared	$\begin{gathered} \hline \text { A } \\ 9 \\ {[0.01]} \\ \hline \end{gathered}$	free flow	shared	$\begin{gathered} \hline \text { A } \\ 9 \\ {[0.04]} \\ \hline \hline \end{gathered}$	free flow	shared
		Sat Peak	$\begin{aligned} & \text { A } \\ & 2 \end{aligned}$	$\begin{gathered} \hline \mathrm{D} \\ 34 \\ {[0.02]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline B \\ 11 \\ {[0.00]} \end{gathered}$	shared	$\begin{gathered} \hline E \\ 50 \\ {[0.39]} \\ \hline \end{gathered}$	$\begin{gathered} \hline B \\ 14 \\ {[0.03]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \mathrm{A} \\ 9 \\ {[0.00]} \\ \hline \end{gathered}$	free flow	shared	$\begin{gathered} \hline \mathrm{A} \\ 9 \\ {[0.02]} \end{gathered}$	free flow	shared

7.1.7 Ashburn Road / Drury Cove Road

The LOS for the projected 2033 horizon year traffic volumes for PM and Saturday peak hours with the Ashburn underpass and the full development in place are presented in Table 38 for the Ashburn Road / Drury Cove Road intersection. The analysis output can be found in Appendix D.

By the 2033 horizon year with the Ashburn underpass and the full development in place, the Ashburn Road / Drury Cove Road is projected to operate at an overall LOS A during both the PM and Saturday peak period. All individual movements are projected to operate at LOS B or better with average delays of 14 seconds/vehicle or less.

No operational deficiencies are projected at the Ashburn Road / Drury Cove Road intersection by the 2033 horizon year with the Ashburn underpass and the full development in place. No recommended changes are needed at the Ashburn Road / Drury Cove Road intersection.

Table 38 - LOS Summary for Ashburn Rd/Drury Cove Rd with Development (Full Build Out)

Intersection			Overall Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]									
North South Street @ East West Street	Traffic Control	Time Period		Eastbound		Westbound		Northbound			Southbound		
				Ashburn Rd		Ashburn Rd						Co	
				L \mathbf{T} $\mathbf{1}$	R	$\stackrel{L}{4}$		4	${ }^{\mathbf{T}}$	R	$\frac{L}{4}$	${ }^{\mathbf{T}}$	$\xrightarrow{\text { R }}$
Projected 2023 Horizon Year with Development Conditions													
Drury Cove @ Ashburn Rd	STOP	PM Peak Sat Peak	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	A 8 shared $[0.00]$			free flow				$\begin{gathered} \hline \text { B } \\ 14 \\ {[0.07]} \\ \hline \end{gathered}$		shared
			A 0	A 0 shared $[0.00]$			free flow				$\begin{gathered} \hline \text { B } \\ 13 \\ {[0.04]} \\ \hline \end{gathered}$		shared

7.1.8 Rothesay Avenue / Rothesay Road

The Rothesay Road / Rothesay Avenue intersection will be the main access to the proposed development. The LOS for the projected 2033 horizon year traffic volumes with the Ashburn underpass and the full development in place for PM and Saturday peak hours with development are presented in Table 39 for the Rothesay Road / Rothesay Avenue intersection. The analysis output can be found in Appendix \mathbf{D}.

By the 2033 horizon year with the Ashburn underpass and the full development in place the Rothesay Road / Rothesay Avenue intersection is projected to operate at an overall LOS C with an intersection delay of 26 seconds/vehicle during the PM peak period and LOS D with an intersection delay of 39 seconds/vehicle during the Saturday peak period. The worst movement in terms of LOS is the northbound left turn movement during the Saturday peak period, which is projected to operate at an acceptable LOS E with an average delay of 68 seconds/vehicle and the eastbound through movement during the PM peak period, which is projected to operate at LOS E with an average delay of 58 seconds/vehicle. The v / c ratios at these movements are approaching capacity. All other movements are projected to operate at LOS D or better with average delays of 52 seconds/vehicle or less during both peak periods. The $95^{\text {th }}$ percentile queues are projected to be 166 m or less at the northbound approach, 204 m or less on the westbound through approach, 194 m or less on the eastbound approach, and 77 m or less on the southbound approach during both the PM and Saturday peak period.

No operational deficiencies are projected by the 2033 horizon year with the Ashburn underpass and the full development in place at the Rothesay Road / Rothesay Avenue intersection with fully-actuated, coordinated signals implemented.

Table 39 - LOS Summary for Rothesay Rd/Rothesay Ave with Development (Full Build Out)

Intersection			Overall LOS \& Delay (sec/veh)	Turning Movements LOS Average Delay (seconds per vehicle) [Volume to Capacity Ratio (v/c)]											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Rothesay Ave			Rothesay Ave			Rothesay Rd			Rothesay Rd		
										4	\mathbf{T}		4	${ }^{\top}$	$\stackrel{R}{R}$
Existing (2016) Conditions															
Projected 2033 Horizon Year with Development Conditions and Recommended Option (Actuated Coordinated Signal)															
Rothesay Rd @		PM Peak	$\begin{gathered} C \\ 26 \end{gathered}$	$\begin{gathered} \text { C } \\ 26 \\ {[0.12]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{E} \\ 58 \\ {[0.90]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 7 \\ {[0.48]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 26 \\ {[0.11]} \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ 41 \\ {[0.78]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{A} \\ 0 \\ {[0.30]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 14 \\ {[0.59]} \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { C } \\ 27 \\ {[0.87]} \\ \hline \end{gathered}$	shared	$\begin{gathered} \hline \text { C } \\ 31 \\ {[0.75]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 19 \\ {[0.43]} \\ \hline \end{gathered}$	shared
Rothesay Ave		Sat Peak	$\begin{gathered} \text { D } \\ 39 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 20 \\ {[0.17]} \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{D} \\ 52 \\ {[0.95]} \end{gathered}$	A 8 $[0.39]$	$\begin{gathered} \hline \hline \mathrm{C} \\ 25 \\ {[0.38]} \end{gathered}$	$\begin{gathered} \hline \hline \text { D } \\ 49 \\ {[0.91]} \end{gathered}$	A 0 $[0.17]$	$\begin{gathered} \hline \hline \mathrm{E} \\ 68 \\ {[0.99]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 27 \\ {[0.51]} \end{gathered}$	shared	$\begin{gathered} \hline \hline C \\ 23 \\ {[0.57]} \end{gathered}$	$\begin{gathered} \hline \text { D } \\ 42 \\ {[0.71]} \\ \hline \end{gathered}$	shared

7.1.9 Rothesay Road / Ashburn Road

The Rothesay Road / Ashburn Road intersection is a secondary access off Rothesay Road to the proposed development. The LOS for the projected 2033 horizon year volumes for PM and Saturday peak hours with the Ashburn underpass and full development in place are presented in Table 40 for the Rothesay Road / Ashburn Road intersection. The analysis output can be found in Appendix D.

By the 2033 horizon year with the Ashburn underpass and the full development in place, the Rothesay Road / Ashburn Road intersection is projected to operate at an overall LOS A during the PM and Saturday peak periods The worst movement in terms of LOS is the eastbound left turn movement (from the development), which is projected to operate at LOS D with an average delay of 42 seconds/vehicle during the PM peak period and 40 seconds/vehicle during the Saturday peak period. The $95^{\text {th }}$ percentile queue length on this approach is projected to be 37 m or less during both peak periods. All other movements are projected to operate at LOS A with average delays of 9 seconds/vehicle or less. The v/c ratios are all 0.69 or less.

No operational deficiencies are projected at the Rothesay Road / Ashburn Road intersection by the $\mathbf{2 0 3 3}$ horizon year with the Ashburn underpass and the full development in place.

Table 40 - LOS Summary for Rothesay Rd/Ashburn Rd with Development (Full Build Out)

7.1.10 Rothesay Avenue / NB Route 1 Interchange

The LOS for the projected 2033 horizon year traffic volumes for PM and Saturday peak hours with the Ashburn underpass and the full development in place are presented in Table 41 for the Rothesay Avenue / Route 1 off-ramp intersection, and Table 42 for the Rothesay Avenue / Route 1 on-ramp intersections (west and east). The analysis outputs can be found in Appendix D.

Rothesay Avenue / Route 1 off-ramp Intersection

For analysis purposes, it is assumed that the recommendations made for Rothesay Avenue / Route 1 off-ramp intersection in the Phase 1 TIS will be in place by the 2033 horizon year (Phase 3 of the development). This includes implementing actuated coordinated signals as well as an eastbound through lane pocket to allow for a free-flowing independent right turn lane.

By the 2033 horizon year with the Ashburn underpass and the full development in place as well as coordinated traffic signals and an eastbound through lane pocket implemented, the Rothesay Avenue / Route 1 off-ramp intersection is projected to operate at an overall LOS A with an intersection delay of 8 seconds/vehicle during the PM peak period and at an overall LOS B with an intersection delay of 19 seconds/vehicle during the Saturday peak period. All individual movements are projected to operate at LOS C or better with an average delay of 21 seconds/vehicle or less and v / c ratios of 0.57 or less during the PM peak period. During the Saturday peak period the southbound through movement is projected to operate at LOS D with an average delay of 38 seconds/vehicle. All other individual movements are projected to operate at LOS C or better with an average delay of 25 seconds/vehicle or less. The v/c ratio for each movement is 0.84 or less during both the PM and Saturday peak period. The $95^{\text {th }}$ percentile queue length at the southbound approach is not projected to exceed 131 m , which is still less than the length of the off-ramp.

No operational deficiencies are projected by 2033 with the Ashburn underpass and the full development in place at the Rothesay Avenue / Route 1 off-ramp intersection with coordinated signals and an eastbound through movement pocket implemented.

Table 41 - LOS Summary for Rothesay Ave/Rte1 off-ramp with Development (Full Build Out)

Rothesay Avenue / Route 1 on-ramp Intersections

By the 2033 horizon year with the full development in place, both the Rothesay Avenue / Route 1 on-ramp intersections (east and west) are projected to operate at an overall LOS F during the Saturday peak period. The eastbound movements are projected to operate at LOS F at both the intersections during the Saturday peak period, these movements currently operate under stop control conditions. The intersections are projected to operate sufficiently during the PM peak period. The $95^{\text {th }}$ percentile queue lengths indicate that vehicles at the intersection furthest east may spill back to the
intersection furthest to the west, as the projected lengths exceed the short distance between the two intersections.

Operational deficiencies are projected by the 2033 with the Ashburn underpass as well as the full development in place at the Rothesay Avenue / Route 1 on-ramp intersections (east and west) at the eastbound approach during the Saturday peak periods. It is notable that operational deficiencies were identified at these locations in the TIS for Phase 1 of the development.

There are limited options with respect to changes to infrastructure geometry to improve traffic conditions at the Rothesay Avenue / Route 1 on-ramp intersections because of the overpass structure just west of this location. This location should be re-evaluated in the future when more details with respect to the development become available to determine if signals are warranted.

Table 42 - LOS Summary for Rothesay Ave/Rte 1 on-ramp with Development (Full Build Out)

7.1.11 NB Route 1 Access with Rothesay Road / Rothesay Avenue

The AM peak period was analyzed for the Rothesay Road / Route 1 on-ramp because the directional split on Route 1 westbound is significantly higher during the AM period. The PM peak period was analyzed for the Rothesay Road / Route 1 off-ramp because the directional split on Route 1 eastbound is significantly higher during the PM peak period. Therefore, the critical operational deficiencies occurring at these access ramps as a result of the development would occur during the AM peak period for the on-ramp and during the PM peak period for the off-ramp.

The LOS results for the 2033 horizon year with the Ashburn underpass and full development for the Rothesay Road / Route 1 Access ramps during the critical peak period are summarized in Table 43. The results for the Rothesay Avenue / Route 1 Access ramps during the critical peak period are summarized in Table 15. Detailed results can be found in Appendix D.

Rothesay Road / Route 1 Access Ramps

By the 2033 horizon year with the Ashburn underpass and the full development in place the Rothesay Road / Route 1 on-ramp is projected to operate at LOS D with an average density of 17.5
$\mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the PM peak period. The Rothesay Road / Route 1 off-ramp is projected to operate at an unacceptable LOS F with an average density of $23.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the Saturday peak period.

No operational deficiencies are projected at the Rothesay Road / Route 1 off-ramp by the 2033 horizon year with the Ashburn underpass and full development in place. Operational deficiencies are projected at the Rothesay Road / Route 1 Access Ramp on-ramp by the 2033 horizon year with the Ashburn underpass and the full Phase 1 of the development in place.

It is recommended to extend the acceleration lane from the Route 100 WB on-ramp to the start of the deceleration lane for the Foster Thurston WB off-ramp, introducing a weaving area. It is also recommended to extend the acceleration lane from the Ashburn Lake Road EB on-ramp to the start of the deceleration lane for the Route 100 EB off-ramp, introducing a weaving area. This will reduce congestion for the EB on-ramp at Ashburn Lake Road and WB on-ramp at Rothesay Road and reduce the flow interruptions on the EB and WB lanes. These recommendations were first made in the Route 1 Corridor Study performed by exp in 2016.

Table 43 - LOS Summary for Rothesay Rd/Rte 1 Access Ramps (Full Build Out)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Rothesay Rd off-ramp	D
(PM Peak)	17.5
Rte 1 - Rothesay Rd on-ramp	F
(AM Peak)	23.2

Rothesay Avenue / Route 1 Access Ramps

By the 2033 horizon year with the Ashburn underpass and the full development in place the Rothesay Avenue / Route 1 on-ramp is projected to operate at LOS D with an average density of $17.5 \mathrm{pc} / \mathrm{km} / \mathrm{In}$ during the PM peak. The Rothesay Avenue / Route 1 off-ramp is projected to operate at an unacceptable LOS F with an average density of $23.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$ during the Saturday peak period. It is notable that the Rothesay Avenue / Route 1 on-ramp just reaches unacceptable LOS at the 2033 horizon year, which is primarily due to the anticipated increase in Route 1 background traffic.

No operational deficiencies are projected at the Rothesay Avenue / Route 1 off-ramp by the 2033 horizon year the Ashburn underpass and the full development in place. Operational deficiencies are projected at the Rothesay Avenue / Route 1 on-ramp by the 2033 horizon year with the Ashburn underpass and the full development in place. This ramp should be monitored and re-evaluated as more details about the development are finalized.

Table 44 - LOS Summary for Rothesay Ave/Rte 1 Access Ramps (Full Build Out)

Ramp	LOS Density (pc/km/ln)
Projected 2023 Horizon Year Conditions with Development	
Rte 1 - Rothesay Ave off-ramp D (AM Peak) 19.2 Rte 1 - Rothesay Ave on-ramp F (PM Peak) 22.2$\$$.	

7.1.12 Ashburn Road Site Access Intersections (1-9)

There are 9 proposed access locations to the development located on Ashburn Road (in addition to the Ashburn Road / Jones Drive access). The LOS for the projected 2033 horizon year traffic volumes for PM and Saturday peak hours with development and the Ashburn underpass in place are presented in Table 45 for the 9 accesses on Ashburn Road. Note that the accesses have been analyzed assuming the recommended geometry described below. The analysis output can be found in Appendix B.

It is recommended to implement separate left turn lanes at all access points on all approaches to accommodate future traffic demand at the development. It is also recommended to implement a traffic signal at the main Ashburn Road access to the development (access 5 in this analysis). The traffic signals should have full detection on all approaches. In addition, access 8 in this analysis (directly east of Jones Drive) should have full-actuated signals implemented to accommodate the additional left turning traffic onto Ashburn Road towards Foster Thurston Drive as a result of the Ashburn underpass.

By 2033 the Ashburn underpass and full development in place, the first access off of Rothesay Road on Ashburn Road (primarily access to the truck stop, assuming Rothesay Road / Fulton Lane access is right-in/right-out only) is projected to operate at an overall LOS A during both the PM and Saturday peak period. All individual movements are projected to operate at LOS B or better with average delays of 10 seconds/vehicle or less during both the PM and Saturday peak period.

By 2033 with the Ashburn underpass and the full development in place, the second access on Ashburn Road (just south of Drury Cove Road, primarily access to the proposed Kenworth Dealership) is projected to operate at an overall LOS A during both the PM and Saturday peak period. The eastbound left turn movement is projected to operate at LOS C with an average delay of 16 seconds/vehicle during both the PM and Saturday peak period. All other movements during both the PM and Saturday peak period are projected to operate at LOS B or better with an average delay of 10 seconds/vehicle or less.

By 2033 with the Ashburn underpass and the full development in place, the third access on Ashburn Road (primarily access to a proposed restaurant) is projected to operate at LOS A during both the PM and Saturday peak period. The westbound left turn movement is projected to operate at LOS C with an average delay of 17 seconds/vehicle or less during the PM and Saturday peak period. All other movements are projected to operate at LOS B or better with an average delay of 12 seconds/vehicle or less during both peak periods.

By 2033 with the Ashburn underpass and the full development in place, the fourth access on Ashburn Road (primarily access to the proposed UHaul Storage Facility) is projected to operate at an overall LOS A with minimal intersection delay during both the PM and Saturday peak period. The eastbound left turn movement is projected to operate at LOS C with an average delay of 17 seconds/vehicle or less during both peak periods. All other movements during both the PM and Saturday peak period are projected to operate at LOS B or better with an average delay of 11 seconds/vehicle or less.

The main Ashburn Road access from Rothesay Avenue (access 5 of this analysis) is projected to operate at an overall LOS B with an intersection delay of 12 seconds/vehicle during the PM peak period and at an overall LOS A with an intersection delay of 8 seconds/vehicle during the Saturday peak period by 2033 with the Ashburn underpass and the full development in place. All individual movements are projected to operate at LOS B with an average delay of 15 seconds/vehicle or less during both peak periods. The exception is the westbound left turn movement during the PM peak
period, which is projected to operate at LOS C with an average delay of 29 seconds/vehicle. The v/c ratios for each of the individual movements is 0.63 or less.

By 2033 with the Ashburn underpass and the full development in place, the fifth access on Ashburn Road (primarily access to the proposed major retail area) is projected to operate at an overall LOS A during both peak periods. All individual movements are projected to operate at LOS B or better with average delays of 14 seconds/vehicle or less. The exception is the westbound left turn movement, which is projected to operate at LOS D with an average delay of 34 seconds/vehicle during the PM peak and at LOS C with an average delay of 24 seconds/vehicle during the Saturday peak period.

The seventh access along Ashburn Road is primarily an access to the office area. By 2033 with the Ashburn underpass and full development in place, it is projected to operate at an overall LOS A during both peak periods. During the PM peak period, both the eastbound and westbound left turn movements (which operate under stop control conditions) are projected to operate at LOS E with average delays of 49 seconds/vehicle or less. During the Saturday peak period, the eastbound and westbound left turn movements are projected to operate at LOS E or better with average delays of 36 seconds/vehicle or less. The through/right turn movement is projected to operate at LOS C with an average delay of 22 seconds/vehicle or less during both peak periods. All other movements are projected to operate at LOS A during both peak periods. This access may require signalization in the future and should be re-evaluated when more details about the development are known.

The eighth access on Ashburn Road is expected to be the second main access on Ashburn Road in this analysis and primarily provides access to the residential area as well as the main retail area (to the south of Ashburn Road). Under signalized conditions, this access is projected to operate at an overall LOS A during both peak periods by 2033 with the Ashburn underpass and full development in place. The westbound left turn movement is projected to operate at LOS C with an average delay of 25 seconds/vehicle or less during both peak periods. All other movements are projected to operate at LOS B or better with an average delay of 17 seconds/vehicle or less during both peak periods. All movements have a v / c ratio of 0.55 or less.

The final access on Ashburn Road is primarily an access to the gas station and convenience retail adjacent to Foster Thurston Drive. By 2033 with the Ashburn underpass and full development in place, this access is projected to operate at LOS A during the PM and Saturday peak periods. The eastbound left turn movement is projected to operate at LOS E with an average delay of 49 seconds/vehicle or less during both peak periods. All other movements are projected to operate at LOS B or better with average delays of 13 seconds/vehicle or less.

No operational deficiencies are projected at the Ashburn Road access intersections under recommended geometry and traffic control conditions by 2033 with the Ashburn underpass and full development in place. Results for the accesses are for proof of concept only. Additional accesses may require traffic signals and/or changes to geometry and should be reevaluated as more details about the development are finalized.

Table 45 - LOS Summary for Ashburn Road Access Points with Development (Full Build Out)

7.1.13 Ashburn Underpass Ramps Terminals

The Ashburn underpass ramp terminals include the Foster Thurston Drive / Ashburn Road intersection (analyzed previously) as well as the Ashburn underpass / Ashburn Lake Road intersection. The LOS analysis for the Ashburn underpass / Ashburn Lake Road ramp terminal with the Ashburn underpass and full development in place are shown in Table 46. Detailed analysis can be found in Appendix D.

Although it was not within the scope of this study to do a detailed design of the potential future ramp terminal at this location, a possible configuration was completed in Synchro to determine the potential impact. The configuration included fully actuated traffic signals and separate left turn and right turn pockets at all approaches.

Under this configuration, the Ashburn underpass / Ashburn Lake Road ramp terminal is projected to operate at an overall LOS B with an intersection delay of 19 seconds/vehicle or less during both peak periods. All individual movements are projected to operate at LOS C or better with average delays of 30 seconds/vehicle or less during both the PM and Saturday peak period. All movements have a v / c ratio of 0.87 or less.

No operational deficiencies are projected at the Ashburn underpass / Ashburn Lake Road ramp terminal under the above described intersection geometry by 2033 with the Ashburn underpass and full development in place. Results are for proof of concept only and should be re-evaluated when the Ashburn underpass concept is finalized. The geometry for this intersection is also dependent on the final cross-section of Ashburn Lake Road.

Table 46 - LOS Summary for Ashburn underpass/Ashburn Lake Rd Ramp Terminal (Full Build Out)

Intersection			Overall Delay (sec/veh)	```Turning Movements LOS Average Delay (seconds per vehicle) [95\% Queues (m)]```											
North South Street @ East West Street	Traffic Control	Time Period		Eastbound			Westbound			Northbound			Southbound		
				Ashburn Lake Rd			Retail Dr			Rothesay Ave			Rothesay Ave		
				4		$\xrightarrow{\mathrm{R}}$	4	${ }^{\top}$	$\stackrel{R}{\mathrm{R}}$	4	${ }^{\text {T }}$	$\xrightarrow{\mathrm{R}}$	4	${ }^{\text {a }}$	$\stackrel{R}{\mathrm{R}}$
Projected 2033 Horizon Year with Development Conditions															
Underpass ramp terminal		PM Peak	$\begin{gathered} B \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { C } \\ 25 \\ {[0.61]} \end{gathered}$	$\begin{gathered} \hline B \\ 13 \\ {[0.48]} \end{gathered}$			$\begin{gathered} \hline B \\ 16 \\ {[0.64]} \end{gathered}$	$\begin{gathered} \hline \text { A } \\ 3 \\ {[0.47]} \end{gathered}$				$\begin{gathered} \hline C \\ 20 \\ {[0.74]} \end{gathered}$		$\begin{gathered} \hline A \\ 6 \\ {[0.43]} \end{gathered}$
/ Ashburn Lake Rd		Sat Peak	$\begin{gathered} \text { B } \\ 19 \end{gathered}$	$\begin{gathered} \hline \text { B } \\ 17 \\ {[0.39]} \end{gathered}$	C 23 $[0.69]$			C 25 $[0.50]$	$\begin{gathered} \mathrm{A} \\ 8 \\ {[0.77]} \end{gathered}$				$\begin{gathered} C \\ 30 \\ {[0.87]} \end{gathered}$		A 3 $[0.16]$

8 Conclusions

Projected traffic generated by Phase 1 of The Crossing can be adequately accommodated with relatively minor improvements to the existing road network (e.g. changes to traffic control, additional turn lanes, intersection realignment, etc).

Projected traffic generated by Phases 2 and 3 of the development will require major modifications to the existing road network such as:

1. Major upgrades to the Route 100 interchange area to increase capacity; or
2. Construction of a new underpass near Ashburn Lake Road and Foster Thurston Road.

Final details regarding recommended improvements will need to be tweaked as details of the development and the Ashburn underpass are finalized.

Appendix A Site Plan

Figure 1 - Revised Conceptual Rendering of the Developed Site Plan

Appendix B-
 LOS Results without Development

Intersection												
Int Delay, s/veh 7.8												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		\&			*			*			*	
Traffic Vol, veh/h	2	6	4	3	2	226	127	19	2	12	714	6
Future Vol, veh/h	2	6	4	3	2	226	127	19	2	12	714	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	7	4	3	2	246	138	21	2	13	776	7

Major/Minor	Minor1		Minor2				Major1				Major2			
Conflicting Flow All	1227	1107	22		1108	1104	779		783	0	0	23	0	0
Stage 1	298	298	-		805	805	-		-	-	-	-	-	-
Stage 2	929	809	-		303	299	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	155	210	1055		187	211	396		835	-	-	1592	-	-
Stage 1	711	667	-		376	395	-		-	-	-	-	-	-
Stage 2	321	394	-		706	666	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	50	172	1055		156	173	396		835	-	-	1592	-	-
Mov Cap-2 Maneuver	50	172	-		156	173	-		-	-	-	-	-	-
Stage 1	592	556	-		313	389	-		-	-	-	-	-	-
Stage 2	119	388	-		579	555	-		-	-	-	-	-	-
Approach	NB				SB				SE			NW		
HCM Control Delay, s	30.7				30.4				8.7			0.1		
HCM LOS	D				D									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	SBLn1						
Capacity (veh/h)	153	1592	-	-	835	-	-	384						
HCM Lane V/C Ratio	0.085	0.008	-		- 0.165	-	-	0.654						
HCM Control Delay (s)	30.7	7.3	0	-	10.2	0	-	30.4						
HCM Lane LOS	D	A	A	-	B	A	-	D						
HCM 95th \%tile Q(veh)	0.3	0	-	-	0.6	-	-	4.5						

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\ddagger			\$			\$	
Traffic Vol, veh/h	2	6	4	3	2	242	136	20	2	12	766	7
Future Vol, veh/h	2	6	4	3	2	242	136	20	2	12	766	7
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	7	4	3	2	263	148	22	2	13	833	8

Major/Minor	Minor1		Minor2					Major1			Major2			
Conflicting Flow All	1313	1184	23		1187	1183	836		840	0	0	24	0	0
Stage 1	318	318	-		863	863	-		-	-	-	-	-	-
Stage 2	995	866	-		324	320	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	135	189	1054		165	189	367		795	-	-	1591	-	-
Stage 1	693	654	-		349	372	-		-	-	-	-	-	-
Stage 2	295	370	-		688	652	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	32	151	1054		134	151	367		795	-	-	1591	-	-
Mov Cap-2 Maneuver	32	151	-		134	151	-		-	-	-	-	-	-
Stage 1	562	530	-		283	366	-		-	-	-	-	-	-
Stage 2	82	364	-		549	529	-		-	-	-	-	-	-
Approach	NB				SB				SE			NW		
HCM Control Delay, s	41				40.7				9.1			0.1		
HCM LOS	E				E									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	SBLn1						
Capacity (veh/h)	113	1591	-	-	795	-	-	355						
HCM Lane V/C Ratio	0.115	0.008	-		0.186	-	-	0.756						
HCM Control Delay (s)	41	7.3	0	-	10.6	0	-	40.7						
HCM Lane LOS	E	A	A	-	B	A	-	E						
HCM 95th \%tile Q(veh)	0.4	0	-	-	0.7	-	-	6						

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		\uparrow			\&			\&			\&	
Traffic Vol, veh/h	2	6	4	4	2	254	143	21	2	12	805	7
Future Vol, veh/h	2	6	4	4	2	254	143	21	2	12	805	7
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	7	4	4	2	276	155	23	2	13	875	8

Major/Minor	Minor1		Minor2					Major1			Major2			
Conflicting Flow All	1379	1244	24		1245	1241	879		883	0	0	25	0	0
Stage 1	335	335	-		905	905	-		-	-	-	-	-	-
Stage 2	1044	909	-		340	336	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	122	174	1052		151	175	347		766	-	-	1589	-	-
Stage 1	679	643	-		331	355	-		-	-	-	-	-	-
Stage 2	277	354	-		675	642	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	21	136	1052		121	137	347		766	-	-	1589	-	-
Mov Cap-2 Maneuver	21	136	-		121	137	-		-	-	-	-	-	-
Stage 1	540	511	-		263	349	-		-	-	-	-	-	-
Stage 2	55	348	-		528	510	-		-	-	-	-	-	-
Approach	NB				SB				SE			NW		
HCM Control Delay, s	55.6				54.5				9.4			0.1		
HCM LOS	F				F									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	SBLn1						
Capacity (veh/h)	84	1589	-	-	766	-	-	333						
HCM Lane V/C Ratio	0.155	0.008	-		0.203	-	-	0.849						
HCM Control Delay (s)	55.6	7.3	0	-	10.9	0	-	54.5						
HCM Lane LOS	F	A	A	-	B	A	-	F						
HCM 95th \%tile Q(veh)	0.5	0	-	-	0.8	-	-	7.6						

Intersection												
Int Delay, s/veh 17.8												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		\&			\&			\&			\&	
Traffic Vol, veh/h	2	6	4	4	2	267	150	22	2	12	846	7
Future Vol, veh/h	2	6	4	4	2	267	150	22	2	12	846	7
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	7	4	4	2	290	163	24	2	13	920	8

Major/Minor	Minor1		Minor2				Major1				Major2			
Conflicting Flow All	1447	1304	25		1306	1301	923		927	0	0	26	0	0
Stage 1	351	351	-		949	949	-		-	-	-	-	-	-
Stage 2	1096	953	-		357	352	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	109	160	1051		137	161	327		737	-	-	1588	-	-
Stage 1	666	632	-		313	339	-		-	-	-	-	-	-
Stage 2	259	338	-		661	632	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	10	122	1051		107	123	327		737	-	-	1588	-	-
Mov Cap-2 Maneuver	10	122	-		107	123	-		-	-	-	-	-	-
Stage 1	517	490	-		243	333	-		-	-	-	-	-	-
Stage 2	28	332	-		504	490	-		-	-	-	-	-	-
Approach	NB				SB				SE			NW		
HCM Control Delay, s	108.8				75				9.7			0.1		
HCM LOS	F				F									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	BLn1						
Capacity (veh/h)	47	1588	-	-	737	-	-	314						
HCM Lane V/C Ratio	0.278	0.008	-		0.221	-	-	0.945						
HCM Control Delay (s)	108.8	7.3	0	-	11.3	0	-	75						
HCM Lane LOS	F	A	A	-	B	A	-	F						
HCM 95th \%tile Q(veh)	0.9	0	-	-	0.8	-	-	9.5						

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		¢			\&			\uparrow			\&	
Traffic Vol, veh/h	0	15	3	7	0	77	664	18	2	10	105	1
Future Vol, veh/h	0	15	3	7	0	77	664	18	2	10	105	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	3	8	0	84	722	20	2	11	114	1

Major/Minor	Minor1		Minor2				Major1				Major2			
Conflicting Flow All	1642	1601	21		1610	1601	115		115	0	0	22	0	0
Stage 1	1464	1464	-		136	136	-		-	-	-	-	-	-
Stage 2	178	137	-		1474	1465	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	80	106	1056		84	106	937		1474	-	-	1593	-	-
Stage 1	160	193	-		867	784	-		-	-	-	-	-	-
Stage 2	824	783	-		158	193	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	44	53	1056		40	53	937		1474	-	-	1593	-	-
Mov Cap-2 Maneuver	44	53	-		40	53	-		-	-	-	-	-	-
Stage 1	81	97	-		437	779	-		-	-	-	-	-	-
Stage 2	745	778	-		66	97	-		-	-	-	-	-	-
Approach	NB				SB				SE			NW		
HCM Control Delay, s	86				20.2				9.5			0.6		
HCM LOS	F				C									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	SBLn1						
Capacity (veh/h)	63	1593	-	-	1474	-	-	327						
HCM Lane V/C Ratio	0.311	0.007	-	-	0.49	-	-	0.279						
HCM Control Delay (s)	86	7.3	0	-	9.8	0	-	20.2						
HCM Lane LOS	F	A	A	-	A	A	-	C						
HCM 95th \%tile Q(veh)	1.1	0	-	-	2.8	-	-	1.1						

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		¢			\&			\uparrow			\&	
Traffic Vol, veh/h	0	15	3	8	0	82	711	19	2	10	113	1
Future Vol, veh/h	0	15	3	8	0	82	711	19	2	10	113	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	3	9	0	89	773	21	2	11	123	1

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		¢			\&			\uparrow			\&	
Traffic Vol, veh/h	0	15	3	8	0	86	748	20	2	10	118	1
Future Vol, veh/h	0	15	3	8	0	86	748	20	2	10	118	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	3	9	0	93	813	22	2	11	128	1

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\ddagger			\uparrow			\&	
Traffic Vol, veh/h	0	15	3	9	0	91	786	21	2	10	124	1
Future Vol, veh/h	0	15	3	9	0	91	786	21	2	10	124	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	3	10	0	99	854	23	2	11	135	1

Major/Minor	Minor1		Minor2					Major1			Major2			
Conflicting Flow All	1940	1891	24		1899	1891	135		136	0	0	25	0	0
Stage 1	1733	1733	-		157	157	-		-	-	-	-	-	-
Stage 2	207	158	-		1742	1734	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	49	70	1052		53	70	914		1448	-	-	1589	-	-
Stage 1	112	142	-		845	768	-		-	-	-	-	-	-
Stage 2	795	767	-		110	142	-		-	-	-	-	-	-
Platoon blocked, \%										-	-		-	-
Mov Cap-1 Maneuver	23	28	1052		16	28	914		1448	-	-	1589	-	-
Mov Cap-2 Maneuver	23	28	-		16	28	-		-	-	-	-	-	-
Stage 1	45	57	-		340	763	-		-	-	-	-	-	-
Stage 2	704	762	-		31	57	-		-	-	-	-	-	-
Approach	NB				SB				SE			NW		
HCM Control Delay, s	216.1				74				10.7			0.5		
HCM LOS	F				F									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	BLn1						
Capacity (veh/h)	33	1589	-	-	1448	-	-	151						
HCM Lane V/C Ratio	0.593	0.007	-	-	0.59	-	-	0.72						
HCM Control Delay (s)	216.1	7.3	0	-	11	0	-	74						
HCM Lane LOS	F	A	A	-	B	A	-	F						
HCM 95th \%tile Q(veh)	2	0	-	-	4.1	-	-	4.3						

Intersection												
Int Delay, s/veh 5												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		\&			\uparrow			\&			\&	
Traffic Vol, veh/h	1	2	5	0	0	68	172	13	2	1	148	3
Future Vol, veh/h	1	2	5	0	0	68	172	13	2	1	148	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	2	5	0	0	74	187	14	2	1	161	3

Major/Minor	Minor1		Minor2				Major1				Major2			
Conflicting Flow All	591	555	15		558	555	162		164	0	0	16	0	0
Stage 1	389	389	-		165	165	-		-	-	-	-	-	-
Stage 2	202	166	-		393	390	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	419	440	1065		440	440	883		1414	-	-	1602	-	-
Stage 1	635	608	-		837	762	-		-	-	-	-	-	-
Stage 2	800	761	-		632	608	-		-	-	-	-	-	
Platoon blocked, \%										-	-		-	
Mov Cap-1 Maneuver	345	381	1065		391	381	883		1414	-	-	1602	-	
Mov Cap-2 Maneuver	345	381	-		391	381	-		-	-	-	-	-	
Stage 1	551	527	-		726	761	-		-	-	-	-	-	
Stage 2	732	760	-		543	527	-		-	-	-	-	-	
Approach	NB				SB				SE			NW		
HCM Control Delay, s	10.9				9.4				7.3			0		
HCM LOS	B				A									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	NWR	SEL	SET	SER	BLn1						
Capacity (veh/h)	623	1602	-	-	1414	-	-	883						
HCM Lane V/C Ratio	0.014	0.001	-	-	0.132	-	-	0.084						
HCM Control Delay (s)	10.9	7.2	0	-	7.9	0	-	9.4						
HCM Lane LOS	B	A	A	-	A	A	-	A						
HCM 95th \%tile Q(veh)	0	0	-	-	0.5	-	-	0.3						

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\uparrow			\&			\&	
Traffic Vol, veh/h	1	2	5	0	0	73	184	14	2	1	159	3
Future Vol, veh/h	1	2	5	0	0	73	184	14	2	1	159	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	2	5	0	0	79	200	15	2	1	173	3

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\uparrow			\&			\&	
Traffic Vol, veh/h	1	2	5	0	0	77	194	15	2	1	167	3
Future Vol, veh/h	1	2	5	0	0	77	194	15	2	1	167	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	2	5	0	0	84	211	16	2	1	182	3

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\&			\$			\$	
Traffic Vol, veh/h	1	2	5	0	0	81	204	15	2	1	175	4
Future Vol, veh/h	1	2	5	0	0	81	204	15	2	1	175	4
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	2	5	0	0	88	222	16	2	1	190	4


```
Phone:
    Fax:
```

E-mail:
Diverge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2501	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Right

Volume on ramp
1

Length of first accel/decel lane
$60.0 \quad \mathrm{~km} / \mathrm{h}$

Length of second accel/decel lane
$732 \quad \mathrm{vph}$

130 m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Level of Service Determination (if not F) \qquad


```
Phone:
    Fax:
```

E-mail:
Diverge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$2 / 14 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2681	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	785
Volume on ramp	130	$\mathrm{~km} / \mathrm{h}$
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
0.909
1.00 3277
Estimation of V12 Diverge Areas

Capacity Checks \qquad

		Actual
$\mathrm{V}=\mathrm{v}$		3277
Fi	F	
v		3277
12		
$\begin{array}{lll} \mathrm{V}= & \mathrm{V}-\mathrm{V} & 2396 \\ \mathrm{FO} & \mathrm{~F} & \mathrm{R} \end{array}$		
v		881
R		

Maximum	LOS F?
4600	No
4400	No
4600	No
2000	No

Level of Service Determination (if not F) \qquad


```
Phone:
Fax:
```

E-mail:
Diverge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2820	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	824
Volume on ramp	130	$\mathrm{~km} / \mathrm{h}$
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

Actual	Maximum	LOS F?
3447	4600	No
3447	4400	No
2522	4600	No
925	2000	No

Level of Service Determination (if not F) \qquad


```
Phone:
    Fax:
```

E-mail:
Diverge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2965	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	865
Volume on ramp	130	$\mathrm{~km} / \mathrm{h}$
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00 3624 .00 971
Estimation of V12 Diverge Areas

Capacity Checks \qquad

V =	v
Fi	F
v	
12	
$\mathrm{v}=$	v - V
FO	F R
v	
R	

Actual	Maximum	LOS F?
3624	4600	No
3624	4400	No
2653	4600	No
971	2000	No

Level of Service Determination (if not F) \qquad


```
Phone:
Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(2 / 14 / 2017\) \\
Analysis time period: & AM Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2016 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2501	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	26	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
1.00

Flow rate, vp
\qquad
$\mathrm{L}=\quad$ (Equation 25-2 or 25-3)
${ }^{\mathrm{EQ}}=1.000 \quad$ Using Equation 0

FM
$\mathrm{v}=\mathrm{v}(\mathrm{P})=3057$ pcph
$12 \mathrm{~F} \quad \mathrm{FM}$
Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	3086	4600	No
V			
R12	3086	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{D}=3.402+0.00456 \underset{R}{v}+0.0048 \mathrm{v}_{12}-0.01278 \mathrm{~L} \quad=16.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence C
Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.378$	
Space mean speed in ramp influence area,	$\mathrm{S}_{\mathrm{R}}=87.5$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=87.5$	km/h

```
Phone:
    Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(2 / 14 / 2017\) \\
Analysis time period: & AM Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2023 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2681	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	27	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
1.00
1.00

Flow rate, vp
3277
30
pcph
Estimation of V12 Merge Areas \qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	3307	4600	No
FO			
V	3307	4600	No

Level of Service Determination (if not F) \qquad

Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.399$	
Space mean speed in ramp influence area,	$\underset{R}{S}=86.8$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=86.8$	km/h

```
Phone:
Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(2 / 14 / 2017\) \\
Analysis time period: & AM Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2028 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2820	vph

Side of freeway	Right	
Number of lanes in ramp	Data__	
Free-flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	29	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
Flow rate, vp
\qquad Estimation of V12 Merge Areas \qquad

$\begin{gathered} \mathrm{L}= \\ \mathrm{EQ} \end{gathered}$	on 25-2			
$\mathrm{P}=$	1.000	Usi	Equation	0
FM				
$\mathrm{V}=$	(P)	3447	pcph	

Capacity Checks \qquad

	Actual	Maximum	LOS F?
v	3480	4600	No
FO			
v	3480	4600	No
R12			

Level of Service Determination (if not F) \qquad

Level of service for ramp-freeway junction areas of influence D
Speed Estimation


```
Phone:
Fax:
E-mail:
Merge Analysis
```

Analyst:
Agency/Co.:
Date performed:
Analysis time period:
Freeway/Dir of Travel:
Junction:
Jurisdiction:
Analysis Year:
Description: The Crossing
Katie Hazzard
exp
1/23/2017
AM Peak
Westbond
Foster Thurston On Ramp
Provincial
2033
\qquad
\qquad Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway
$100.0 \mathrm{~km} / \mathrm{h}$
$2965 \quad v p h$
On Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	30	m
Length of first accel/decel lane	120	m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.909
1.00

3624
34
pcph

Estimation of V12 Merge Areas \qquad
$\mathrm{L}=\quad$ (Equation 25-2 or 25-3)
EQ
P = 1.000 Using Equation 0
FM
$\mathrm{v}=\mathrm{v}(\mathrm{P})=3624 \quad \mathrm{pcph}$
$12 \mathrm{~F} \quad \mathrm{FM}$
Capacity Checks \qquad

	Actual	Capacity Checks___	Maximum
V FO	3658	4600	LOS F?
V 20	3658	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{\mathrm{D}}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}} \underset{\mathrm{R}}{\mathrm{v}}-0.01278 \mathrm{~L} \quad=19.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.443$	
Space mean speed in ramp influence area,	$\underset{R}{S}=85.4$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=85.4$	km/h

Phone:

Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$2 / 14 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1014	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	116	vph
Length of first accel/decel lane	130	m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

Actual	Maximum	LOS F?
1239	4600	No
1239	4400	No
1109	4600	No
130	2000	No

Level of Service Determination (if not F) \qquad


```
Phone: Fax:
```

E-mail:

Diverge Analysis \qquad

Analyst:	Don Good
Agency/Co.:	exp
Date performed:	$2 / 14 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1087	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	124	m
Length of first accel/decel lane	130	m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
0.909
-1.00 1329 139
\qquad

Capacity Checks \qquad

$\mathrm{V}=$	v
Fi	F
v	
12	
$\mathrm{v}=$	v - v
FO	F \quad R
v	
R	

Actual	Maximum	LOS F?
1329	4600	No
1329	4400	No
1190	4600	No
139	2000	No

Level of Service Determination (if not F) \qquad

Phone:

Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1144	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	129	vph
Length of first accel/decel lane	130	m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

Maximum	LOS F?
4600	No
4400	No
4600	No
2000	No

Level of Service Determination (if not F) \qquad

Phone:

Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1202	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	135	vph
Length of first accel/decel lane	130	m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

 $12 R \quad \mathrm{~F} \quad \mathrm{R} \quad \mathrm{FD}$

Capacity Checks \qquad

			Actual	Maximum	LOS F?
$\mathrm{v}=$	v		1469	4600	No
Fi	F				
V			1469	4400	No
12					
$\mathrm{v}=$	V -	v	1317	4600	No
FO	F	R			
v			152	2000	No
R					

Level of Service Determination (if not F) \qquad


```
Phone:
Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(2 / 14 / 2017\) \\
Analysis time period: & PM Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2016 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1014	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	28	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.990

Driver population factor, fP
\qquad

\qquad

	Actual	Maximum	LOS F?
V FO	1270	4600	No
V	1270	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=8.0 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation


```
Phone:
    Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(2 / 14 / 2017\) \\
Analysis time period: & PM Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2023 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1087	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	30	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

\qquad

Capacity Checks \qquad

	Actual	Capacity Checks_____ Maximum	LOS F?
V FO	1363	4600	No
V 12	1363	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{D}=3.402+0.00456 \underset{R}{v}+0.0048 \mathrm{v}_{\mathrm{R}}-0.01278 \mathrm{~L} \quad=8.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
    Fax:
```

E-mail:
Merge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Westbond
Junction:	Foster Thurston On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028

Description: The Crossing
Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	1144	vph

Side of freeway	Right	
Number of lanes in ramp	Data__	
Free-flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	31	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
Flow rate, vp
\qquad

$\mathrm{L}_{\mathrm{EQ}}=$		(Equation 25-2 or 25-3)
$\mathrm{P}^{\mathrm{FM}}=$	1.000	Using Equation 0
$\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=1398 \mathrm{pcph}$		

	Actual	Maximum	LOS F?
V FO	1433	4600	No
V			
R12	1433	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=8.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.309$	
Space mean speed in ramp influence area,	$\underset{R}{S}=89.8$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=89.8$	km/h

```
Phone:
Fax:
E-mail:
Merge Analysis
```

Analyst:
Agency/Co.:
Date performed:
Analysis time period:
Freeway/Dir of Travel:
Junction:
Jurisdiction:
Analysis Year:
Description: The Crossing
Katie Hazzard
exp
1/23/2017
PM Peak
Westbond
Foster Thurston On Ramp
Provincial
2033
\qquad
\qquad Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2
$100.0 \mathrm{~km} / \mathrm{h}$
1202 vph
\qquad On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	32	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
1.00
1.00

Flow rate, vp

Estimation of V12 Merge Areas \qquad

$\begin{gathered} \mathrm{L}= \\ \mathrm{EQ} \end{gathered}$	on 25-2			
$\mathrm{P}=$	1.000	Us	Equation	0
FM				
$\mathrm{V}=$	(P)	1469	pcph	

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	1505	4600	No
V			
R12	1505	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L} \quad=\quad 9.1 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B
Speed Estimation

Phone:

Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	644
Volume on freeway	km / h	

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	152	m
Length of first accel/decel lane	130	m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

0.909
0.990
\qquad

Capacity Checks \qquad

Actual	Maximum	LOS F?
787	4600	No
787	4400	No
616	4600	No
171	2000	No

Level of Service Determination (if not F) \qquad

Phone:

Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	690	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	163
Volume on ramp	130	$\mathrm{~km} / \mathrm{h}$
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

$$
0.990
$$

\qquad

Capacity Checks \qquad

V =		
Fi	F	
v		
12		
v =	v -	v
FO	F	R
v		
R		

Actual	Maximum	LOS F?
843	4600	No
843	4400	No
660	4600	No
183	2000	No

Level of Service Determination (if not F) \qquad

Phone:

Fax:
E-mail:
Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing TIS	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	725	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	180	vph
Length of first accel/decel lane	130	m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00 886
0.990
\qquad

Capacity Checks \qquad

Maximum	LOS F?
4600	No
4400	No
4600	No
2000	No

Level of Service Determination (if not F) \qquad

Intermediate speed variable,	$D_{S}=0.421$	
Space mean speed in ramp influence area,	$\underset{R}{S}=86.1$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=86.1$	km/h

```
Phone:
    Fax:
```

E-mail:
Diverge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	763	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	km/h
Volume on ramp	180	vph
Length of first accel/decel lane	130	m
Length of second accel/decel lane		m
_Adjacent	(if one exists)	
Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		
Type of adjacent ramp		
Distance to adjacent ramp		m

Heavy vehicle adjustment, fHV
0.909
1.00 933
0.990
\qquad

Capacity Checks \qquad

			Actual933	
$\mathrm{v}=$	v			
Fi F				
v			933	
12				
$\mathrm{v}=$	V -	v	731	
FO	F	R		
V 202				

Maximum	LOS F?
4600	No
4400	No
4600	No
2000	No

Level of Service Determination (if not F) \qquad


```
Phone:
Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(1 / 23 / 2017\) \\
Analysis time period: & Sat Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2016 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	644

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	18	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00

Estimation of V12 Merge Areas \qquad

$\begin{gathered} \mathrm{L}= \\ \mathrm{EQ} \end{gathered}$		n		
$\mathrm{P}=$	1.000	Using	Equation	0
FM				
$\mathrm{V}=$	(P)	7	cph	

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	807	4600	No
FO			No
V12	807	4600	

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=5.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence A

Speed Estimation


```
Phone:
Fax:
E-mail:
Merge Analysis
\begin{tabular}{ll} 
Analyst: & Katie Hazzard \\
Agency/Co.: & exp \\
Date performed: & \(1 / 23 / 2017\) \\
Analysis time period: & Sat Peak \\
Freeway/Dir of Travel: & Westbond \\
Junction: & Foster Thurston On Ramp \\
Jurisdiction: & Provincial \\
Analysis Year: & 2023 \\
Description: The Crossing TIS
\end{tabular}
```

\qquad

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	690	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	19	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00 843 00

21

Estimation of V12 Merge Areas \qquad

$\mathrm{L}_{\mathrm{EQ}}=$		(Equation 25-2 or 25-3)
$\mathrm{P}^{\mathrm{EM}}=$	1.000	Using Equation 0
$\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=843$	pcph	

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	864	4600	No
V	864	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.0+\mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation


```
Phone:
    Fax:
```

E-mail:
Merge Analysis
\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat Peak
Freeway/Dir of Travel:	Westbond
Junction:	Foster Thurston On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028

Description: The Crossing
Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	725
Volume on freeway	km / h	

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	20	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
Flow rate, vp
\qquad

$\mathrm{L}_{\mathrm{EQ}}=$		(Equation 25-2 or 25-3)
$\mathrm{P}^{\mathrm{FM}}=$	1.000	Using Equation 0
$\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=886 \quad \mathrm{pcph}$		

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	908	4600	No
V	908	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.302$	
Space mean speed in ramp influence area,	$S_{R}=90.0$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km / h
Space mean speed for all vehicles,	$S=90.0$	km/h

```
Phone:
Fax:
E-mail:
Merge Analysis
```

Analyst:
Agency/Co.:
Date performed:
Analysis time period:
Freeway/Dir of Travel:
Junction:
Jurisdiction:
Analysis Year:
Description: The Crossing
Katie Hazzard
exp
1/23/2017
Sat Peak
Westbond
Foster Thurston On Ramp
Provincial
2033
\qquad
\qquad Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2
$100.0 \mathrm{~km} / \mathrm{h}$
763 vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	20	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.990

Driver population factor, fP

Estimation of V12 Merge Areas \qquad

| $\mathrm{L}_{\mathrm{EQ}}=$ | | (Equation 25-2 or 25-3) |
| :--- | :--- | :--- | :--- |
| $\mathrm{P}^{\mathrm{FM}}=$ | 1.000 | Using Equation 0 |
| $\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=933$ | pcph | | Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	955	4600	No
FO	955	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{D}=3.402+0.00456 \underset{R}{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.4 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.302$	
Space mean speed in ramp influence area,	$\mathrm{S}_{\mathrm{R}}=90.0$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km / h
Space mean speed for all vehicles,	$S=90.0$	km/h

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$3 / 20 / 2016$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	618	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	240	m
Length of first accel/decel lane	180	m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

Actual	Maximum	LOS F?
755	4500	No
755	4400	No
486	4500	No
269	2000	No

Level of Service Determination (if not F) \qquad

Phone:
E-mail:

Fax:

Diverge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
Date performed: 1/23/2017
Analysis time period:
AM Peak
Freeway/Dir of Travel: Eastbound
Junction: Ashburn Off Ramp
Jurisdiction: Provincial
Analysis Year:
2023
Description: The Crossing Study

Freeway Data

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	662	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	257	m
Length of first accel/decel lane	180	m
Length of second accel/decel lane		

_Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00 809
0.990
\qquad

Capacity Checks \qquad

Maximum	LOS F?
4500	No
4400	No
4500	No
2000	No

Level of Service Determination (if not F) \qquad

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$2 / 14 / 2017$
Analysis time period:	AMPeak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	696	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	271
Volume on ramp	180	vph
Length of first accel/decel lane	m	
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

		Actual
$\underset{\mathrm{Fi}}{\mathrm{~V}}=\mathrm{V}$		851
v		851
12		
$\begin{aligned} & \mathrm{v}=\mathrm{v}-\mathrm{V} \\ & \mathrm{FO} \quad \mathrm{~F} \quad \mathrm{R} \end{aligned}$		547
v R		304

Maximum	LOS F?
4500	No
4400	No
4500	No
2000	No

Level of Service Determination (if not F) \qquad

Phone:
E-mail:

Fax:

Diverge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
Date performed: 1/23/2017
Analysis time period:
AM Peak
Freeway/Dir of Travel: Eastbound
Junction: Ashburn Off Ramp
Jurisdiction: Provincial
Analysis Year:
2033
Description: The Crossing Study

Freeway Data

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	732	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	281	m
Length of first accel/decel lane	180	m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

$\mathrm{V}=$	v
Fi	F
v	
12	
$\mathrm{v}=$	v - v
FO	F \quad R
v	
R	

Actual	Maximum	LOS F?
895	4500	No
895	4400	No
580	4500	No
315	2000	No

Level of Service Determination (if not F) \qquad

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: AM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2016
Description: The Crossing
Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	618
Volume on freeway	km / h	

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	47	vph
Length of first accel/decel lane	150	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
1.00
1.00

Flow rate, vp
755
53
pcph
Estimation of V12 Merge Areas \qquad

$\begin{gathered} \mathrm{L}= \\ \mathrm{EQ} \end{gathered}$		(Equation 25-2 or 25-3)		
$\mathrm{P}=$	1.000	Using	Equation	0
FM				
$\mathrm{V}=$	(P)	5	pcph	

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	808	4600	No
FO			
R12	808	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}_{\mathrm{R}}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L} \quad=5.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence A
Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: AM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2023
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
662	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	150	vph
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
1.00
1.00

809
57
pcph

Estimation of V12 Merge Areas \qquad

$\begin{gathered} \mathrm{L}= \\ \mathrm{EQ} \end{gathered}$	(Equation 25-2 or 25-3)				
$\mathrm{P}=$	1.000		Using Equation		
FM					
$\mathrm{V}=$	$(\mathrm{P})=$	809	9 pcph		

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	866	4600	No
V			
R12	866	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}_{\mathrm{R}}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L} \quad=\quad 5.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence A
Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.294$	
Space mean speed in ramp influence area,	$S_{R}=90.3$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=90.3$	km/h

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: AM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2028
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
696	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	150	m
Length of first accel/decel lane		m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	Checks_	No	
FO	910	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L} \quad=\quad 5.8 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence A
Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: AM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2033
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2
$100.0 \mathrm{~km} / \mathrm{h}$
732
vph

On Ramp Data

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP Flow rate, vp
1.00
1.00

895
63
pcph

Estimation of V12 Merge Areas \qquad

$\begin{gathered} \mathrm{L}= \\ \mathrm{EQ} \end{gathered}$		(Equation 25-2 or 25-3)		
$\mathrm{P}=$	1.000	Using	Equation	0
FM				
$\mathrm{V}=$	(P)	5	pcph	

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	958	4600	No
V			
R12	958	4600	No

Level of Service Determination (if not F) \qquad
Density, $\underset{R}{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L} \quad=\quad 6.1 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B
Speed Estimation

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.295$	
Space mean speed in ramp influence area,	$S_{R}=90.3$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=90.3$	km/h

Phone:
E-mail:

Fax:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$2 / 14 / 207$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2721	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	278	vph
Length of first accel/decel lane	180	m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00 3326 Flow rate, vp1.00
Estimation of V12 Diverge Areas

Capacity Checks \qquad

Actual	Maximum	LOS F?
3326	4500	No
3326	4400	No
3014	4500	No
312	2000	No

Level of Service Determination (if not F) \qquad

Phone:
E-mail:

Fax:

Diverge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
Date performed: 1/23/2017
Analysis time period: PM Peak
Freeway/Dir of Travel: Eastbound
Junction: Ashburn Off Ramp
Jurisdiction: Provincial
Analysis Year: 2023
Description: The Crossing Study
Freeway Data

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2918	vph

Off Ramp Data \qquad
Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Right

Length of first accel/decel lane
$60.0 \quad \mathrm{~km} / \mathrm{h}$

298
180
vph
Length of second accel/decel lane

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Level of Service Determination (if not F) \qquad

Phone:
E-mail:

Fax:

Diverge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
Date performed: 1/23/2017
Analysis time period: PM Peak
Freeway/Dir of Travel: Eastbound
Junction: Ashburn Off Ramp
Jurisdiction: Provincial
Analysis Year: 2028
Description: The Crossing Study
Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3066	vph

Off Ramp Data \qquad
Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane
Right
1
$60.0 \quad \mathrm{~km} / \mathrm{h}$
$314 \quad \mathrm{vph}$
180 m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

$$
0.990
$$

\qquad

Capacity Checks \qquad

		Actual
$\mathrm{v}=\mathrm{v}$		3747
Fi F		
v		3747
12		
$\mathrm{v}=$	v - v	3395
FO	F R	
V		352
R		

Maximum	LOS F?
4500	No
4400	No
4500	No
2000	No

Level of Service Determination (if not F) \qquad

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing Study	

Freeway Data

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3224	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	180	vph
Length of first accel/decel lane	m	
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
Diver population factor, fP Flow rate, vp
0.909
0.990
1.00 3940 370
\qquad

Capacity Checks \qquad

$\mathrm{v}=$	v	
Fi	F	
v		
12		
$\mathrm{v}=$	V -	V
FO	F	R
V		
R		

Actual	Maximum	LOS F?
3940	4500	No
3940	4400	No
3570	4500	No
370	2000	No

Level of Service Determination (if not F) \qquad

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed:
2/14/2017
Analysis time period:
PM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2016
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
2721	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	326	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.909
. 00
3326

Estimation of V12 Merge Areas \qquad
$\mathrm{L}=$ (Equation 25-2 or 25-3)

P = 1.000 Using Equation 0
FM
$\mathrm{v}=\mathrm{v}(\mathrm{P})=332$
12 F FM
Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	3692	4600	No
V			
R12	3692	4600	No

Level of Service Determination (if not F) \qquad

Density, $\underset{R}{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L} \quad=19.1 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D

Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: PM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2023
Description: The Crossing
Freeway Data \qquad
Type of analysis

Merge	
2	
100.0	$\mathrm{~km} / \mathrm{h}$
2918	vph

On Ramp Data
vph

Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	2918

\qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	159	m
Length of first accel/decel lane	150	m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Driver population factor, fP
Flow rate, vp
$1.00 \quad 1.00$
\qquad

$\mathrm{L}_{\mathrm{EQ}}=$		(Equation 25-2 or 25-3)
$\mathrm{P}^{\mathrm{EM}}=$	1.000	Using Equation 0
$\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=3566$ pcph		

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	3958	4600	No
V			
R12	3958	4600	No

Level of Service Determination (if not F) \qquad

Density, $\underset{R}{\mathrm{D}}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}-0.01278 \mathrm{~L} \quad=\quad 20.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D

Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: PM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2028
Description: The Crossing
Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3066	vph

	On Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	367	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.990

Driver population factor, fP
\qquad

$\mathrm{L}_{\mathrm{EQ}}=$		(Equation 25-2 or 25-3)
$\mathrm{P}^{\mathrm{FM}}=$	1.000	Using Equation 0
$\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=3747 \mathrm{pcph}$		

	Actual	Maximum	LOS F?
V FO	4159	4600	No
v	4159	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=21.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence D

Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: PM Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2033
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
3224	vph

On Ramp Data
vph

	On Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	385	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.990

Diver population factor, fP
Flow rate, vp
1.00

Estimation of V12 Merge Areas \qquad

$\mathrm{L}=$		(Equation 25-2 or 25-3)
$\mathrm{PQ}^{\mathrm{EQ}}=$	1.000	Using Equation 0
$\mathrm{VM}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=3940$	pcph	

	Actual	Maximum	LOS F?
V FO	4372	4600	No
V	4372	4600	No

Level of Service Determination (if not F) \qquad

Density, $\underset{R}{\mathrm{D}}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v} \underset{\mathrm{R}}{\mathrm{v}}-0.01278 \mathrm{~L} \quad=\quad 22.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence E

Speed Estimation

Phone:
E-mail:

Fax:

Diverge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
1/23/2017
Date performed:
$\begin{array}{ll}\text { Analysis time period: } & \text { Sat Peak } \\ \text { Freeway/Dir of Travel: } & \text { Eastbound }\end{array}$
Junction: Ashburn Off Ramp
Jurisdiction: Provincial
Analysis Year: 2016
Description: The Crossing Study
Freeway Data

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	767	vph

Off Ramp Data \qquad
Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Right

Length of first accel/decel lane
1
$60.0 \mathrm{~km} / \mathrm{h}$
$385 \quad \mathrm{vph}$
Length of second accel/decel lane
m
m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

$\left.\begin{array}{lllll} & \text { Freeway } & \text { Ramp } & \begin{array}{l}\text { Adjacent } \\ \text { Junction Components }\end{array} & \\ \text { Ramp }\end{array}\right]$
\qquad

Capacity Checks \qquad

Maximum	LOS F?
4500	No
4400	No
4500	No
2000	No

Level of Service Determination (if not F) \qquad

Phone:
E-mail:

Fax:

Diverge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
1/23/2017
Date performed:
$\begin{array}{ll}\text { Analysis time period: } & \text { Sat Peak } \\ \text { Freeway/Dir of Travel: } & \text { Eastbound }\end{array}$
Junction: Ashburn Off Ramp
Jurisdiction: Provincial
Analysis Year: 2023
Description: The Crossing Study
Freeway Data

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	823	vph

Off Ramp Data \qquad
Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane
Right
1
$60.0 \quad \mathrm{~km} / \mathrm{h}$
$413 \quad$ vph
180 m
m
m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

Heavy vehicle adjustment, fHV
0.909
1.00

$$
1.00
$$ 1006 463

Estimation of V12 Diverge Areas

Capacity Checks \qquad

Actual	Maximum	LOS F?
1006	4500	No
1006	4400	No
543	4500	No
463	2000	No

Level of Service Determination (if not F) \qquad

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	856	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	
Free-Flow speed on ramp	60.0	456
Volume on ramp	180	$\mathrm{~km} / \mathrm{h}$
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

 $12 R \quad F \quad R \quad F D$

Capacity Checks \qquad

Level of Service Determination (if not F) \qquad

Intermediate speed variable,	$\mathrm{D}_{\mathrm{S}}=0.449$	
Space mean speed in ramp influence area,	$\underset{R}{S}=79.7$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=79.7$	km/h

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	899	vph

Off Ramp Data \qquad

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	189	m
Length of first accel/decel lane		m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent ramp	
Position of adjacent ramp	
Type of adjacent ramp	
Distance to adjacent ramp	m

\qquad

Capacity Checks \qquad

Actual	Maximum	LOS F?
1099	4500	No
1099	4400	No
561	4500	No
538	2000	No

Level of Service Determination (if not F) \qquad

Intermediate speed variable,	$\mathrm{D}_{\mathrm{S}}=0.451$	
Space mean speed in ramp influence area,	$\mathrm{S}_{\mathrm{R}}=79.6$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=79.6$	km/h

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: Sat Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2016
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
767	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	158	m
Length of first accel/decel lane	150	m

Adjacent Ramp Data (if one exists)

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
Driver population factor, fP
0.909
0.990

Flow rate, vp

Estimation of V12 Merge Areas \qquad

| $\mathrm{L}_{\mathrm{EQ}}=$ | | (Equation 25-2 or 25-3) |
| :--- | :--- | :--- | :--- |
| $\mathrm{P}^{\mathrm{FM}}=$ | 1.000 | Using Equation 0 |
| $\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=937$ | pcph | |

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	1114	4600	No
V			
R12	1114	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.8 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: Sat Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2023
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
823	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	169	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
Driver population factor, fP
Flow rate, vp
0.909
0.990 1.00 1006 190
\qquad
$\mathrm{L}=$ (Equation 25-2 or 25-3)
EQ
P = 1.000 Using Equation 0
FM
$\mathrm{V}=\mathrm{v}(\mathrm{P})=1006 \mathrm{pcph}$
$12 \mathrm{~F} \quad \mathrm{FM}$
Capacity Checks
\qquad

	Actual	Maximum	LOS F?
V	1196	4600	No
FO	1196	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=7.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: Sat Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2028
Description: The Crossing
Freeway Data \qquad
Type of analysis
Merge
Number of lanes in freeway
Free-flow speed on freeway
Volume on freeway

2	
100.0	$\mathrm{~km} / \mathrm{h}$
856	vph

On Ramp Data

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	187
Volume on ramp	150	$\mathrm{~km} / \mathrm{h}$
Length of first accel/decel lane		m
Length of second accel/decel lane		m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?	No
Volume on adjacent Ramp	
Position of adjacent Ramp	
Type of adjacent Ramp	
Distance to adjacent Ramp	m

Heavy vehicle adjustment, fHV
0.909
0.909

Estimation of V12 Merge Areas \qquad

$\mathrm{L}_{\mathrm{EQ}}=$		(Equation 25-2 or 25-3)
$\mathrm{P}^{\mathrm{EM}}=$	1.000	Using Equation 0
$\mathrm{~V}^{\mathrm{FM}}=\mathrm{V}(\mathrm{P})=1046$ pcph		

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	1256	4600	No
V			
R12	1256	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=7.5 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

Phone:

Fax:
E-mail:

Merge Analysis \qquad
Analyst:
Katie Hazzard
Agency/Co.:
exp
Date performed: 1/23/2017
Analysis time period: Sat Peak
Freeway/Dir of Travel: Eastbond
Junction: Ashburn On Ramp
Jurisdiction: Provincial
Analysis Year: 2033
Description: The Crossing
Freeway Data \qquad
Type of analysis

Merge	
2	
100.0	$\mathrm{~km} / \mathrm{h}$
899	vph

On Ramp Data

Heavy vehicle adjustment, fHV
0.909
0.909
1.00 1099 221

Estimation of V12 Merge Areas \qquad
$\mathrm{L}=$ (Equation 25-2 or 25-3)

P = 1.000 Using Equation 0
FM
$\mathrm{v}=\mathrm{v}(\mathrm{P})=1099 \quad \mathrm{pcph}$
12 F FM
Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	1320	4600	No
V			
R12	1320	4600	No

Level of Service Determination (if not F) \qquad

Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=7.8 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence B

Speed Estimation

		pren				4
Lane Group	NBT	NBR	SBL	SBT	NWL	NWR
Turn Bay Length (m)						
Base Capacity (vph)	2494			2256	270	353
Starvation Cap Reductn	1576			0	0	0
Spillback Cap Reductn	0			218	0	0
Storage Cap Reductn	0			0	0	0
Reduced v/c Ratio	0.54			0.42	0.41	0.17
Intersection Summary						
Area Type: Other						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 0 (0\%), Referenced to phase 2:NBSB, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 0.41						
Intersection Signal Delay: 8.3				Intersection LOS: A		
Intersection Capacity Utilization 52.9\%					Leve	Service A
Analysis Period (min) 15						

Splits and Phases: 9:

Analysis Period (min) 15
Splits and Phases: 9:

Analysis Period (min) 15
Splits and Phases: 9:

Analysis Period (min) 15
Splits and Phases: 9:

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 9:

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 9:

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 9:

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
dl Defacto Left Lane. Recode with 1 though lane as a left lane.
Splits and Phases: 9:

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 9:

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 9:

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
dl Defacto Left Lane. Recode with 1 though lane as a left lane.
Splits and Phases: 9:

Splits and Phases: 3:

Analysis Period (min) 15
Splits and Phases: 3 :

Analysis Period (min) 15
Splits and Phases: 3 :

	4		4			\pm
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*/			¢4	中 ${ }^{\text {a }}$	
Traffic Volume (vph)	259	94	52	353	885	75
Future Volume (vph)	259	94	52	353	885	75
Satd. Flow (prot)	1752	0	0	3557	3536	0
Flt Permitted	0.965			0.754		
Satd. Flow (perm)	1752	0	0	2698	3536	0
Satd. Flow (RTOR)	39				23	
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)	0\%			0\%	0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	384	0	0	441	1044	0
Turn Type	Perm		Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4		2			
Total Split (s)	22.0		28.0	28.0	28.0	
Total Lost Time (s)	5.0			5.0	5.0	
Act Effct Green (s)	17.0			23.0	23.0	
Actuated g/C Ratio	0.34			0.46	0.46	
v/c Ratio	0.62			0.36	0.64	
Control Delay	17.5			9.8	10.0	
Queue Delay	0.0			0.0	1.7	
Total Delay	17.5			9.8	11.6	
LOS	B			A	B	
Approach Delay	17.5			9.8	11.6	
Approach LOS	B			A	B	
Queue Length 50th (m)	24.6			12.2	28.0	
Queue Length 95th (m)	47.0			20.4	49.7	
Internal Link Dist (m)	240.8			282.1	29.7	
Turn Bay Length (m)						
Base Capacity (vph)	621			1241	1638	
Starvation Cap Reductn	0			0	398	
Spillback Cap Reductn	0			53	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	0.62			0.37	0.84	
Intersection Summary						
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 45 (90\%), Referenced to phase 2:NBTL, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 0.64						
Intersection Signal Delay: 12.4				Intersection LOS: B		
Intersection Capacity Utilization 78.6\%				ICU Level of Service D		

Analysis Period (min) 15
Splits and Phases: 3 :

			4		\checkmark
Lane Group EBL	EBR	NBL	NBT	SBT	SBR
Turn Bay Length (m)					
Base Capacity (vph) 612			1200	1642	
Starvation Cap Reductn 0			0	665	
Spillback Cap Reductn 15			19	0	
Storage Cap Reductn 0			0	0	
Reduced v/c Ratio 0.79			0.82	0.95	
Intersection Summary					
Area Type: Other					
Cycle Length: 50					
Actuated Cycle Length: 50					
Offset: 45 (90\%), Referenced to phase 2:NBSB, Start of 1st Green					
Control Type: Pretimed					
Maximum v/c Ratio: 0.81					
Intersection Signal Delay: 19.5			Intersection LOS: B		
Intersection Capacity Utilization 85.8\%			ICU Level of Service		
Analysis Period (min) 15					
\# 95th percentile volume exceeds capacity, queue may be longer.					
Queue shown is maximum after two cycles.					
m Volume for 95th percentile queue	etere	ups	sig		

Splits and Phases: 3

	4		4			\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			¢4	中 ${ }^{\text {a }}$	
Traffic Volume (vph)	427	39	98	860	722	191
Future Volume (vph)	427	39	98	860	722	191
Satd. Flow (prot)	1781	0	0	3561	3468	0
Flt Permitted	0.956			0.692		
Satd. Flow (perm)	1781	0	0	2476	3468	0
Satd. Flow (RTOR)	10				88	
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)	0\%			0\%	0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	506	0	0	1042	993	0
Turn Type	Perm		Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4		2			
Total Split (s)	22.0		28.0	28.0	28.0	
Total Lost Time (s)	5.0			5.0	5.0	
Act Effct Green (s)	17.0			23.0	23.0	
Actuated g/C Ratio	0.34			0.46	0.46	
v / c Ratio	0.83			0.92	0.60	
Control Delay	29.6			28.0	10.2	
Queue Delay	1.0			1.6	26.6	
Total Delay	30.7			29.6	36.9	
LOS	C			C	D	
Approach Delay	30.7			29.6	36.9	
Approach LOS	C			C	D	
Queue Length 50th (m)	39.3			42.1	36.2	
Queue Length 95th (m)	\#84.3			\#79.2	m40.6	
Internal Link Dist (m)	240.8			282.1	29.7	
Turn Bay Length (m)						
Base Capacity (vph)	612			1138	1642	
Starvation Cap Reductn	0			0	686	
Spillback Cap Reductn	21			29	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	0.86			0.94	1.04	
Intersection Summary						
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 45 (90\%), Referenced to phase 2:NBTL, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 0.92						
Intersection Signal Delay: 32.7				Intersection LOS: C		
Intersection Capacity Utilization 91.2\%				ICU Level of Service F		

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3:

	4		4			4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	* ${ }^{\text {r }}$			¢4	中 ${ }^{\text {a }}$	
Traffic Volume (vph)	448	41	103	904	758	201
Future Volume (vph)	448	41	103	904	758	201
Satd. Flow (prot)	1781	0	0	3561	3468	0
Flt Permitted	0.956			0.668		
Satd. Flow (perm)	1781	0	0	2390	3468	0
Satd. Flow (RTOR)	10				88	
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)	0\%			0\%	0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	532	0	0	1095	1042	0
Turn Type	Perm		Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4		2			
Total Split (s)	22.0		28.0	28.0	28.0	
Total Lost Time (s)	5.0			5.0	5.0	
Act Effct Green (s)	17.0			23.0	23.0	
Actuated g/C Ratio	0.34			0.46	0.46	
v/c Ratio	0.87			1.00	0.63	
Control Delay	33.9			43.4	10.7	
Queue Delay	8.6			7.0	50.0	
Total Delay	42.5			50.4	60.7	
LOS	D			D	E	
Approach Delay	42.5			50.4	60.7	
Approach LOS	D			D	E	
Queue Length 50th (m)	42.3			47.2	39.3	
Queue Length 95th (m)	\#90.6			\#87.1	m42.1	
Internal Link Dist (m)	240.8			282.1	29.7	
Turn Bay Length (m)						
Base Capacity (vph)	612			1099	1642	
Starvation Cap Reductn	0			0	699	
Spillback Cap Reductn	60			28	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	0.96			1.02	1.10	
Intersection Summary						
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 45 (90\%), Referenced to phase 2:NBTL, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 1.00						
Intersection Signal Delay: 52.8				Intersection LOS: D		
Intersection Capacity Utilization 95.2\%				ICU Level of Service F		

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3:

			4			\pm
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*/			*4	中 ${ }^{\text {P }}$	
Traffic Volume (vph)	471	43	108	950	797	211
Future Volume (vph)	471	43	108	950	797	211
Satd. Flow (prot)	1781	0	0	3561	3468	0
Flt Permitted	0.956			0.643		
Satd. Flow (perm)	1781	0	0	2301	3468	0
Satd. Flow (RTOR)	10				88	
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)	0\%			0\%	0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	559	0	0	1150	1095	0
Turn Type	Perm		Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4		2			
Total Split (s)	22.0		28.0	28.0	28.0	
Total Lost Time (s)	5.0			5.0	5.0	
Act Effct Green (s)	17.0			23.0	23.0	
Actuated g/C Ratio	0.34			0.46	0.46	
v/c Ratio	0.91			1.09	0.67	
Control Delay	39.7			72.3	11.0	
Queue Delay	19.0			5.5	50.0	
Total Delay	58.8			77.8	61.1	
LOS	E			E	E	
Approach Delay	58.8			77.8	61.1	
Approach LOS	E			E	E	
Queue Length 50th (m)	45.5			~ 63.5	41.3	
Queue Length 95th (m)	\#96.9			\#95.3	m43.5	
Internal Link Dist (m)	240.8			282.1	29.7	
Turn Bay Length (m)						
Base Capacity (vph)	612			1058	1642	
Starvation Cap Reductn	0			0	711	
Spillback Cap Reductn	65			27	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	1.02			1.12	1.18	
Intersection Summary						
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 45 (90\%), Referenced to phase 2:NBTL, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 1.09						
Intersection Signal Delay: 67.5				Intersection LOS: E		
Intersection Capacity Utilization 99.4\%				ICU Level of Service F		

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3:

			4		\checkmark
Lane Group EBL	EBR	NBL	NBT	SBT	SBR
Turn Bay Length (m)					
Base Capacity (vph) 611			1484	1637	
Starvation Cap Reductn			0	765	
Spillback Cap Reductn			112	0	
Storage Cap Reductn			0	0	
Reduced v/c Ratio 0.65			0.44	0.85	
Intersection Summary					
Area Type: Other					
Cycle Length: 50					
Actuated Cycle Length: 50					
Offset: 45 (90\%), Referenced to phase 2:NBSB, Start of 1st Green					
Control Type: Pretimed					
Maximum v/c Ratio: 0.65					
Intersection Signal Delay: 13.1			Intersection LOS: B		
Intersection Capacity Utilization 63.3\%			ICU Level of Service B		
Analysis Period (min) 15					
m Volume for 95 th percentile queue is metered by upstream signal.					

Splits and Phases: 3:

	4		4			\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*/			¢4	中 ${ }^{\text {a }}$	
Traffic Volume (vph)	371	21	29	565	615	116
Future Volume (vph)	371	21	29	565	615	116
Satd. Flow (prot)	1786	0	0	3571	3493	0
Flt Permitted	0.955			0.894		
Satd. Flow (perm)	1786	0	0	3199	3493	0
Satd. Flow (RTOR)	6				58	
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)	0\%			0\%	0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	426	0	0	646	794	0
Turn Type	Perm		Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4		2			
Total Split (s)	22.0		28.0	28.0	28.0	
Total Lost Time (s)	5.0			5.0	5.0	
Act Effct Green (s)	17.0			23.0	23.0	
Actuated g/C Ratio	0.34			0.46	0.46	
v/c Ratio	0.70			0.44	0.48	
Control Delay	21.9			10.3	9.5	
Queue Delay	0.0			0.1	5.8	
Total Delay	21.9			10.4	15.2	
LOS	C			B	B	
Approach Delay	21.9			10.4	15.2	
Approach LOS	C			B	B	
Queue Length 50th (m)	31.4			18.8	27.4	
Queue Length 95th (m)	\#65.5			29.2	m34.3	
Internal Link Dist (m)	240.8			282.1	29.7	
Turn Bay Length (m)						
Base Capacity (vph)	611			1471	1638	
Starvation Cap Reductn	0			0	774	
Spillback Cap Reductn	0			128	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	0.70			0.48	0.92	
Intersection Summary						
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 45 (90\%), Referenced to phase 2:NBTL, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 0.70						
Intersection Signal Delay: 15.1				Intersection LOS: B		
Intersection Capacity Utilization 67.3\%				ICU Level of Service C		

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3:

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3:

	4		4			\downarrow
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*/			¢4	中 ${ }^{\text {a }}$	
Traffic Volume (vph)	410	24	32	624	680	128
Future Volume (vph)	410	24	32	624	680	128
Satd. Flow (prot)	1786	0	0	3571	3493	0
Flt Permitted	0.955			0.885		
Satd. Flow (perm)	1786	0	0	3167	3493	0
Satd. Flow (RTOR)	6				57	
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)	0\%			0\%	0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	472	0	0	713	878	0
Turn Type	Perm		Perm	NA	NA	
Protected Phases				2	6	
Permitted Phases	4		2			
Total Split (s)	22.0		28.0	28.0	28.0	
Total Lost Time (s)	5.0			5.0	5.0	
Act Effct Green (s)	17.0			23.0	23.0	
Actuated g/C Ratio	0.34			0.46	0.46	
v/c Ratio	0.77			0.49	0.54	
Control Delay	25.9			10.9	10.2	
Queue Delay	0.2			0.0	25.7	
Total Delay	26.1			10.9	35.9	
LOS	C			B	D	
Approach Delay	26.1			10.9	35.9	
Approach LOS	C			B	D	
Queue Length 50th (m)	36.1			21.5	32.2	
Queue Length 95th (m)	\#76.6			33.0	m38.9	
Internal Link Dist (m)	240.8			282.1	29.7	
Turn Bay Length (m)						
Base Capacity (vph)	611			1456	1637	
Starvation Cap Reductn	0			0	787	
Spillback Cap Reductn	8			21	0	
Storage Cap Reductn	0			0	0	
Reduced v/c Ratio	0.78			0.50	1.03	
Intersection Summary						
Cycle Length: 50						
Actuated Cycle Length: 50						
Offset: 45 (90\%), Referenced to phase 2:NBTL, Start of 1st Green						
Control Type: Pretimed						
Maximum v/c Ratio: 0.77						
Intersection Signal Delay: 25.0				Intersection LOS: C		
Intersection Capacity Utilization 73.5\%				ICU Level of Service D		

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 3:

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		\uparrow			\uparrow
Traffic Vol, veh/h	3	1	178	2	6	463
Future Vol, veh/h	3	1	178	2	6	463
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	3	1	193	2	7	503

Intersection						
Int Delay, s/veh 0.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		F			\uparrow
Traffic Vol, veh/h	3	1	191	2	6	496
Future Vol, veh/h	3	1	191	2	6	496
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	3	1	208	2	7	539

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		1			
Traffic Vol, veh/h	3	1	201	2	6	522
Future Vol, veh/h	3	1	201	2	6	522
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	3	1	218	2	7	567

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		1		-1	
Traffic Vol, veh/h	3	1	211	2	6	548
Future Vol, veh/h	3	1	211	2	6	548
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	3	1	229	2	7	596

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		6		4	
Traffic Vol, veh/h	5	5	861	4	4	763
Future Vol, veh/h	5	5	861	4	4	763
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	5	936	4	4	829

Intersection						
Int Delay, s/veh 0.3						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		F			\uparrow
Traffic Vol, veh/h	5	5	905	4	4	802
Future Vol, veh/h	5	5	905	4	4	802
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	5	984	4	4	872

Intersection							
Int Delay, s/veh	0.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	1	1		-1			
Traffic Vol, veh/h	2	2	226	1	2	313	
Future Vol, veh/h	2	2	226	1	2	313	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	0	-	-	0	
Grade, \%	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	2	2	246	1	2	340	

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F			\uparrow
Traffic Vol, veh/h	2	2	242	1	2	336
Future Vol, veh/h	2	2	242	1	2	336
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	2	2	263	1	2	365

Intersection							
Int Delay, s/veh	0.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	1	1		-1			
Traffic Vol, veh/h	2	2	255	1	2	353	
Future Vol, veh/h	2	2	255	1	2	353	
Conflicting Peds, \#/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, \#	0	-	0	-	-	0	
Grade, \%	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	
Mvmt Flow	2	2	277	1	2	384	

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	* ${ }^{\prime}$		\uparrow			\uparrow
Traffic Vol, veh/h	2	2	268	1	2	371
Future Vol, veh/h	2	2	268	1	2	371
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	St	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	2	291	1	2	403

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.2$						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	$\hat{\beta}$		M	
Traffic Vol, veh/h	1	132	130	1	3	2
Future Vol, veh/h	1	132	130	1	3	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	143	141	1	3	2

Intersection						
Int Delay, s/veh	0.2					
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	\uparrow		M	
Traffic Vol, veh/h	1	142	139	1	3	2
Future Vol, veh/h	1	142	139	1	3	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1	154	151	1	3	2

Intersection						
Int Delay, s/veh	0.2					
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	\uparrow		M	
Traffic Vol, veh/h	1	149	146	1	3	2
Future Vol, veh/h	1	149	146	1	3	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1	162	159	1	3	2

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.2$						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	$\hat{\dagger}$		M	
Traffic Vol, veh/h	1	156	154	1	3	2
Future Vol, veh/h	1	156	154	1	3	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	170	167	1	3	2

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection						
Int Delay, s/veh						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	$\hat{\beta}$		M	
Traffic Vol, veh/h	5	762	134	1	3	1
Future Vol, veh/h	5	762	134	1	3	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	828	146	1	3	1

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.2$						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow			M	
Traffic Vol, veh/h	3	192	77	1	3	1
Future Vol, veh/h	3	192	77	1	3	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	3	209	84	1	3	1

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.2$						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	$\hat{\beta}$		M	
Traffic Vol, veh/h	3	202	81	1	3	1
Future Vol, veh/h	3	202	81	1	3	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	3	220	88	1		1

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	2	161	128	32	14	3
Future Vol, veh/h	2	161	128	32	14	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	175	139	35	15	3

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.5$						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	$\hat{\dagger}$		M	
Traffic Vol, veh/h	2	173	137	32	14	3
Future Vol, veh/h	2	173	137	32	14	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	188	149	35	15	3

Intersection						
Int Delay, s/veh	0.5					
Movement		EBL	EBT	WBT	WBR	SBL
Lane Configurations		A	1		SBR	
Traffic Vol, veh/h	2	181	144	32	14	
Future Vol, veh/h	2	181	144	32	14	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, $\%$	2	2	2	2	2	2
Mvmt Flow	2	197	157	35	15	3

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.6$						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	$\hat{1}$		M	
Traffic Vol, veh/h	2	558	114	20	28	0
Future Vol, veh/h	2	558	114	20	28	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	607	124	22	30	0

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

IntersectionInt Delay, s/veh						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		M	
Traffic Vol, veh/h	0	192	75	16	12	3
Future Vol, veh/h	0	192	75	16	12	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	209	82	17	13	3

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		M	
Traffic Vol, veh/h	0	212	83	16	12	3
Future Vol, veh/h	0	212	83	16	12	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	230	90	17	13	3

HCM 2010 TWSC
43: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh	63.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	164		126		4	4
Traffic Vol, veh/h	164	63	64	329	458	
Future Vol, veh/h	164	126	63	64	329	458
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	178	137	68	70	358	498

HCM 2010 TWSC
43: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh 100	100.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\$		F		${ }^{7}$	4
Traffic Vol, veh/h	176	135	68	69	352	491
Future Vol, veh/h	176	135	68	69	352	491
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	191	147	74	75	383	534

HCM 2010 TWSC
43: Rothesay Ave \& Rothesay Rd

HCM 2010 TWSC
43: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh 178.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F		${ }^{1}$	4
Traffic Vol, veh/h	194	149	75	76	389	542
Future Vol, veh/h	194	149	75	76	389	542
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	211	162	82	83	423	589

Major/Minor	Minor				Major1		Major2		
Conflicting Flow All	151		82		0	-	82	0	
Stage 1	8		-		-	-	-	-	
Stage 2	143		-		-	-	-	-	
Critical Hdwy	6.4		6.22		-	-	4.12	-	
Critical Hdwy Stg 1	5.4		-		-	-	-	-	
Critical Hdwy Stg 2	5.4		-		-	-	-	-	
Follow-up Hdwy	3.51		3.318		-	-	2.218	-	
Pot Cap-1 Maneuver	~ 13		978		-	0	1515	-	
Stage 1	94		-		-	0	-	-	
Stage 2	21		-		-	0	-	-	
Platoon blocked, \%					-			-	
Mov Cap-1 Maneuver	~ 9		978		-	-	1515	-	
Mov Cap-2 Maneuver	~ 9		-		-	-	-	-	
Stage 1	94		-		-	-	-	-	
Stage 2	~ 15		-		-	-	-	-	
Approach	W				NB		SB		
HCM Control Delay, s	\$ 69				0		3.5		
HCM LOS									
Minor Lane/Major Mvmt		BLn1	SBL	SBT					
Capacity (veh/h)		156	1515	-					
HCM Lane V/C Ratio		2.39	0.279	-					
HCM Control Delay (s)		\$ 691	8.3	-					
HCM Lane LOS		F	A	-					
HCM 95th \%tile Q(veh)		31.5	1.2	-					
Notes									
\sim Volume exceeds cap	\$: Delay exceeds 300s				+: Computation Not Defined		*: All major volume in platoon		

HCM 2010 TWSC
44: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		\uparrow		${ }^{7}$	4
Traffic Vol, veh/h	88	363	445	75	422	140
Future Vol, veh/h	88	363	445	75	422	140
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	96	395	484	82	459	152

HCM 2010 TWSC
44: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh	225.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	T		1		4	4
Traffic Vol, veh/h	95	390	477	80	453	150
Future Vol, veh/h	95	390	477	80	453	150
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	103	424	518	87	492	163

HCM 2010 TWSC
44: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh	310.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		1		4	4
Traffic Vol, veh/h	99	409	502	84	476	157
Future Vol, veh/h	99	409	502	84	476	157
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	108	445	546	91	517	171

HCM 2010 TWSC
44: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh 411.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		F		${ }^{1}$	4
Traffic Vol, veh/h	104	430	527	88	500	165
Future Vol, veh/h	104	430	527	88	500	165
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	113	467	573	96	543	179

Major/Minor	Minor1			Major1		Major2		
Conflicting Flow All	1839	573		0	-	573	0	
Stage 1	573	-		-	-	-	-	
Stage 2	1266	-		-	-	-	-	
Critical Hdwy	6.42	6.22		-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-		-	-	-	-	
Critical Hdwy Stg 2	5.42	-		-	-	-	-	
Follow-up Hdwy	3.518	3.318		-	-	2.218	-	
Pot Cap-1 Maneuver	~ 83	519		-	0	1000	-	
Stage 1	564	-		-	0	-	-	
Stage 2	265	-		-	0	-	-	
Platoon blocked, \%				-			-	
Mov Cap-1 Maneuver	~ 38	519		-	-	1000	-	
Mov Cap-2 Maneuver	~ 38	-		-	-	-	-	
Stage 1	564	-		-	-	-	-	
Stage 2	121	-		-	-	-	-	
Approach	WB			NB		SB		
HCM Control Delay, s	\$ 1316.9			0		9.6		
HCM LOS	F							
Minor Lane/Major Mvmt	NBTWBLn1	SBL	SBT					
Capacity (veh/h)	- 153	1000	-					
HCM Lane V/C Ratio	- 3.794	0.543	-					
HCM Control Delay (s)	\$1316.9	12.8	-					
HCM Lane LOS	- F	B	-					
HCM 95th \%tile Q(veh)	- 57.2	3.4	-					
$\frac{\text { Notes }}{\sim}$ Volume exceeds capacity $\quad \$$. Delay exceeds 300s + Computation Not Defined * All major volume in platoon								

HCM 2010 TWSC
43: Rothesay Ave \& Rothesay Rd

Intersection						
Int Delay, s/veh 77.8						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		\uparrow		*	4
Traffic Vol, veh/h	258	178	66	99	291	69
Future Vol, veh/h	258	178	66	99	291	69
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	280	193	72	108	316	75

Intersection						
Int Delay, s/veh 85						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		\uparrow		*	4
Traffic Vol, veh/h	272	187	70	104	305	72
Future Vol, veh/h	272	187	70	104	305	72
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Stop	-	Free	-	None
Storage Length	0	-	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	296	203	76	113	332	78

Intersection						
Int Delay, s/veh 4.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「		\uparrow	\uparrow	
Traffic Vol, veh/h	22	161	108	80	308	60
Future Vol, veh/h	22	161	108	80	308	60
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	800	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	24	175	117	87	335	65

Intersection						
Int Delay, s/veh 4.5						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「		\uparrow	\uparrow	
Traffic Vol, veh/h	24	173	116	86	330	64
Future Vol, veh/h	24	173	116	86	330	64
Conflicting Peds, \#hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	800	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	26	188	126	93	359	70

Intersection						
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「		\uparrow	\uparrow	
Traffic Vol, veh/h	26	191	128	95	365	71
Future Vol, veh/h	26	191	128	95	365	71
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	800	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	28	208	139	103	397	77

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		*			*			\&	
Traffic Vol, veh/h	112	1	575	1	0	2	128	281	5	0	155	18
Future Vol, veh/h	112	1	575	1	0	2	128	281	5	0	155	18
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	800	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	122	1	625	1	0	2	139	305	5	0	168	20

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\$			\&			\&	
Traffic Vol, veh/h	117	1	604	1	0	2	134	295	5	0	163	19
Future Vol, veh/h	117	1	604	1	0	2	134	295	5	0	163	19
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	800	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	127	1	657	1	0	2	146	321	5	0	177	21

Major/Minor	Minor2		Minor1					Major1			Major2			
Conflicting Flow All	804	805	188		803	813	323		198	0	0	326	0	0
Stage 1	188	188	-		615	615	-		-	-	-	-	-	-
Stage 2	616	617	-		188	198	-		-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	301	316	854		302	313	718		1375	-	-	1234	-	-
Stage 1	814	745	-		479	482	-		-	-	-	-	-	
Stage 2	478	481	-		814	737	-		-	-	-	-	-	
Platoon blocked, \%										-	-		-	
Mov Cap-1 Maneuver	270	275	854		63	272	718		1375	-	-	1234	-	
Mov Cap-2 Maneuver	270	275	-		63	272	-		-	-	-	-	-	
Stage 1	708	745	-		417	419	-		-	-	-	-	-	
Stage 2	415	418	-		188	737	-		-	-	-	-	-	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	23				27.8				2.4			0		
HCM LOS	C				D									
Minor Lane/Major Mvmt	NBL	NBT	NBR	BLn1	EBLn2	NBLn1	SBL	SBT	SBR					
Capacity (veh/h)	1375	-	-	270	854	161	1234	-	-					
HCM Lane V/C Ratio	0.106	-	-	0.475	0.769	0.02	-	-	-					
HCM Control Delay (s)	7.9	0	-	29.8	21.7	27.8	0	-	-					
HCM Lane LOS	A	A	-	D	C	D	A	-	-					
HCM 95th \%tile Q(veh)	0.4	-	-	2.4	7.6	0.1	0	-	-					

Intersection												
Int Delay, s/veh 15.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\&			\&			\uparrow	
Traffic Vol, veh/h	123	1	635	1	0	2	141	310	5	0	172	20
Future Vol, veh/h	123	1	635	1	0	2	141	310	5	0	172	20
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	800	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	134	1	690	1	0	2	153	337	5	0	187	22

Intersection						
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「		\uparrow	\uparrow	
Traffic Vol, veh/h	49	155	59	159	158	21
Future Vol, veh/h	49	155	59	159	158	21
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	800	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	53	168	64	173	172	23

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「		\uparrow	个	
Traffic Vol, veh/h	55	175	66	179	178	24
Future Vol, veh/h	55	175	66	179	178	24
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	St	None	-	None	-	None
Storage Length	0	800	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	60	190	72	195	193	26

Intersection						
Int Delay, s/veh	4.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「		\uparrow	\uparrow	
Traffic Vol, veh/h	58	184	70	188	187	25
Future Vol, veh/h	58	184	70	188	187	25
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	800	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	63	200	76	204	203	27

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{}$			\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	71	350	0	298	0	0	0	0	0	800	24
Future Volume (Veh/h)	0	71	350	0	298	0	0	0	0	0	800	24
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	77	380	0	324	0	0	0	0	0	870	26
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	1032	870	870	908	870	0	870			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	1032	870	870	908	870	0	870			0		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	73	0	0	0	100	100			100		
cM capacity (veh/h)	0	290	351	0	290	1085	775			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	457	324	870	26								
Volume Left	0	0	0	0								
Volume Right	380	0	0	26								
cSH	339	290	1700	1700								
Volume to Capacity	1.35	1.12	0.51	0.02								
Queue Length 95th (m)	170.4	101.6	0.0	0.0								
Control Delay (s)	206.4	127.5	0.0	0.0								
Lane LOS	F	F										
Approach Delay (s)	206.4	127.5	0.0									
Approach LOS	F	F										
Intersection Summary												
Average Delay			80.9									
Intersection Capacity Utilization			74.1\%	ICU Level of Service					D			
Analysis Period (min)			15									

	4	\rightarrow	\checkmark	7		4	4	\dagger	\%		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			4						4	「
Traffic Volume (veh/h)	0	227	332	0	515	0	0	0	0	0	282	9
Future Volume (Veh/h)	0	227	332	0	515	0	0	0	0	0	282	9
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	247	361	0	560	0	0	0	0	0	307	10
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	587	307	307	430	307	0	307			0		
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	587	307	307	430	307	0	307			0		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	59	51	100	8	100	100			100		
cM capacity (veh/h)	81	607	733	185	607	1085	1254			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	608	560	307	10								
Volume Left	0	0	0	0								
Volume Right	361	0	0	10								
cSH	676	607	1700	1700								
Volume to Capacity	0.90	0.92	0.18	0.01								
Queue Length 95th (m)	87.0	90.1	0.0	0.0								
Control Delay (s)	39.4	46.1	0.0	0.0								
Lane LOS	E	E										
Approach Delay (s)	39.4	46.1	0.0									
Approach LOS	E	E										
Intersection Summary												
Average Delay			33.5									
Intersection Capacity Utilization			53.8\%		CU Level	Service			A			
Analysis Period (min)			15									

	4			\downarrow			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{}$			\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	73	290	0	433	0	0	0	0	0	720	13
Future Volume (Veh/h)	0	73	290	0	433	0	0	0	0	0	720	13
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	,	79	315	0	471	0	0	0	0	0	783	14
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	1018	783	783	822	783	0	783			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1018	783	783	822	783	0	783			0		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	76	20	100	0	100	100			100		
cM capacity (veh/h)	0	325	394	48	325	1085	835			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	394	471	783	14								
Volume Left	0	0	0	0								
Volume Right	315	0	0	14								
cSH	378	325	1700	1700								
Volume to Capacity	1.04	1.45	0.46	0.01								
Queue Length 95th (m)	100.4	191.6	0.0	0.0								
Control Delay (s)	91.7	248.4	0.0	0.0								
Lane LOS	F	F										
Approach Delay (s)	91.7	248.4	0.0									
Approach LOS	F	F										
Intersection Summary												
Average Delay			92.1									
Intersection Capacity Utilization			67.4\%	ICU Level of Service					C			
Analysis Period (min)			15									

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{\square}$			\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	78	311	0	464	0	0	0	0	0	772	14
Future Volume (Veh/h)	0	78	311	0	464	0	0	0	0	0	772	14
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	85	338	0	504	0	0	0	0	0	839	15
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	1091	839	839	882	839	0	839			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	1091	839	839	882	839	0	839			0		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	72	8	100	0	100	100			100		
cM capacity (veh/h)	0	302	366	16	302	1085	796			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	423	504	839	15								
Volume Left	0	0	0	0								
Volume Right	338	0	0	15								
cSH	351	302	1700	1700								
Volume to Capacity	1.21	1.67	0.49	0.01								
Queue Length 95th (m)	136.0	237.8	0.0	0.0								
Control Delay (s)	149.5	345.3	0.0	0.0								
Lane LOS	F	F										
Approach Delay (s)	149.5	345.3	0.0									
Approach LOS	F	F										
Intersection Summary												
Average Delay			133.2									
Intersection Capacity Utilization			71.7\%	ICU Level of Service					C			
Analysis Period (min)			15									

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{\square}$			\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	82	327	0	488	0	0	0	0	0	811	15
Future Volume (Veh/h)	0	82	327	0	488	0	0	0	0	0	811	15
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	89	355	0	530	0	0	0	0	0	882	16
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	1147	882	882	926	882	0	882			0		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	1147	882	882	926	882	0	882			0		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	69	0	0	0	100	100			100		
cM capacity (veh/h)	0	285	345	0	285	1085	767			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	444	530	882	16								
Volume Left	0	0	0	0								
Volume Right	355	0	0	16								
cSH	331	285	1700	1700								
Volume to Capacity	1.34	1.86	0.52	0.01								
Queue Length 95th (m)	165.3	274.5	0.0	0.0								
Control Delay (s)	203.8	430.0	0.0	0.0								
Lane LOS	F	F										
Approach Delay (s)	203.8	430.0	0.0									
Approach LOS	F	F										
Intersection Summary												
Average Delay			170.1									
Intersection Capacity Utilization			75.0\%	ICU Level of Service					D			
Analysis Period (min)			15									

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\hat{\square}$			\uparrow						\uparrow	F
Traffic Volume (veh/h)	0	86	343	0	513	0	0	0	0	0	853	15
Future Volume (Veh/h)	0	86	343	0	513	0	0	0	0	0	853	15
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	93	373	0	558	0	0	0	0	0	927	16
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	1206	927	927	974	927	0	927			0		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	1206	927	927	974	927	0	927			0		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	65	0	0	0	100	100			100		
cM capacity (veh/h)	0	268	325	0	268	1085	737			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	466	558	927	16								
Volume Left	0	0	0	0								
Volume Right	373	0	0	16								
cSH	312	268	1700	1700								
Volume to Capacity	1.49	2.08	0.55	0.01								
Queue Length 95th (m)	197.4	313.7	0.0	0.0								
Control Delay (s)	269.2	528.9	0.0	0.0								
Lane LOS	F	F										
Approach Delay (s)	269.2	528.9	0.0									
Approach LOS	F	F										
Intersection Summary												
Average Delay			213.8									
Intersection Capacity Utilization			78.6\%	ICU Level of Service					D			
Analysis Period (min)			15									

	4			\dagger				\dagger				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow						\uparrow				
Traffic Volume (veh/h)	0	202	0	0	0	0	0	457	0	0	0	0
Future Volume (Veh/h)	0	202	0	0	0	0	0	457	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	220	0	0	0	0	0	497	0	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	497	497	0	607	497	497	0			497		
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	497	497	0	607	497	497	0			497		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	54	100	100	100	100	100			100		
cM capacity (veh/h)	483	475	1085	260	475	573	1623			1067		
Direction, Lane \#	EB 1	NB 1										
Volume Total	220	497										
Volume Left	0	0										
Volume Right	0	0										
cSH	475	1700										
Volume to Capacity	0.46	0.29										
Queue Length 95th (m)	18.3	0.0										
Control Delay (s)	19.0	0.0										
Lane LOS	C											
Approach Delay (s)	19.0	0.0										
Approach LOS	C											
Intersection Summary												
Average Delay			5.8									
Intersection Capacity Utilization			41.4\%		U Level	Service			A			
Analysis Period (min)			15									

	4			\dagger				4				\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow						\uparrow				
Traffic Volume (veh/h)	0	239	0	0	0	0	0	541	0	0	0	0
Future Volume (Veh/h)	0	239	0	0	0	0	0	541	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	260	0	0	0	0	0	588	0	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	588	588	0	718	588	588	0			588		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	588	588	0	718	588	588	0			588		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	38	100	100	100	100	100			100		
cM capacity (veh/h)	421	421	1085	174	421	509	1623			987		
Direction, Lane \#	EB 1	NB 1										
Volume Total	260	588										
Volume Left	0	0										
Volume Right	0	0										
cSH	421	1700										
Volume to Capacity	0.62	0.35										
Queue Length 95th (m)	30.6	0.0										
Control Delay (s)	26.4	0.0										
Lane LOS	D											
Approach Delay (s)	26.4	0.0										
Approach LOS	D											
Intersection Summary												
Average Delay			8.1									
Intersection Capacity Utilization			47.7\%		U Level	Service			A			
Analysis Period (min)			15									

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow						\uparrow				
Traffic Volume (veh/h)	0	78	0	0	0	0	0	464	0	0	0	0
Future Volume (Veh/h)	0	78	0	0	0	0	0	464	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	85	0	0	0	0	0	504	0	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	504	504	0	546	504	504	0			504		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	504	504	0	546	504	504	0			504		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	82	100	100	100	100	100			100		
cM capacity (veh/h)	478	470	1085	386	470	568	1623			1061		
Direction, Lane \#	EB 1	NB 1										
Volume Total	85	504										
Volume Left	0	0										
Volume Right	0	0										
cSH	470	1700										
Volume to Capacity	0.18	0.30										
Queue Length 95th (m)	5.0	0.0										
Control Delay (s)	14.3	0.0										
Lane LOS	B											
Approach Delay (s)	14.3	0.0										
Approach LOS	B											
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilization			35.2\%	ICU Level of Service					A			
Analysis Period (min)			15									

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow						\uparrow				
Traffic Volume (veh/h)	0	82	0	0	0	0	0	488	0	0	0	0
Future Volume (Veh/h)	0	82	0	0	0	0	0	488	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	89	0	0	0	0	0	530	0	0	0	0
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	530	530	0	574	530	530	0			530		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	530	530	0	574	530	530	0			530		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	80	100	100	100	100	100			100		
cM capacity (veh/h)	460	455	1085	365	455	549	1623			1037		
Direction, Lane \#	EB 1	NB 1										
Volume Total	89	530										
Volume Left	0	0										
Volume Right	0	0										
cSH	455	1700										
Volume to Capacity	0.20	0.31										
Queue Length 95th (m)	5.5	0.0										
Control Delay (s)	14.8	0.0										
Lane LOS	B											
Approach Delay (s)	14.8	0.0										
Approach LOS	B											
Intersection Summary												
Average Delay			2.1									
Intersection Capacity Utilization			36.7\%	ICU Level of Service					A			
Analysis Period (min)			15									

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	514	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$151 \quad \mathrm{vph}$
300 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{V}$	628	4600	No
Fi F			
v	628	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	459	4600	No
FO F R			
v	169	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	551	vph

	Off Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-Flow speed on ramp	60.0	vph
Volume on ramp	162	m
Length of first accel/decel lane	300	m
Length of second accel/decel lane		

Does adjacent ramp exist?
Volume on adjacent ramp
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp

No
vph

\qquad

Capacity Checks

			Actual	Maximum	LOS F?
$\begin{gathered} \mathrm{V} \\ \mathrm{Fi} \end{gathered}$			673	4600	No
v			673	4400	No
12					
v FO $=$	v -	v	491	4600	No
	F	R			
v ${ }_{\text {R }}$			182	2000	No

Level of Service Determination (if not F) \qquad

Density,	$\mathrm{D}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L}$	$=0.7 \mathrm{D}$	$\mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence A			

Speed Estimation \qquad

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	579	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$170 \quad$ vph
300 m
m

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

Capacity Checks \qquad

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	609	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$179 \quad$ vph
300 m
m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	744	4600	No
Fi F			
v	744	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	543	4600	No
FO F R			
V	201	2000	No
R			


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Eastbond
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Cross	ng

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	2587

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	646	vph
Length of first accel/decel lane	280	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	3887	4600	No
FO	3887	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=18.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	2774

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	692	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	4167	4600	No
V	4167	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=19.6 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2916	vph

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	728	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	4381	4600	No
FO	4381	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=20.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3498	vph

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	782	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad
v
Actual
5153
5153
Maximum
4600
4600

LOS F?
Yes
FO
v
5153
4600
Yes
R12
Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=24.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence F
Speed Estimation

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2464	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$583 \quad \mathrm{vph}$
300 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3012	4600	No
Fi F			
v	3012	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2358	4600	No
FO F R			
v	654	2000	No
R			

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L} \quad=13.1 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C

Speed Estimation \qquad

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2642	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$625 \quad \mathrm{vph}$
300 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3229	4600	No
Fi F			
v	3229	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2528	4600	No
FO F R			
v	701	2000	No
R			

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2776	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$657 \quad \mathrm{vph}$
300 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3393	4600	No
Fi F			
v	3393	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2656	4600	No
FO F R			
v	737	2000	No
R			

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L} \quad=15.1 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C

Speed Estimation
Intermediate speed variable,
Space mean speed in ramp influence area,
Space mean speed in outer lanes,
Space mean speed for all vehicles,

D	$=0.469$	
S		
S	$=84.5$	$\mathrm{~km} / \mathrm{h}$
R		
S	$=\mathrm{N} / \mathrm{A}$	km / h
0		
S	$=84.5$	$\mathrm{~km} / \mathrm{h}$

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2919	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Length of first accel/decel lane
Length of second accel/decel lane
$690 \quad \mathrm{vph}$
300 m
Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
m
m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3568	4600	No
Fi F			
v	3568	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2794	4600	No
FO F R			
v	774	2000	No
R			


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	EB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	839

On Ramp Data

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 291
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$291 \quad v p h$
280 m
m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent Ramp
No

Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	1352	4600	No
V 12	1352	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	899

On Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$312 \quad v p h$
280 m
m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent Ramp
No

Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1449	4600	No
FO	1449	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	945	vph

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	328	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1523	4600	No
FO	1523	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=7.0 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	993

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	344	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1600	4600	No
FO	1600	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=7.4 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	691

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$234 \quad \mathrm{vph}$
230 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks \qquad

$\mathrm{V}_{\mathrm{Fi}}=\mathrm{v}$		Actual	Maximum	LOS F?
		845	4600	No
v 12		845	4400	No
$\begin{aligned} & \mathrm{V}=\mathrm{V}-\mathrm{V} \\ & \mathrm{FO} \quad \mathrm{~F} \quad \mathrm{R} \end{aligned}$		582	4600	No
		263	2000	No
${ }^{\mathrm{v}} \mathrm{R}$				

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Intermediate speed variable,	$\mathrm{D}_{\mathrm{S}}=0.427$	
Space mean speed in ramp influence area,	$\underset{R}{S}=85.9$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=85.9$	km/h

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	741	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$251 \quad \mathrm{vph}$
230 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	779	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
$264 \quad v p h$
230 m
Right
1
1
$60.0 \mathrm{~km} / \mathrm{h}$
m

Length of first accel/decel lane
Length of second accel/decel lane
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks \qquad

$\mathrm{V}_{\mathrm{Fi}}=\mathrm{v}$		Actual	Maximum	LOS F?
		952	4600	No
v 12		952	4400	No
$\begin{aligned} & \mathrm{v}=\mathrm{v}-\mathrm{v} \\ & \mathrm{FO} \quad \mathrm{~F} \quad \mathrm{R} \end{aligned}$		656	4600	No
		296	2000	No
${ }_{\mathrm{V}}^{\mathrm{R}}$				

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	819	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$277 \quad$ vph
230 m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	1001	4600	No
Fi F			
v	1001	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	690	4600	No
FO F R			
v	311	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	451

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	345	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	938	4600	No
FO			
V12	938	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=4.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence A
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	483

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	370	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1005	4600	No
FO	1005	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=4.5 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence A
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	508

On Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 389
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$389 \quad v p h$
280 m
m
\qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
No

Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1058	4600	No
FO	1058	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=4.8 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence A
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Sat
Freeway/Dir of Travel:	WB
Junction:	Rte 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	534

On Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp 409
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$409 \quad$ vph
280 m
m

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
No

Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
m

\qquad

Capacity Checks \qquad
v
Actual
Maximum
LOS F? 4600

No
FO
v
1112
4600
No
R12
Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=5.1 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence A
Speed Estimation

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	$1 / 17 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2587	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$769 \quad$ vph
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3162	4600	No
Fi F			
v	3162	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2299	4600	No
FO F R			
v	863	2000	No
R			

Level of Service Determination (if not F) \qquad

Density,	$\mathrm{D}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L} \quad=\quad 15.0 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence	C

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	$1 / 17 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2774	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$824 \quad \mathrm{vph}$
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3390	4600	No
Fi F			
v	3390	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2465	4600	No
FO F R			
v	925	2000	No
R			

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L} \quad=16.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C

Speed Estimation

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	$1 / 17 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2916	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$866 \quad v p h$
240 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3564	4600	No
Fi F			
v	3564	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2592	4600	No
FO F R			
v	972	2000	No
R			

Speed Estimation

Intermediate speed variable,	$\mathrm{D}_{\mathrm{S}}=0.490$	
Space mean speed in ramp influence area,	$\underset{R}{S}=83.8$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=83.8$	km/h

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	$1 / 17 / 2017$
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3065	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$910 \quad \mathrm{vph}$
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3746	4600	No
Fi F			
v	3746	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2725	4600	No
FO F R			
v	1021	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.: Analysis____	exp
Date performed:	$1 / 17 / 2017$
Analysis time period:	AM
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	514

On Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
217 vph
150 m
m

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent Ramp
No

Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp
m

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	872	4600	No
FO	872	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=5.6 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence A
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp Analysis____
Date performed:	$1 / 17 / 2017$
Analysis time period:	AM
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	551

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	233	vph
Length of first accel/decel lane	150	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	934	4600	No
FO	934	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=5.9 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence A
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	AM
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	579

	Ren Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	245	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	983	4600	No
FO	983	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.1 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	AM
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	609

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	257	vph
Length of first accel/decel lane	150	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad
v
Actual

Maximum
LOS F? 4600

No

1032
4600
No
v
R12

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=6.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	839	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Length of first accel/decel lane
Length of second accel/decel lane
258 vph

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$258 \quad \mathrm{vph}$
240 m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	1025	4600	No
Fi F			
v	1025	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	735	4600	No
FO F R			
v	290	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route lo0 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	899	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$

277 vph
240 m

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	1099	4600	No
Fi F			
v	1099	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	788	4600	No
FO F R			
v	311	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	945	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$291 \quad \mathrm{vph}$
240 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		m

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	1155	4600	No
Fi F			
v	1155	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	828	4600	No
FO F R			
v	327	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	993	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$306 \quad$ vph
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	1214	4600	No
Fi F			
v	1214	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	871	4600	No
FO F R			
v	343	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	2464

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	709	vph
Length of first accel/decel lane	150	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	3808	4600	No
FO	3808	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=19.6 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	2642

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	760	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	4082	4600	No
V	4082	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=20.9 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2776	vph

Side of freeway	Ramp	
Number of lanes in ramp	Right	
Free-flow speed on ramp	1	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	60.0	vph
Length of first accel/decel lane	799	m
Length of second accel/decel lane	150	m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	4290	4600	No
FO	4290	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=21.9 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	Westbond
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	2919

	Rata__On Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	839	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	4510	4600	No
FO	4510	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=22.9 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence E
Speed Estimation

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	451	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
733 vph
240 m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	551	4600	No
Fi F			
v	551	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	-272	4600	No
FO F R			
v	823	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	483	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$786 \quad \mathrm{vph}$
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	590	4600	No
Fi F			
v	590	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	-292	4600	No
FO F R			
v	882	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	508	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$826 \quad \mathrm{vph}$
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks \qquad

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	534	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$868 \quad \mathrm{vph}$
240 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	653	4600	No
Fi F			
v	653	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	-321	4600	No
FO F R			
v	974	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	K Hazzard
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	691

	Rata__On Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	756	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1693	4600	No
FO			
R12	1693	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=9.4 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	741

Side of freeway	Ramp	
Number of lanes in ramp	Right	
Free-flow speed on ramp	1	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	60.0	vph
Length of first accel/decel lane	811	m
Length of second accel/decel lane	150	m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

0.909	0.990
1.00	1.00
906	910

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	1816	4600	No
V			
R12	1816	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=10.0 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation \qquad

Intermediate speed variable,	$\mathrm{M}_{\mathrm{S}}=0.309$	
Space mean speed in ramp influence area,	$\underset{R}{S}=89.8$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles	$\mathrm{S}=89.8$	km/h

```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:_	Westbond
Junction:	Route loo On Ramp
Jurisdiction:	Provincial
Analysis Year:	2028
Description: The Crossing	

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	km/h
Volume on freeway	779	vph
On Ramp Data		
Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	852	vph
Length of first accel/decel lane	150	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	1908	4600	No
FO	1908	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=10.4 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Sat
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	819

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	895	m
Length of first accel/decel lane	150	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad
v
Actual 2005

2005
v
R12

Maximum	LOS F?
4600	No
4600	No

Level of Service Determination (if not F) \qquad

Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=10.9 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence B
Speed Estimation \qquad

Intersection												
Int Delay, s/veh 15.1												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\&			\$			\$	
Traffic Vol, veh/h	0	15	3	8	0	129	759	19	2	10	113	1
Future Vol, veh/h	0	15	3	8	0	129	759	19	2	10	113	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	3	9	0	140	825	21	2	11	123	1

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\ddagger			*			\&	
Traffic Vol, veh/h	1	2	5	1	0	98	210	13	2	1	159	3
Future Vol, veh/h	1	2	5	1	0	98	210	13	2	1	159	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	2	5	1	0	107	228	14	2	1	173	3

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\uparrow	「		*			*	
Traffic Vol, veh/h	0	15	3	8	0	129	759	19	2	10	113	1
Future Vol, veh/h	0	15	3	8	0	129	759	19	2	10	113	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	750	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	3	9	0	140	825	21	2	11	123	1

Intersection												
Int Delay, s/veh												
Movement	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations		*			\uparrow	「		*			\&	
Traffic Vol, veh/h	1	2	5	1	0	98	210	13	2	1	159	3
Future Vol, veh/h	1	2	5	1	0	98	210	13	2	1	159	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	750	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	2	5	1	0	107	228	14	2	1	173	3

Major/Minor	Minor1		Minor2			Major1				Major2			
Conflicting Flow All	649	650	15	653	650	174		176	0	0	16	0	0
Stage 1	472	472	-	177	177	-		-	-	-	-	-	
Stage 2	177	178	-	476	473	-		-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318		2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	383	388	1065	380	388	869		1400	-	-	1602	-	
Stage 1	573	559	-	825	753	-		-	-	-	-	-	
Stage 2	825	752	-	570	558	-		-	-	-	-	-	
Platoon blocked, \%									-	-		-	
Mov Cap-1 Maneuver	294	324	1065	329	324	869		1400	-	-	1602	-	
Mov Cap-2 Maneuver	294	324	-	329	324	-		-	-	-	-	-	-
Stage 1	479	467	-	690	752	-		-	-	-	-	-	-
Stage 2	723	751	-	472	466	-		-	-	-	-	-	-
Approach	NB			SB				SE			NW		
HCM Control Delay, s	11.5			9.8				7.5			0		
HCM LOS	B			A									
Minor Lane/Major Mvmt	NBLn1	NWL	NWT	SEL	SET	SER	BLn1	SBLn2					
Capacity (veh/h)	561	1602	-	1400	-	-	329	869					
HCM Lane V/C Ratio	0.016	0.001	-	0.163	-	-	0.003	0.123					
HCM Control Delay (s)	11.5	7.2	0	8.1	0	-	16	9.7					
HCM Lane LOS	B	A	A	A	A	-	C	A					
HCM 95th \%tile Q(veh)	0	0	-	0.6	-	-	0	0.4					

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2672	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp 785
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$785 \quad$ vph
130 m
m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3266	4600	No
Fi F			
v	3266	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2385	4600	No
FO F R			
v	881	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbond
Junction:	Foster Thurston On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

	Freeway	
Type of analysis		
Number of lanes in freeway	Merge	
Free-flow speed on freeway	2	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	100.0	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	27	vph
Length of first accel/decel lane	120	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	3296	4600	No
V 12	3296	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=17.7 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3124	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp 298
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$298 \quad v p h$
180 m
m
\qquad
Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3818	4500	No
Fi F			
v	3818	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	3484	4500	No
FO F R			
v	334	2000	No
R			

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	Matie Hazzard Analysis___
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	Eastbond
Junction:	Ashburn On Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	3124

Side of freeway	Ramp	
Number of lanes in ramp	Right	
Free-flow speed on ramp	1	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	60.0	vph
Length of first accel/decel lane	471	m
Length of second accel/decel lane	150	m

Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	4347	4600	No
FO	4347	4600	No
R12			

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=22.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence E
Speed Estimation

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\&			\&	
Traffic Vol, veh/h	7	0	117	5	0	5	131	869	4	4	793	3
Future Vol, veh/h	7	0	117	5	0	5	131	869	4	4	793	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	0	127	5	0	5	142	945	4	4	862	3

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			*			\&	
Traffic Vol, veh/h	7	0	124	2	0	2	135	300	1	2	399	6
Future Vol, veh/h	7	0	124	2	0	2	135	300	1	2	399	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	0	135	2	0	2	147	326	1	2	434	7

Intersection Int Delay, s/veh 1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	$\hat{}$			\$			$\hat{1}$			¢		
Traffic Vol, veh/h	0	0	117	5	0	5	0	1000	4	4	793	3
Future Vol, veh/h	0	0	117	5	0	5	0	1000	4	4	793	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-		None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	127	5	0	5	0	1087	4	4	862	3

Major/Minor	Minor2		Minor1					Major1			Major2		
Conflicting Flow All	-	1963	864		2025	1963	1089	-	0	0	1091	0	0
Stage 1	-	872	-		1089	1089		-	-	-	-	-	
Stage 2	-	1091			936	874	-	-	-			-	
Critical Hdwy	-	6.52	6.22		7.12	6.52	6.22	-	-		4.12	-	
Critical Hdwy Stg 1	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	-	4.018	3.318		3.518	4.018	3.318	-	-	-	2.218	-	
Pot Cap-1 Maneuver	0	63	354		43	63	262	0	-	-	640	-	
Stage 1	0	368	-		261	291	-	0	-	-	-	-	
Stage 2	0	291	-		318	367	-	0	-	-	-	-	
Platoon blocked, \%									-	-		-	
Mov Cap-1 Maneuver	-	62	354		27	62	262	-	-	-	640	-	
Mov Cap-2 Maneuver	-	62	-		27	62	-	-	-	-	-	-	
Stage 1	-	364	-		261	291	-	-	-	-	-	-	
Stage 2	-	291			201	363	-	-	-	-	-	-	
Approach	EB				WB			NB			SB		
HCM Control Delay, s	20.8				98.3			0			0.1		
HCM LOS	C				F								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1	VBLn1	SBL	SBT	SBR						
Capacity (veh/h)	-	-	354	49	640	-							
HCM Lane V/C Ratio	-	-	0.359	0.222	0.007	-							
HCM Control Delay (s)	-	-	20.8	98.3	10.7	0							
HCM Lane LOS	-	-	C	F	B	A							
HCM 95th \%tile Q(veh)	-	-	1.6	0.7	0	-	-						

Intersection												
Int Delay, s/veh	1.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	$\hat{\beta}$			¢			$\hat{\dagger}$			\dagger		
Traffic Vol, veh/h	0	0	124	5	0	5	0	435	1	2	399	6
Future Vol, veh/h	0	0	124	5	0	5	0	435	1	2	399	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-		None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	135	5	0	5	0	473	1	2	434	7

Major/Minor	Minor2		Minor1					Major1			Major2		
Conflicting Flow All	-	915	437		982	918	473	-	0	0	474	0	0
Stage 1	-	441	-		473	473	-	-	-	-	-	-	
Stage 2	-	474	-		509	445	-	-	-			-	
Critical Hdwy	-	6.52	6.22		7.12	6.52	6.22	-	-	-	4.12	-	
Critical Hdwy Stg 1	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-		6.12	5.52	-	-	-	-		-	
Follow-up Hdwy	-	4.018	3.318		3.518	4.018	3.318	-	-	-	2.218	-	
Pot Cap-1 Maneuver	0	273	620		228	272	591	0	-	-	1088	-	
Stage 1	0	577	-		572	558	-	0	-	-	-	-	
Stage 2	0	558	-		547	575	-	0	-	-	-	-	
Platoon blocked, \%									-	-		-	
Mov Cap-1 Maneuver	-	272	620		178	271	591	-	-	-	1088	-	
Mov Cap-2 Maneuver	-	272	-		178	271	-	-	-	-	-	-	
Stage 1	-	576	-		572	558	-	-	-	-	-	-	
Stage 2	-	558	-		427	574	-	-	-	-	-	-	
Approach	EB				WB			NB			SB		
HCM Control Delay, s	12.4				18.7			0			0		
HCM LOS	B				C								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1	BLn1	SBL	SBT	SBR						
Capacity (veh/h)	-	-	620	274	1088	-	-						
HCM Lane V/C Ratio	-	-	0.217	0.04	0.002	-	-						
HCM Control Delay (s)	-	-	12.4	18.7	8.3	0	-						
HCM Lane LOS	-	-	B	C	A	A	-						
HCM 95th \%tile Q(veh)	-	-	0.8	0.1	0	-	-						

$\frac{\text { Intersection }}{\text { Int Delay, s/veh }} 0.2$						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations		\uparrow	$\hat{\beta}$		M	
Traffic Vol, veh/h	5	737	168	1	3	1
Future Vol, veh/h	5	737	168	1	3	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	801	183	1	3	1

| Intersection | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	\uparrow		*	
Traffic Vol, veh/h	2	700	182	20	28	0
Future Vol, veh/h	2	700	182	20	28	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	761	198	22	30	0

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	$\hat{\dagger}$		M	
Traffic Vol, veh/h	0	292	152	16	12	3
Future Vol, veh/h	0	292	152	16	12	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	0	317	165	17	13	3

Intersection												
Int Delay, s/veh 3.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¢			\dagger			¢			${ }^{7}$	$\hat{\dagger}$	
Traffic Vol, veh/h	3	242	149	93	188	481	321	548	77	552	231	1
Future Vol, veh/h	3	242	149	93	188	481	321	548	77	552	231	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	Stop	-	-	Free	-	-	None
Storage Length	-	-	-	-	-	-	-	-		500	-	
Veh in Median Storage, \#	-	0		-	0	-		0			0	
Grade, \%	-	0		-	0	-		0			0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	263	162	101	204	523	349	596	84	600	251	1

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	2848	2745	252	2957	2745	596	252	0	-	596	0	0
Stage 1	1452	1452	-	1293	1293		-	-	-	-	-	
Stage 2	1396	1293	-	1664	1452			-	-		-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52		-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	11	~20	787	~9	~ 20	~ 504	1313	-	0	980	-	
Stage 1	162	~195	-	200	233		-	-	0	-	-	
Stage 2	175	~ 233	-	122	~ 195		-	-	0	-	-	
Platoon blocked, \%								-			-	
Mov Cap-1 Maneuver	-	~ 5	787	-	~ 5	~ 504	1313	-	-	980	-	
Mov Cap-2 Maneuver	-	~ 5	-	-	~ 5		-	-	-	-	-	
Stage 1	98		-	121			-	-	-	-	-	
Stage 2	~ 2	~ 140	-	-	~ 76		-	-	-	-	-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s							3.2			10.1		
HCM LOS	-			-								
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	1 SBL	SBT	SBR						
Capacity (veh/h)	1313	-	-	980								
HCM Lane V/C Ratio	0.266	-	-	- 0.612	-							
HCM Control Delay (s)	8.7	0	-	- 14.3	-							
HCM Lane LOS	A	A	-	B	-							
HCM 95th \%tile Q(veh)	1.1	-	-	4.3	-	-						
Notes												
\sim Volume exceeds capa	\$: De	lay exc	eeds 3	+: Comp	utation	Not D	*: All		e in			

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\uparrow			\&		${ }^{*}$	\uparrow	
Traffic Vol, veh/h	5	447	133	244	301	274	300	146	90	417	125	3
Future Vol, veh/h	5	447	133	244	301	274	300	146	90	417	125	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	Stop	-	-	Free	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	500	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	5	486	145	265	327	298	326	159	98	453	136	3

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	2018	1855	138	2170	1857	159	139	0	-	159	0	0
Stage 1	1044	1044	-	811	811	-	-	-		-	-	
Stage 2	974	811	-	1359	1046	-	-	-			-	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-		4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52		6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	43	~ 74	910	~34	~74	886	1445	-	0	1420	-	
Stage 1	277	~306	-	373	393	-	-	-	0	-	-	
Stage 2	303	~ 393	-	~ 183	~ 305	-	-	-	0	-	-	
Platoon blocked, \%								-			-	
Mov Cap-1 Maneuver	-	~38	910	-	~ 38	886	1445	-	-	1420	-	
Mov Cap-2 Maneuver	-	~ 38	-	-	~38	-	-	-	-	-	-	
Stage 1	209		-	281	~ 296	-	-	-	-	-	-	
Stage 2	-	~ 296	-	-	~ 208	-	-	-	-	-	-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s							5.5			6.7		
HCM LOS	-			-								
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	1 SBL	SBT	SBR						
Capacity (veh/h)	1445	-	-	- 1420								
HCM Lane V/C Ratio	0.226	-	-	- 0.319								
HCM Control Delay (s)	8.2	0	-	- 8.7	-							
HCM Lane LOS	A	A	-	- A	-	-						
HCM 95th \%tile Q(veh)	0.9	-	-	1.4	-	-						
Notes												
\sim Volume exceeds cap	\$: D	lay exc	ceds 3	+: Com	putatio	Not D	*: All	or v				

SITE LAYOUT

θ Site: 101 [Crossing 2023 PM (Single Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Single Lane Option
Roundabout

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [Crossing 2023 PM (Single Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Single Lane Option
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	946	927	19
E: Rothesay Ave WB	667	654	13
N: Rothesay Rd SB	784	768	16
W: Crossing Access EB	394	386	8
Total	2791	2735	56

LANE SUMMARY

Site: 101 [Crossing 2023 PM (Single Lane)]

Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Single Lane Option
Roundabout

Lane Use and Performance													
	Demand F Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	$\begin{gathered} 95 \% \text { Bac } \\ \text { Veh } \end{gathered}$	Queue Dist m	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	996	2.0	443	2.247	100	585.6	LOS F	193.8	1379.9	Full	500	0.0	67.7
Approach	996	2.0		2.247		585.6	LOS F	193.8	1379.9				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	702	2.0	699	1.005	100	42.0	LOS D	29.6	210.8	Full	500	0.0	0.0
Approach	702	2.0		1.005		42.0	LOS D	29.6	210.8				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	825	2.0	810	1.018	100	47.4	LOS D	35.4	252.0	Full	500	0.0	0.0
Approach	825	2.0		1.018		47.4	LOS D	35.4	252.0				
West: Crossing Access EB													
Lane $1^{\text {d }}$	415	2.0	340	1.221	100	140.9	LOS F	38.4	273.2	Full	500	0.0	0.0
Approach	415	2.0		1.221		140.9	LOS F	38.4	273.2				
Intersection	2938	2.0		2.247		241.7	LOS F	193.8	1379.9				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GRIFFIN TRANSPORTATION GROUP | Processed: February 3, 2017 9:03:52 AM
Project: C:\Users\Jamie Copeland\Desktop\GRIFFIN\Projects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
ICrossing_2023wDevelopment.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

θ Site: 101 [Crossing 2023 Sat (Single Lane)]
Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Single Lane Option
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	536	525	11
E: Rothesay Ave WB	819	803	16
N: Rothesay Rd SB	545	534	11
W: Crossing Access EB	585	573	12
Total	2485	2435	50

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GRIFFIN TRANSPORTATION GROUP | Created: February 3, 2017 9:55:43 AM
Project: C:IUsers\Jamie Copeland\Desktop\GRIFFINIProjects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
\Crossing_2023wDevelopment.sip7

LANE SUMMARY

Site: 101 [Crossing 2023 Sat (Single Lane)]

Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Single Lane Option
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	Queue Dist m	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	564	2.0	491	1.149	100	108.8	LOS F	41.0	292.2	Full	500	0.0	0.0
Approach	564	2.0		1.149		108.8	LOS F	41.0	292.2				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	862	2.0	717	1.202	100	113.1	LOS F	67.5	480.5	Full	500	0.0	3.8
Approach	862	2.0		1.202		113.1	LOS F	67.5	480.5				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	574	2.0	479	1.197	100	127.8	LOS F	46.8	333.5	Full	500	0.0	0.0
Approach	574	2.0		1.197		127.8	LOS F	46.8	333.5				
West: Crossing Access EB													
Lane $1^{\text {d }}$	616	2.0	511	1.205	100	123.0	LOS F	50.5	359.9	Full	500	0.0	0.0
Approach	616	2.0		1.205		123.0	LOS F	50.5	359.9				
Intersection	2616	2.0		1.205		117.7	LOS F	67.5	480.5				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GRIFFIN TRANSPORTATION GROUP | Processed: February 3, 2017 9:06:17 AM
Project: C:\Users\Jamie Copeland\Desktop\GRIFFIN\Projects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
ICrossing_2023wDevelopment.sip7

SITE LAYOUT

© Site: 101 [Crossing 2023 PM (Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option
Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GRIFFIN TRANSPORTATION GROUP | Created: February 3, 2017 9:57:05 AM
Project: C:IUsers\Jamie Copeland\Desktop\GRIFFINIProjects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
\Crossing_2023wDevelopment.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

© 9 Site: 101 [Crossing 2023 PM (Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	946	927	19
E: Rothesay Ave WB	667	654	13
N: Rothesay Rd SB	784	768	16
W: Crossing Access EB	394	386	8
Total	2791	2735	56

LANE SUMMARY

Site: 101 [Crossing 2023 PM (Multi-Lane)]

Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	$\begin{gathered} \text { Queue } \\ \text { Dist } \\ \mathrm{m} \end{gathered}$	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	551	2.0	540	1.020	100	66.6	LOS E	27.3	194.7	Short	60	0.0	NA
Lane 2	445	2.0	480	0.927	91^{6}	45.4	LOS D	16.8	119.3	Full	500	0.0	0.0
Approach	996	2.0		1.020		57.1	LOS E	27.3	194.7				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	196	2.0	558	0.351	100	10.4	LOS B	1.8	12.8	Full	500	0.0	0.0
Lane 2	506	2.0	718	0.705	100	10.0	LOS B	6.0	42.5	Short	60	0.0	NA
Approach	702	2.0		0.705		10.1	LOS B	6.0	42.5				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	581	2.0	782	0.743	100	20.8	LOS C	9.4	67.2	Short	60	0.0	NA
Lane 2	244	2.0	570	0.429	58^{5}	12.4	LOS B	2.8	20.2	Full	500	0.0	0.0
Approach	825	2.0		0.743		18.3	LOS B	9.4	67.2				
West: Crossing Access EB													
Lane $1^{\text {d }}$	258	2.0	561	0.460	100	9.7	LOS A	2.7	19.2	Full	500	0.0	0.0
Lane 2	157	2.0	885	0.177	100	5.4	LOS A	0.8	5.6	Short	60	0.0	NA
Approach	415	2.0		0.460		8.1	LOS A	2.7	19.2				
Intersection	2938	2.0		1.020		28.1	LOS C	27.3	194.7				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
6 Lane under-utilisation due to downstream effects
d Dominant lane on roundabout approach

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

\Rightarrow Site: 101 [Crossing 2023 Sat (Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	536	525	11
E: Rothesay Ave WB	819	803	16
N: Rothesay Rd SB	545	534	11
W: Crossing Access EB	585	573	12
Total	2485	2435	50

LANE SUMMARY

Site: 101 [Crossing 2023 Sat (Multi-Lane)]

Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{m} \end{array}$	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	316	2.0	527	0.600	100	25.2	LOS C	5.8	41.1	Short	60	0.0	NA
Lane 2	248	2.0	461	0.539	90^{5}	20.0	LOS B	4.5	32.0	Full	500	0.0	0.0
Approach	564	2.0		0.600		22.9	LOS C	5.8	41.1				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	574	2.0	780	0.736	100	12.3	LOS B	7.0	49.9	Full	500	0.0	0.0
Lane 2	288	2.0	1035	0.279	100	4.7	LOS A	1.6	11.3	Short	60	0.0	NA
Approach	862	2.0		0.736		9.8	LOS A	7.0	49.9				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	439	2.0	530	0.829	100	37.5	LOS D	12.3	87.2	Short	60	0.0	NA
Lane 2	135	2.0	320	0.421	51^{5}	20.7	LOS C	2.7	19.0	Full	500	0.0	0.0
Approach	574	2.0		0.829		33.5	LOS C	12.3	87.2				
West: Crossing Access EB													
Lane $1^{\text {d }}$	476	2.0	606	0.786	100	16.0	LOS B	7.7	55.0	Full	500	0.0	0.0
Lane 2	140	2.0	855	0.164	100	5.5	LOS A	0.7	5.1	Short	60	0.0	NA
Approach	616	2.0		0.786		13.6	LOS B	7.7	55.0				
Intersection	2616	2.0		0.829		18.7	LOS B	12.3	87.2				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
d Dominant lane on roundabout approach
SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: GRIFFIN TRANSPORTATION GROUP | Processed: February 3, 2017 9:48:46 AM
Project: C:IUsers\Jamie Copeland\DesktoplGRIFFINIProjects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
ICrossing_2023wDevelopment.sip7

SITE LAYOUT

Site: 101 [Crossing 2023 Sat (Opt 3 Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option 3
Roundabout

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [Crossing 2023 PM (Opt 3 Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option 3
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	946	927	19
E: Rothesay Ave WB	667	654	13
N: Rothesay Rd SB	784	768	16
W: Crossing Access EB	394	386	8
Total	2791	2735	56

LANE SUMMARY

Site: 101 [Crossing 2023 PM (Opt 3 Multi-Lane)]

Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option 3
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	$\begin{aligned} & \text { Lane } \\ & \text { Util. } \\ & \% \end{aligned}$	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist m	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	506	2.0	539	0.939	100	48.2	LOS D	19.0	135.4	Short	60	0.0	NA
Lane 2	409	2.0	479	0.853	91^{6}	35.1	LOS D	12.4	88.5	Full	500	0.0	0.0
Lane 3	81	2.0	540	0.150	100	11.8	LOS B	1.0	6.9	Short	60	0.0	NA
Approach	996	2.0		0.939		39.9	LOS D	19.0	135.4				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	196	2.0	556	0.352	100	10.4	LOS B	1.8	12.6	Full	500	0.0	0.0
Lane 2	506	2.0	713	0.710	100	10.3	LOS B	6.2	44.0	Short	60	0.0	NA
Approach	702	2.0		0.710		10.4	LOS B	6.2	44.0				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	581	2.0	776	0.749	100	21.2	LOS C	9.6	68.6	Short	60	0.0	NA
Lane 2	244	2.0	565	0.432	58^{5}	12.5	LOS B	2.9	20.5	Full	500	0.0	0.0
Approach	825	2.0		0.749		18.6	LOS B	9.6	68.6				
West: Crossing Access EB													
Lane $1^{\text {d }}$	258	2.0	560	0.461	100	9.8	LOS A	2.7	19.3	Full	500	0.0	0.0
Lane 2	157	2.0	885	0.177	100	5.4	LOS A	0.8	5.6	Short	60	0.0	NA
Approach	415	2.0		0.461		8.1	LOS A	2.7	19.3				
Intersection	2938	2.0		0.939		22.4	LOS C	19.0	135.4				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
6 Lane under-utilisation due to downstream effects
d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GRIFFIN TRANSPORTATION GROUP | Processed: February 3, 2017 4:18:36 PM
Project: C:IUsers\Jamie Copeland\Desktop\GRIFFINIProjects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
ICrossing_2023wDevelopment.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [Crossing 2023 Sat (Opt 3 Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option 3
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	536	525	11
E: Rothesay Ave WB	819	803	16
N: Rothesay Rd SB	545	534	11
W: Crossing Access EB	585	573	12
Total	2485	2435	50

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GRIFFIN TRANSPORTATION GROUP | Created: February 3, 2017 4:35:34 PM
Project: C:IUsers\Jamie Copeland\DesktoplGRIFFINIProjects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
ICrossing_2023wDevelopment.sip7

LANE SUMMARY

Site: 101 [Crossing 2023 Sat (Opt 3 Multi-Lane)]

Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option 3
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Back Veh	$\begin{aligned} & \text { Queue } \\ & \text { Dist } \end{aligned}$	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	316	2.0	527	0.600	100	25.2	LOS C	5.8	41.1	Short	60	0.0	NA
Lane 2	154	2.0	396	0.388	65^{5}	17.7	LOS B	2.5	18.1	Full	500	0.0	0.0
Lane 3	95	2.0	531	0.179	100	13.0	LOS B	1.1	8.2	Short	60	0.0	NA
Approach	564	2.0		0.600		21.1	LOS C	5.8	41.1				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	574	2.0	782	0.734	100	12.3	LOS B	7.0	49.6	Full	500	0.0	0.0
Lane 2	288	2.0	1038	0.278	100	4.7	LOS A	1.6	11.1	Short	60	0.0	NA
Approach	862	2.0		0.734		9.7	LOS A	7.0	49.6				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	439	2.0	530	0.828	100	37.4	LOS D	12.2	87.1	Short	60	0.0	NA
Lane 2	135	2.0	320	0.421	51^{5}	20.7	LOS C	2.7	19.0	Full	500	0.0	0.0
Approach	574	2.0		0.828		33.5	LOS C	12.2	87.1				
West: Crossing Access EB													
Lane $1^{\text {d }}$	476	2.0	606	0.786	100	16.0	LOS B	7.7	55.0	Full	500	0.0	0.0
Lane 2	140	2.0	855	0.164	100	5.5	LOS A	0.7	5.1	Short	60	0.0	NA
Approach	616	2.0		0.786		13.6	LOS B	7.7	55.0				
Intersection	2616	2.0		0.828		18.3	LOS B	12.2	87.1				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GRIFFIN TRANSPORTATION GROUP | Processed: February 3, 2017 4:32:45 PM
Project: C:\Users\Jamie Copeland\Desktop\GRIFFINIProjects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
\Crossing_2023wDevelopment.sip7

SITE LAYOUT

θ Site: 101 [Crossing 2023 PM (Opt 4 Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option 4
Roundabout

Rte 1 Ramps

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [Crossing 2023 PM (Opt 4 Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option 4
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	946	927	19
E: Rothesay Ave WB	667	654	13
N: Rothesay Rd SB	784	768	16
W: Crossing Access EB	394	386	8
Total	2791	2735	56

LANE SUMMARY

Site: 101 [Crossing 2023 PM (Opt 4 Multi-Lane)]

Rothesay Rd / Rothesay Ave
2023 PM peak w/ Development - Multi-Lane Option 4
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Cap. veh/h	Deg. Satn v/c	Lane Util. $\%$	Average Delay sec	Level of Service	95\% Back Veh	Queue Dist m	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	511	2.0	556	0.920	100	40.4	LOS D	16.2	115.6	Full	500	0.0	0.0
Lane 2	484	2.0	535	0.905	98^{6}	34.9	LOS C	14.8	105.6	Short	60	0.0	NA
Approach	996	2.0		0.920		37.7	LOS D	16.2	115.6				
East: Rothesay Ave WB													
Lane 1	196	2.0	410	0.478	57^{5}	13.5	LOS B	2.5	17.7	Full	500	0.0	0.0
Lane $2^{\text {d }}$	506	2.0	606	0.836	100	14.7	LOS B	8.0	57.2	Short	60	0.0	NA
Approach	702	2.0		0.836		14.4	LOS B	8.0	57.2				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	615	2.0	783	0.786	100	21.4	LOS C	9.9	70.4	Full	500	0.0	0.0
Lane 2	210	2.0	524	0.401	51^{6}	11.6	LOS B	2.3	16.1	Short	60	0.0	NA
Approach	825	2.0		0.786		18.9	LOS B	9.9	70.4				
West: Crossing Access EB													
Lane $1^{\text {d }}$	258	2.0	610	0.423	100	8.5	LOS A	2.5	17.7	Full	500	0.0	0.0
Lane 2	157	2.0	508	0.309	73^{5}	8.4	LOS A	1.5	10.8	Short	60	0.0	NA
Approach	415	2.0		0.423		8.5	LOS A	2.5	17.7				
Intersection	2938	2.0		0.920		22.7	LOS C	16.2	115.6				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
6 Lane under-utilisation due to downstream effects
d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GRIFFIN TRANSPORTATION GROUP | Processed: February 3, 2017 4:28:29 PM
Project: C:IUsers\Jamie Copeland\Desktop\GRIFFIN\Projects\2017\1706 - The Crossing Rdbt Analysis\Sidra Analysis
ICrossing_2023wDevelopment.sip7

INPUT VOLUMES

Vehicles and pedestrians per 60 minutes

Site: 101 [Crossing 2023 Sat (Opt 4 Multi-Lane)]
Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option 4
Roundabout

Volume Display Method: Total and \%

	All MCs	Light Vehicles (LV)	Heavy Vehicles (HV)
S: Rte 1 Ramps	536	525	11
E: Rothesay Ave WB	819	803	16
N: Rothesay Rd SB	545	534	11
W: Crossing Access EB	585	573	12
Total	2485	2435	50

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GRIFFIN TRANSPORTATION GROUP | Created: February 3, 2017 4:38:06 PM
Project: C:IUsers\Jamie Copeland\DesktoplGRIFFINIProjects\2017\1706 - The Crossing Rdbt AnalysisISidra Analysis
ICrossing_2023wDevelopment.sip7

LANE SUMMARY

Site: 101 [Crossing 2023 Sat (Opt 4 Multi-Lane)]

Rothesay Rd / Rothesay Ave
2023 Sat peak w/ Development - Multi-Lane Option 4
Roundabout

Lane Use and Performance													
	Demand Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \\ & \hline \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Average Delay sec	Level of Service	95\% Bac Veh	$\begin{array}{r} \text { Queue } \\ \text { Dist } \\ \mathrm{m} \end{array}$	Lane Config	Lane Length m	Cap. Adj. \%	Prob. Block. \%
South: Rte 1 Ramps													
Lane $1^{\text {d }}$	316	2.0	577	0.547	100	21.2	LOS C	4.3	30.6	Full	500	0.0	0.0
Lane 2	248	2.0	525	0.473	86^{5}	14.5	LOS B	3.2	23.1	Short	60	0.0	NA
Approach	564	2.0		0.547		18.3	LOS B	4.3	30.6				
East: Rothesay Ave WB													
Lane $1^{\text {d }}$	574	2.0	848	0.677	100	10.8	LOS B	5.8	41.4	Full	500	0.0	0.0
Lane 2	288	2.0	679	0.425	63^{5}	7.0	LOS A	2.3	16.5	Short	60	0.0	NA
Approach	862	2.0		0.677		9.5	LOS A	5.8	41.4				
North: Rothesay Rd SB													
Lane $1^{\text {d }}$	439	2.0	553	0.794	100	31.8	LOS C	10.0	71.0	Full	500	0.0	0.0
Lane 2	135	2.0	338	0.398	50^{5}	17.7	LOS B	2.3	16.1	Short	60	0.0	NA
Approach	574	2.0		0.794		28.5	LOS C	10.0	71.0				
West: Crossing Access EB													
Lane $1^{\text {d }}$	469	2.0	659	0.711	100	12.4	LOS B	6.3	44.6	Full	500	0.0	0.0
Lane 2	147	2.0	406	0.362	51^{6}	10.9	LOS B	1.8	12.6	Short	60	0.0	NA
Approach	616	2.0		0.711		12.1	LOS B	6.3	44.6				
Intersection	2616	2.0		0.794		16.2	LOS B	10.0	71.0				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: SIDRA Roundabout LOS.
Lane LOS values are based on average delay per lane.
Intersection and Approach LOS values are based on average delay for all lanes.
Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
5 Lane under-utilisation found by the program
6 Lane under-utilisation due to downstream effects
d Dominant lane on roundabout approach

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 44: Rothesay Ave \& Rothesay Rd

	4			7			4	\dagger		,	\dagger	$+$
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{7}$	4	「	${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Volume (vph)	5	447	133	244	301	274	300	146	90	417	125	3
Future Volume (vph)	5	447	133	244	301	274	300	146	90	417	125	3
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1776	0	1789	1878	0
Flt Permitted	0.306			0.216			0.668			0.287		
Satd. Flow (perm)	576	1883	1601	407	1883	1601	1258	1776	0	541	1878	0
Satd. Flow (RTOR)			130			298		31			1	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	5	486	145	265	327	298	326	257	0	453	139	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		Free	2			6		
Total Split (s)	9.0	32.0	32.0	12.0	35.0		18.6	24.0		22.0	27.4	
Total Lost Time (s)	4.0	4.5	4.5	4.0	4.5		4.0	4.5		4.0	4.5	
Act Effct Green (s)	26.5	26.0	26.0	36.9	36.4	90.0	35.3	21.2		43.0	25.3	
Actuated g/C Ratio	0.29	0.29	0.29	0.41	0.40	1.00	0.39	0.24		0.48	0.28	
v/c Ratio	0.02	0.89	0.26	0.91	0.43	0.19	0.57	0.58		0.90	0.26	
Control Delay	21.8	51.0	7.0	48.4	10.8	0.2	20.5	33.6		41.8	27.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	21.8	51.0	7.0	48.4	10.8	0.2	20.5	33.6		41.8	27.7	
LOS	C	D	A	D	B	A	C	C		D	C	
Approach Delay		40.7			18.5			26.3			38.4	
Approach LOS		D			B			C			D	
Queue Length 50th (m)	0.6	78.1	1.8	17.1	13.1	0.0	35.3	35.5		50.3	19.2	
Queue Length 95th (m)	3.0	\#129.5	14.5	m\#53.0	m33.5	m0.0	55.5	60.4		\#101.3	35.4	
Internal Link Dist (m)		94.6			113.6			98.1			65.9	
Turn Bay Length (m)	50.0		50.0	60.0		60.0	60.0			50.0		
Base Capacity (vph)	237	575	579	291	760	1601	593	443		509	528	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.02	0.85	0.25	0.91	0.43	0.19	0.55	0.58		0.89	0.26	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 71 (79\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.91												
Intersection Signal Delay: 29.8					Intersection LOS: C							
Intersection Capacity Utilization 87.5\%					CU Level of Service E							

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 48: Rothesay Rd \& Rothesay Ave

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		*			\&			\&	
Traffic Vol, veh/h	147	1	642	1	0	2	177	287	5	0	159	29
Future Vol, veh/h	147	1	642	1	0	2	177	287	5	0	159	29
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	800	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	160	1	698	1	0	2	192	312	5	0	173	32

Intersection												
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\&			\&			\&	
Traffic Vol, veh/h	86	0	133	0	0	0	118	180	0	0	171	45
Future Vol, veh/h	86	0	133	0	0	0	118	180	0	0	171	45
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	800	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	93	0	145	0	0	0	128	196	0	0	186	49

Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 45: Rothesay Rd

	4							\dagger			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\hat{\beta}$			\uparrow		\%	$\hat{\dagger}$			${ }_{\$}$	
Traffic Volume (vph)	93	0	133	0	0	0	253	173	0	0	171	45
Future Volume (vph)	93	0	133	0	0	0	253	173	0	0	171	45
Satd. Flow (prot)	1789	1601	0	0	1883	0	1789	1883	0	0	1831	0
Flt Permitted	0.757						0.612					
Satd. Flow (perm)	1426	1601	0	0	1883	0	1153	1883	0	0	1831	0
Satd. Flow (RTOR)		739									30	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	101	145	0	0	0	0	275	188	0	0	235	0
Turn Type	Perm	NA					pm+pt	NA			NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	13.0	13.0		13.0	13.0		14.0	32.0		18.0	18.0	
Total Lost Time (s)	4.5	4.5			4.5		4.5	4.5			4.5	
Act Effct Green (s)	7.6	7.6					30.4	31.3			16.4	
Actuated g/C Ratio	0.17	0.17					0.68	0.70			0.36	
v / C Ratio	0.42	0.16					0.30	0.14			0.34	
Control Delay	22.2	0.4					3.0	2.1			12.4	
Queue Delay	0.0	0.0					0.0	0.0			0.0	
Total Delay	22.2	0.4					3.0	2.1			12.4	
LOS	C	A					A	A			B	
Approach Delay		9.3						2.7			12.4	
Approach LOS		A						A			B	
Queue Length 50th (m)	7.0	0.0					4.3	2.9			12.4	
Queue Length 95th (m)	17.2	0.0					7.5	5.3			26.4	
Internal Link Dist (m)		190.2			73.2			210.7			122.0	
Turn Bay Length (m)							50.0					
Base Capacity (vph)	269	901					913	1310			687	
Starvation Cap Reductn	0	0					0	0			0	
Spillback Cap Reductn	0	0					0	0			0	
Storage Cap Reductn	0	0					0	0			0	
Reduced v/c Ratio	0.38	0.16					0.30	0.14			0.34	
Intersection Summary												
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: 40 (89\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.42												
Intersection Signal Delay: 6.8				Intersection LOS: A								
Intersection Capacity Utilization 45.2\%				ICU Level of Service A								

Analysis Period (min) 15
Splits and Phases: 67:

	4			7		4	4	\dagger	\%		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			4						4	「
Traffic Volume (veh/h)	0	383	487	0	564	0	0	0	0	0	262	117
Future Volume (Veh/h)	0	383	487	0	564	0	0	0	0	0	262	117
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	416	529	0	613	0	0	0	0	0	285	127
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	592	285	285	493	285	0	285			0		
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	592	285	285	493	285	0	285			0		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	100	33	30	100	2	100	100			100		
cM capacity (veh/h)	36	624	754	67	624	1085	1277			1623		
Direction, Lane \#	EB 1	WB 1	SB 1	SB 2								
Volume Total	945	613	285	127								
Volume Left	0	0	0	0								
Volume Right	529	0	0	127								
cSH	691	624	1700	1700								
Volume to Capacity	1.37	0.98	0.17	0.07								
Queue Length 95th (m)	308.0	110.0	0.0	0.0								
Control Delay (s)	193.3	57.4	0.0	0.0								
Lane LOS	F	F										
Approach Delay (s)	193.3	57.4	0.0									
Approach LOS	F	F										
Intersection Summary												
Average Delay			110.6									
Intersection Capacity Utilization			70.4\%		Level	Service			C			
Analysis Period (min)			15									

	4							\uparrow			\ddagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		4						\uparrow	F
Traffic Volume (vph)	0	383	487	0	564	0	0	0	0	0	262	117
Future Volume (vph)	0	383	487	0	564	0	0	0	0	0	262	117
Satd. Flow (prot)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Flt Permitted												
Satd. Flow (perm)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Satd. Flow (RTOR)			369									127
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	416	529	0	613	0	0	0	0	0	285	127
Turn Type		NA	Free		NA						NA	Perm
Protected Phases		4			8						6	
Permitted Phases			Free									6
Total Split (s)		28.0			28.0						17.0	17.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Act Effct Green (s)		25.1	45.0		25.1						10.9	10.9
Actuated g/C Ratio		0.56	1.00		0.56						0.24	0.24
v/c Ratio		0.40	0.33		0.58						0.63	0.26
Control Delay		8.8	0.1		9.9						21.5	4.9
Queue Delay		0.0	0.0		0.0						0.0	0.0
Total Delay		8.8	0.1		9.9						21.5	4.9
LOS		A	A		A						C	A
Approach Delay		4.0			9.9						16.4	
Approach LOS		A			A						B	
Queue Length 50th (m)		7.2	0.0		28.4						19.3	0.0
Queue Length 95th (m)		m7.5	m0.0		54.1						36.1	8.4
Internal Link Dist (m)		124.0			72.0			152.4			127.2	
Turn Bay Length (m)			20.0									
Base Capacity (vph)		1051	1601		1051						523	536
Starvation Cap Reductn		0	0		0						0	0
Spillback Cap Reductn		0	0		0						0	0
Storage Cap Reductn		0	0		0						0	0
Reduced v/c Ratio		0.40	0.33		0.58						0.54	0.24
Intersection Summary												
Cycle Length: 45												
Actuated Cycle Length: 45												
Offset: $12.8(28 \%)$, Referenced to phase 4:EBT and 8:WBT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.63												
Intersection Signal Delay: 8.4				Intersection LOS: A								
Intersection Capacity Utilization 51.0\%				ICU Level of Service A								

Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: \quad 53: Rothesay Ave \& Rte 1 off-ramp

	4							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	「		\uparrow						\uparrow	F
Trafic Volume (vph)	0	326	627	0	639	0	0	0	0	0	740	222
Future Volume (vph)	0	326	627	0	639	0	0	0	0	0	740	222
Satd. Flow (prot)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Flt Permitted												
Satd. Flow (perm)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Satd. Flow (RTOR)			280									128
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	354	682	0	695	0	0	0	0	0	804	241
Turn Type		NA	Free		NA						NA	Perm
Protected Phases		4			8						6	
Permitted Phases			Free									6
Total Split (s)		43.0			43.0						47.0	47.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Act Effct Green (s)		39.6	90.0		39.6						41.4	41.4
Actuated g/C Ratio		0.44	1.00		0.44						0.46	0.46
v / c Ratio		0.43	0.43		0.84						0.93	0.30
Control Delay		14.0	0.4		34.1						41.3	7.8
Queue Delay		0.0	0.0		0.0						0.0	0.0
Total Delay		14.0	0.4		34.1						41.3	7.8
LOS		B	A		C						D	A
Approach Delay		5.1			34.1						33.6	
Approach LOS		A			C						C	
Queue Length 50th (m)		34.6	0.0		106.0						122.8	10.7
Queue Length 95th (m)		m44.6	m0.0		\#170.5						\#197.8	24.6
Internal Link Dist (m)		113.6			147.0			166.4			142.0	
Turn Bay Length (m)			20.0									
Base Capacity (vph)		828	1601		828						889	823
Starvation Cap Reductn		0	0		0						0	0
Spillback Cap Reductn		0	0		0						0	0
Storage Cap Reductn		0	0		0						0	0
Reduced v/c Ratio		0.43	0.43		0.84						0.90	0.29
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 88 (98\%), Referenced to phase 4:EBT and 8:WBT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.93												
Intersection Signal Delay: 23.1				Intersection LOS: C								
Intersection Capacity Utilization 80.1\%				ICU Level of Service D								

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 50 : Rothesay Ave

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2584	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \quad \mathrm{~km} / \mathrm{h}$
$1012 \quad \mathrm{vph}$
300 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3158	4600	No
Fi F			
v	3158	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2022	4600	No
FO F R			
v	1136	2000	No
R			

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L} \quad=13.9 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst: Merge Analysis____	
Agency/Co.:	Katie Hazzard
Date performed:	exp
Analysis time period:	$1 / 23 / 2017$
Freeway/Dir of Travel:	AM Peak
Junction:	WB
Jurisdiction:	Rte 100 On Ramp
Analysis Year:	Provincial
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2706	vph

Side of freeway	Ramp	
Number of lanes in ramp	Right	
Free-flow speed on ramp	1	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	60.0	vph
Length of first accel/decel lane	757	m
Length of second accel/decel lane	280	m

Does adjacent ramp exist?
Volume on adjacent Ramp
Position of adjacent Ramp
Type of adjacent Ramp
Distance to adjacent Ramp

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	4157	4600	No
V	4157	4600	No

Level of Service Determination (if not F) \qquad
Density, $\mathrm{D}=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=19.6 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation \qquad

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route lo0 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2023
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2706	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$1158 \quad$ vph
240 m

Adjacent Ramp Data (if one exists) \qquad
Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

0.909	0.990
1.00	1.00
3307	1300

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3307	4600	No
Fi F			
v	3307	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2007	4600	No
FO F R			
v	1300	2000	No
R			

Level of Service Determination (if not F) \qquad
Density, $\quad \mathrm{D}_{\mathrm{R}}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L}=15.8 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$

Level of service for ramp-freeway junction areas of influence C

Speed Estimation \qquad

Intermediate speed variable,	$\mathrm{D}=0.520$	
	S	
Space mean speed in ramp influence area,	$\underset{R}{S}=82.8$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=82.8$	km/h

```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2016
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	2584

Side of freeway	Ramp	
Number of lanes in ramp	Right	
Free-flow speed on ramp	1	$\mathrm{~km} / \mathrm{h}$
Volume on ramp	60.0	vph
Length of first accel/decel lane	913	m
Length of second accel/decel lane	150	m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	4183	4600	No
FO	4183	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=21.3 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Intersection						
Int Delay, s/veh 3.6						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	性		${ }^{1}$	\uparrow	\%	「
Traffic Vol, veh/h	102	0	131	60	0	7
Future Vol, veh/h	102	0	131	60	0	7
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	500	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	111	0	142	65	0	8

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	「	\uparrow		${ }^{1}$	4
Traffic Vol, veh/h	16	2	805	23	3	203
Future Vol, veh/h	16	2	805	23	3	203
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	St	None	-	None	-	None
Storage Length	0	0	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	17	2	875	25	3	221

Intersection						
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「	${ }_{1}$	4	\uparrow	
Traffic Vol, veh/h	1	2	3	827	218	1
Future Vol, veh/h	1	2	3	827	218	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	750	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	2	3	899	237	1

	4			7				\dagger	7		$\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	\uparrow		${ }^{1}$	\uparrow		${ }^{1}$	F		${ }^{7}$	\uparrow	
Traffic Volume (vph)	1	9	1	41	9	133	1	696	40	93	126	1
Future Volume (vph)	1	9	1	41	9	133	1	696	40	93	126	1
Satd. Flow (prot)	1789	1857	0	1789	1620	0	1789	1868	0	1789	1882	0
Flt Permitted	0.889			0.889			0.669			0.295		
Satd. Flow (perm)	1674	1857	0	1674	1620	0	1260	1868	0	556	1882	0
Satd. Flow (RTOR)		1			145			14			1	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	1	11	0	45	155	0	1	800	0	101	138	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	10.0	10.0		10.0	10.0		35.0	35.0		35.0	35.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Act Effct Green (s)	5.5	5.5		5.5	5.5		34.1	34.1		34.1	34.1	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.74	0.74		0.74	0.74	
v/c Ratio	0.01	0.05		0.23	0.48		0.00	0.58		0.25	0.10	
Control Delay	17.0	17.5		20.9	10.7		2.0	5.8		4.7	2.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	17.0	17.5		20.9	10.7		2.0	5.8		4.7	2.7	
LOS	B	B		C	B		A	A		A	A	
Approach Delay		17.5			13.0			5.8			3.6	
Approach LOS		B			B			A			A	
Queue Length 50th (m)	0.1	0.7		3.3	0.7		0.0	24.5		2.2	2.7	
Queue Length 95th (m)	1.0	3.9		10.0	12.5		0.3	46.8		6.8	5.9	
Internal Link Dist (m)		212.8			58.7			111.4			178.1	
Turn Bay Length (m)										100.0		
Base Capacity (vph)	200	223		200	321		935	1390		412	1396	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.01	0.05		0.23	0.48		0.00	0.58		0.25	0.10	
Intersection Summary												
Cycle Length: 45												
Actuated Cycle Length: 46												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.58												
Intersection Signal Delay: 6.6				Intersection LOS: A								
Intersection Capacity Utilization 64.4\%				ICU Level of Service C								
Analysis Period (min) 15												

Splits and Phases: 64: Ashburn Rd \& Access 5 (main)

Intersection						
Int Delay, s/veh 3.4						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		\%	\uparrow	${ }^{7}$	「
Traffic Vol, veh/h	100	0	135	77	0	7
Future Vol, veh/h	100	0	135	77	0	7
Conflicting Peds, \#/hr	0	0	0		0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	109	0	147	84	0	8

Splits and Phases: 64: Ashburn \& Access 5

Appendix D-
 LOS Results with Phase 2 \& 3 (2033) of Development

Appendix D-
 LOS Results with Phase 2 \& 3 (2033) of Development

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	「	${ }^{7}$	4	「	${ }^{7}$	$\hat{\beta}$		7	\uparrow	
Traffic Volume (vph)		294	287	127	195	183	273	20	607	236	124	35
Future Volume (vph)	5	294	287	127	195	183	273	20	607	236	124	35
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1610	0	1789	1821	0
FIt Permitted	0.625			0.331			0.425			0.392		
Satd. Flow (perm)	1177	1883	1601	623	1883	1601	800	1610	0	738	1821	0
Satd. Flow (RTOR)			312			227		462			20	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	5	320	312	138	212	199	297	682	0	257	173	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6	4			8		
Total Split (s)	9.0	21.0	21.0	9.0	21.0	21.0	15.0	25.0		10.0	20.0	
Total Lost Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.5		4.0	4.5	
Act Efft Green (s)	18.3	14.1	14.1	20.5	19.1	19.1	27.2	16.0		16.9	12.2	
Actuated g/C Ratio	0.32	0.25	0.25	0.36	0.34	0.34	0.48	0.28		0.30	0.21	
v/c Ratio	0.01	0.69	0.49	0.41	0.34	0.29	0.48	0.87		0.76	0.43	
Control Delay	12.0	29.9	6.0	17.0	17.6	3.6	13.3	20.7		30.5	22.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	12.0	29.9	6.0	17.0	17.6	3.6	13.3	20.7		30.5	22.2	
LOS	B	C	A	B	B	A	B	C		C	C	
Approach Delay		18.0			12.4			18.5			27.1	
Approach LOS		B			B			B			C	
Queue Length 50th (m)	0.4	34.6	0.0	10.4	17.0	0.0	21.0	21.0		17.8	15.3	
Queue Length 95th (m)	2.1	\#59.8	16.3	20.7	38.7	10.4	36.3	\#83.6		\#40.2	30.6	
Internal Link Dist (m)		367.7			713.5			186.6			28.7	
Turn Bay Length (m)	50.0		50.0	50.0		50.0						
Base Capacity (vph)	435	580	709	333	725	756	623	902		337	541	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.01	0.55	0.44	0.41	0.29	0.26	0.48	0.76		0.76	0.32	

Intersection Summary

Cycle Length: 65
Actuated Cycle Length: 56.9
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.87

Intersection Signal Delay: 18.5
Intersection Capacity Utilization 88.4\%
Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service E
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 4: Foster Thurston Dr \& Ashburn Rd

Lane Group	NBL	NBT	NBR	SBL	SBT	SBR	SEL	SET	SER	NWL	NWT	NWR
Lane Configurations	\%	\uparrow	F	\%	\uparrow	「	\%	\hat{F}		${ }^{7}$	F	
Traffic Volume (vph)	5	430	462	113	352	147	133	14	148	418	175	93
Future Volume (vph)	5	430	462	113	352	147	133	14	148	418	175	93
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1625	0	1789	1786	0
Flt Permitted	0.481			0.261						0.519		
Satd. Flow (perm)	906	1883	1601	492	1883	1601	1883	1625	0	978	1786	0
Satd. Flow (RTOR)			502			245		161			40	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0

Parking (\#/hr)

Shared Lane Traffic (\%)												
Lane Group Flow (vph)	5	467	502	123	383	160	145	176	0	454	291	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		pm+pt	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	2		2	6		6	4			8		
Total Split (s)	9.0	25.4	25.4	9.0	25.4	25.4	9.0	9.6		16.0	16.6	
Total Lost Time (s)	4.0	4.5	4.5	4.0	4.5	4.5	4.0	4.5		4.0	4.5	
Act Effct Green (s)	23.0	18.8	18.8	25.2	23.7	23.7	9.4	5.4		19.7	12.7	
Actuated g/C Ratio	0.43	0.35	0.35	0.47	0.44	0.44	0.17	0.10		0.36	0.23	
v/c Ratio	0.01	0.71	0.57	0.35	0.46	0.19	0.46	0.57		0.83	0.65	
Control Delay	7.6	24.0	4.6	10.9	14.0	1.2	20.3	15.8		33.0	28.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	7.6	24.0	4.6	10.9	14.0	1.2	20.3	15.8		33.0	28.0	
LOS	A	C	A	B	B	A	C	B		C	C	
Approach Delay		13.9			10.3			17.8			31.0	
Approach LOS		B			B			B			C	
Queue Length 50th (m)	0.3	43.3	0.0	6.6	24.5	0.0	10.8	1.6		41.7	26.0	
Queue Length 95th (m)	1.5	\#74.4	16.6	13.7	57.0	3.2	21.4	\#21.4		\#74.2	\#58.3	
Internal Link Dist (m)		367.7			713.5			186.6			27.8	
Turn Bay Length (m)	50.0		50.0	50.0		50.0	50.0					
Base Capacity (vph)	471	772	952	356	933	916	317	307		547	455	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.01	0.60	0.53	0.35	0.41	0.17	0.46	0.57		0.83	0.64	

Intersection Summary

Cycle Length: 60
Actuated Cycle Length: 54.1
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.83

Intersection Signal Delay: 18.2
Intersection Capacity Utilization 76.1\%
Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service D
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: $\quad 4: 18 /$ Foster Thurston Dr \& Ashburn Rd

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	Westbound
Junction:	Foster Thurston Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2755	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$1339 \quad \mathrm{vph}$
130 m
\qquad

Does adjacent ramp exist?	No	
Volume on adjacent ramp		vph
Position of adjacent ramp		
Type of adjacent ramp	m	

0.909	0.990
1.00	1.00
3367	1503

Estimation of V12 Diverge Areas \qquad

Capacity Checks

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad

Intermediate speed variable,	$D_{S}=0.53$	
Space mean speed in ramp influence area,	$\underset{R}{S}=82.2$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=82.2$	km/h

```
Phone:
Fax:
```

E-mail:

Merge Analysis

____Merge Analysis_	
Analyst:	
Agency/Co.:	Katie Hazzard
Date performed:	exp
Analysis time period:	$1 / 23 / 2017$
Freeway/Dir of Travel:	AM Peak
Junction:	Westbond
Jurisdiction:	Foster Thurston On Ramp
Analysis Year:	Provincial
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	2755	vph

	Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	383	m
Length of first accel/decel lane	120	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	3797	4600	No
FO	3797	4600	No

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=20.0 \quad \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence D
Speed Estimation

Phone:

Fax:
E-mail:

Diverge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$3 / 8 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Eastbound
Junction:	Ashburn Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing Study	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	90.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3282	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
$329 \quad v p h$
180 m
m

Adjacent Ramp Data (if one exists) \qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	4011	4500	No
Fi F			
v	4011	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	3642	4500	No
FO F R			
v	369	2000	No
R			

Level of Service Determination (if not F) \qquad

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM Peak
Freeway/Dir of Travel:	Eastbond
Junction:	Ashburn On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on freeway	100.0	3694

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	722	vph
Length of first accel/decel lane	150	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	5325	4600	Yes
V			Yes
R12	5325	4600	

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=26.9 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence F
Speed Estimation

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	$\hat{\beta}$			¢			$\hat{\dagger}$			\dagger		
Traffic Vol, veh/h	0	0	117	5	0	5	0	1028	4	4	690	1
Future Vol, veh/h	0	0	117	5	0	5	0	1028	4	4	690	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-		None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	127	5	0	5	0	1117	4	4	750	1

Major/Minor	Minor2		Minor1					Major1			Major2		
Conflicting Flow All	-	1881	751		1943	1880	1120	-	0	0	1122	0	0
Stage 1	-	759	-		1120	1120	-	-	-	-	-	-	
Stage 2	-	1122	-		823	760	-	-	-			-	
Critical Hdwy	-	6.52	6.22		7.12	6.52	6.22	-	-		4.12	-	
Critical Hdwy Stg 1	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	-	4.018	3.318		3.518	4.018	3.318	-	-	-	2.218	-	
Pot Cap-1 Maneuver	0	71	411		49	71	251	0	-	-	623	-	
Stage 1	0	415	-		251	282	-	0	-	-	-	-	
Stage 2	0	281	-		368	414	-	0	-	-	-	-	
Platoon blocked, \%									-	-		-	
Mov Cap-1 Maneuver	-	70	411		34	70	251	-	-	-	623	-	
Mov Cap-2 Maneuver	-	70	-		34	70	-	-	-	-	-	-	
Stage 1	-	410	-		251	282	-	-	-	-	-	-	
Stage 2	-	281	-		251	409	-	-	-	-	-	-	
Approach	EB				WB			NB			SB		
HCM Control Delay, s	17.6				77.8			0			0.1		
HCM LOS	C				F								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR						
Capacity (veh/h)	-	-	411	60	623	-	-						
HCM Lane V/C Ratio	-	-	0.309	0.181	0.007	-	-						
HCM Control Delay (s)	-	-	17.6	77.8	10.8	0	-						
HCM Lane LOS	-	-	C	F	B	A	-						
HCM 95th \%tile Q(veh)	-	-	1.3	0.6	0	-	-						

Intersection												
Int Delay, s/veh	0.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	$\hat{\beta}$			¢			$\hat{\beta}$			\uparrow		
Traffic Vol, veh/h	0	0	26	5	0	5	0	401	1	2	421	1
Future Vol, veh/h	0	0	26	5	0	5	0	401	1	2	421	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-		None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	28	5	0	5	0	436	1	2	458	1

Major/Minor	Minor2		Minor1					Major1			Major2		
Conflicting Flow All	-	899	458		913	899	436	-	0	0	437	0	0
Stage 1	-	462	-		436	436	-	-	-	-	-	-	
Stage 2	-	437			477	463	-	-	-			-	
Critical Hdwy	-	6.52	6.22		7.12	6.52	6.22	-	-	-	4.12	-	
Critical Hdwy Stg 1	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	5.52	-		6.12	5.52	-	-	-	-	-	-	
Follow-up Hdwy	-	4.018	3.318		3.518	4.018	3.318	-	-	-	2.218	-	
Pot Cap-1 Maneuver	0	279	603		254	279	620	0	-	-	1123	-	
Stage 1	0	565	-		599	580		0	-	-	-	-	
Stage 2	0	579	-		569	564	-	0	-	-	-	-	
Platoon blocked, \%									-	-		-	
Mov Cap-1 Maneuver	-	278	603		242	278	620	-	-	-	1123	-	
Mov Cap-2 Maneuver	-	278	-		242	278	-	-	-	-	-	-	
Stage 1	-	564	-		599	580	-	-	-	-	-	-	
Stage 2	-	579			541	563	-	-	-	-	-	-	
Approach	EB				WB			NB			SB		
HCM Control Delay, s	11.3				15.7			0			0		
HCM LOS	B				C								
Minor Lane/Major Mvmt	NBT	NBR	EBLn1	VBLn1	SBL	SBT	SBR						
Capacity (veh/h)	-	-	603	348	1123	-							
HCM Lane V/C Ratio	-	-	0.047	0.031	0.002	-							
HCM Control Delay (s)	-	-	11.3	15.7	8.2	0							
HCM Lane LOS	-	-	B	C	A	A							
HCM 95th \%tile Q(veh)	-	-	0.1	0.1	0	-	-						

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		\%	F		${ }^{7}$	F		${ }^{7}$	F	
Traffic Vol, veh/h	2	0	1	11	0	5	5	625	17	31	610	1
Future Vol, veh/h	2	0	1	11	0	5	5	625	17	31	610	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	0	-	-	0	-	-	500	-	-	500	-	
Veh in Median Storage, \#	-	0	-	-	0	-		0	-	-	0	
Grade, \%	-	0		-	0	-		0			0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	2	0	1	12	0	5	5	679	18	34	663	1

Major/Minor	Minor2		Minor1					Major1			Major2			
Conflicting Flow All	1433	1440	664		1431	1431	689		664	0	0	698	0	0
Stage 1	731	731	-		699	699			-	-	-	-	-	
Stage 2	702	709			732	732			-	-	-		-	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	-		-	-	-		-	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	112	133	461		112	134	446		925	-	-	898	-	
Stage 1	413	427	-		430	442	-		-	-	-	-	-	
Stage 2	429	437	-		413	427	-		-	-	-	-	-	
Platoon blocked, \%										-	-		-	
Mov Cap-1 Maneuver	107	127	461		108	128	446		925	-	-	898	-	
Mov Cap-2 Maneuver	107	127	-		108	128	-		-	-	-	-	-	
Stage 1	411	411	-		428	440	-		-	-	-	-	-	
Stage 2	421	435	-		396	411	-		-	-	-	-	-	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	30.5				33.3				0.1			0.4		
HCM LOS	D				D									
Minor Lane/Major Mvmt	NBL	NBT	NBR	BLn1	EBLn2	VBLn1V	VBLn2	SBL	SBT	SBR				
Capacity (veh/h)	925	-	-	107	461	108	446	898	-	-				
HCM Lane V/C Ratio	0.006	-	-	0.02	0.002	0.111	0.012	0.038	-	-				
HCM Control Delay (s)	8.9	-	-	39.3	12.8	42.4	13.2	9.2	-	-				
HCM Lane LOS	A	-	-	E	B	E	B	A	-	-				
HCM 95th \%tile Q(veh)	0	-		0.1	0	0.4	0	0.1	-	-				

Intersection						
Int Delay, s/veh						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	\uparrow		* ${ }^{\text {P }}$	
Traffic Vol, veh/h	2	312	270	20	28	0
Future Vol, veh/h	2	312	270	20	28	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	339	293	22	30	0

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 44: Rothesay Ave \& Rothesay Rd

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 48: Rothesay Rd \& Rothesay Ave

	4			7		4	4	\dagger	p		\dagger	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	\uparrow			\leqslant		${ }^{7}$	4			\&	
Traffic Volume (vph)	134	1	244	1	0	2	222	832	5	0	165	72
Future Volume (vph)	134	1	244	1	0	2	222	832	5	0	165	72
Satd. Flow (prot)	1789	1603	0	0	1687	0	1789	1882	0	0	1806	0
Flt Permitted	0.756				0.911		0.537					
Satd. Flow (perm)	1424	1603	0	0	1561	0	1011	1882	0	0	1806	0
Satd. Flow (RTOR)		265			75			1			40	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	146	266	0	0	3	0	241	909	0	0	257	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA			NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	21.6	21.6		21.6	21.6		13.0	58.4		45.4	45.4	
Total Lost Time (s)	4.5	4.5			4.5		4.0	4.5			4.5	
Act Effct Green (s)	13.2	13.2			13.2		58.3	57.8			45.5	
Actuated g/C Ratio	0.16	0.16			0.16		0.73	0.72			0.57	
v/c Ratio	0.62	0.55			0.01		0.29	0.67			0.25	
Control Delay	42.3	8.5			0.0		1.7	4.8			8.9	
Queue Delay	0.0	0.0			0.0		0.0	0.0			0.0	
Total Delay	42.3	8.5			0.0		1.7	4.8			8.9	
LOS	D	A			A		A	A			A	
Approach Delay		20.5						4.2			8.9	
Approach LOS		C						A			A	
Queue Length 50th (m)	20.8	0.1			0.0		1.7	7.2			15.3	
Queue Length 95th (m)	36.6	17.9			0.0		m3.3	m16.7			30.7	
Internal Link Dist (m)		83.5			78.8			204.7			117.4	
Turn Bay Length (m)							100.0					
Base Capacity (vph)	304	550			392		825	1360			1044	
Starvation Cap Reductn	0	0			0		0	0			0	
Spillback Cap Reductn	0	0			0		0	0			0	
Storage Cap Reductn	0	0			0		0	0			0	
Reduced v/c Ratio	0.48	0.48			0.01		0.29	0.67			0.25	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 30 (38\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.67												
Intersection Signal Delay: 8.5				Intersection LOS: A								
Intersection Capacity Utilization 83.6\%				ICU Level of Service E								

Analysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 45: Rothesay Rd

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 67:

	4							\uparrow			\ddagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow						\uparrow	F
Traffic Volume (vph)	0	282	214	0	625	0	0	0	0	0	199	155
Future Volume (vph)	0	282	214	0	625	0	0	0	0	0	199	155
Satd. Flow (prot)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Flt Permitted												
Satd. Flow (perm)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Satd. Flow (RTOR)			233									168
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Trafic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	307	233	0	679	0	0	0	0	0	216	168
Turn Type		NA	Free		NA						NA	Perm
Protected Phases		4			8						6	
Permitted Phases			Free									6
Total Split (s)		27.0			27.0						13.0	13.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Act Effct Green (s)		26.0	40.0		26.0						8.0	8.0
Actuated g/C Ratio		0.65	1.00		0.65						0.20	0.20
v/c Ratio		0.25	0.15		0.55						0.57	0.37
Control Delay		5.9	0.1		7.8						21.0	5.9
Queue Delay		0.0	0.0		0.0						0.0	0.0
Total Delay		5.9	0.1		7.8						21.0	5.9
LOS		A	A		A						C	A
Approach Delay		3.4			7.8						14.4	
Approach LOS		A			A						B	
Queue Length 50th (m)		20.2	0.0		25.9						13.1	0.0
Queue Length 95th (m)		m23.6	m0.0		49.4						\#27.5	9.9
Internal Link Dist (m)		127.1			72.0			152.4			127.2	
Turn Bay Length (m)			25.0									
Base Capacity (vph)		1226	1601		1226						400	472
Starvation Cap Reductn		0	0		0						0	0
Spillback Cap Reductn		0	0		0						0	0
Storage Cap Reductn		0	0		0						0	0
Reduced v/c Ratio		0.25	0.15		0.55						0.54	0.36
Intersection Summary												
Cycle Length: 40												
Actuated Cycle Length: 40												
Offset: 16 (40\%), Referenced to phase 4:EBT and 8:WBT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.57												
Intersection Signal Delay: 7.9				Intersection LOS: A								
Intersection Capacity Utilization 50.9\%				ICU Level of Service A								

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: \quad 53: Rothesay Ave \& Rte 1 off-ramp

	y							\uparrow			\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	「		\uparrow						\uparrow	F
Trafic Volume (vph)	0	437	468	0	661	0	0	0	0	0	549	413
Future Volume (vph)	0	437	468	0	661	0	0	0	0	0	549	413
Satd. Flow (prot)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Flt Permitted												
Satd. Flow (perm)	0	1883	1601	0	1883	0	0	0	0	0	1883	1601
Satd. Flow (RTOR)			156									162
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	475	509	0	718	0	0	0	0	0	597	449
Turn Type		NA	Free		NA						NA	Perm
Protected Phases		4			8						,	
Permitted Phases			Free									6
Total Split (s)		49.0			49.0						41.0	41.0
Total Lost Time (s)		4.5			4.5						4.5	4.5
Act Effct Green (s)		47.1	90.0		47.1						33.9	33.9
Actuated g/C Ratio		0.52	1.00		0.52						0.38	0.38
v/c Ratio		0.48	0.32		0.73						0.84	0.64
Control Delay		7.5	0.3		22.8						37.6	18.4
Queue Delay		0.5	0.0		1.8						0.0	0.1
Total Delay		8.0	0.3		24.6						37.6	18.4
LOS		A	A		C						D	B
Approach Delay		4.0			24.6						29.3	
Approach LOS		A			C						C	
Queue Length 50th (m)		27.4	0.0		96.8						87.7	37.2
Queue Length 95th (m)		m32.1	m0.0		142.9						\#130.3	67.4
Internal Link Dist (m)		113.6			461.9			166.4			142.0	
Turn Bay Length (m)			20.0									
Base Capacity (vph)		986	1601		986						763	745
Starvation Cap Reductn		201	0		0						0	0
Spillback Cap Reductn		0	0		133						0	11
Storage Cap Reductn		0	0		0						0	0
Reduced v/c Ratio		0.61	0.32		0.84						0.78	0.61
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: $24(27 \%)$, Referenced to phase 4:EBT and 8:WBT, Start of Green												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.84												
Intersection Signal Delay: 19.0				Intersection LOS: B								
Intersection Capacity Utilization 71.2\%				ICU Level of Service C								

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 50 : Rothesay Ave

Major/Minor		Major1		Minor2	
Conflicting Flow All		0	-	718	-
Stage 1		-		0	-
Stage 2		-		718	-
Critical Hdwy		-	-	6.42	-
Critical Hdwy Stg 1		-	-	-	-
Critical Hdwy Stg 2		-	-	5.42	-
Follow-up Hdwy		-	-	3.518	-
Pot Cap-1 Maneuver		-	0	~396	0
Stage 1		-	0	-	0
Stage 2		-	0	483	0
Platoon blocked, \%		-			
Mov Cap-1 Maneuver		-	-	~ 396	0
Mov Cap-2 Maneuver		-	-	~ 396	0
Stage 1		-	-	-	0
Stage 2		-	-	483	0
Approach		NB		SB	
HCM Control Delay, s		0		142.2	
HCM LOS				F	
Minor Lane/Major Mvmt	NBT SBLn1				
Capacity (veh/h)	- 396				
HCM Lane V/C Ratio	- 1.199				
HCM Control Delay (s)	- 142.2				
HCM Lane LOS	- F				
HCM 95th \%tile Q(veh)	- 19.2				
Notes					
\sim : Volume exceeds capacity	\$: Delay exceeds 300s	+: Computation Not Defined		*: All	or volume in platoon

\qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	PM
Freeway/Dir of Travel:	EB
Junction:	Rothesay Rd Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3137	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
Volume on ramp
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \quad \mathrm{~km} / \mathrm{h}$
$1106 \quad$ vph
300 m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No
Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
vph

\qquad

Capacity Checks

	Actual	Maximum	LOS F?
$\mathrm{v}=\mathrm{v}$	3834	4600	No
Fi F			
v	3834	4400	No
12			
$\mathrm{v}=\mathrm{v}-\mathrm{v}$	2593	4600	No
FO F R			
v	1241	2000	No
R			

Level of Service Determination (if not F) \qquad

Density,	$\mathrm{D}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L}=17.5 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence	D

Speed Estimation \qquad


```
Phone:
Fax:
```

E-mail:

Merge Analysis \qquad

Analyst:	Katie Hazzard
Agency/Co.:	exp
Date performed:	$1 / 23 / 2017$
Analysis time period:	AM Peak
Freeway/Dir of Travel:	WB
Junction:	Ashburn On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3240	vph

	Rata__On Ramp	
Side of freeway	Right	
Number of lanes in ramp	1	$\mathrm{~km} / \mathrm{h}$
Free-flow speed on ramp	60.0	vph
Volume on ramp	854	m
Length of first accel/decel lane	280	m
Length of second accel/decel lane		

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V	4918	4600	Yes
FO	4918	4600	Yes

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=23.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence F
Speed Estimation

Phone: Fax:

E-mail:

Diverge Analysis \qquad

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Morning Peak
Freeway/Dir of Travel:	Westbound
Junction:	Route 100 Off Ramp
Jurisdiction:	Provincial
Analysis Year:	2033

Description:

Freeway Data \qquad

Type of analysis	Diverge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3240	vph

Off Ramp Data \qquad

Side of freeway
Number of lanes in ramp
Free-Flow speed on ramp
$\begin{array}{lll}\text { Volume on ramp } & 1068 & \mathrm{vph} \\ \text { Length of first accel/decel lane } & 240 & \mathrm{~m}\end{array}$
Length of first accel/decel lane
Length of second accel/decel lane

Right
1
$60.0 \mathrm{~km} / \mathrm{h}$
m
\qquad

Does adjacent ramp exist?
Volume on adjacent ramp
No

Position of adjacent ramp
Type of adjacent ramp
Distance to adjacent ramp
m

\qquad

Capacity Checks

Level of Service Determination (if not F) \qquad

Density,	$\mathrm{D}=2.642+0.0053 \mathrm{v}-0.0183 \mathrm{~L}$
R	$=12.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
Level of service for ramp-freeway junction areas of influence	D

Speed Estimation \qquad

Intermediate speed variable,	$D_{S}=0.511$	
Space mean speed in ramp influence area,	$\underset{R}{S}=83.1$	km/h
Space mean speed in outer lanes,	$S_{0}=N / A$	km/h
Space mean speed for all vehicles,	$S=83.1$	km/h

```
Phone:
Fax:
```

E-mail:

Merge Analysis

Analyst:	KEH
Agency/Co.:	exp
Date performed:	2017
Analysis time period:	Evening Peak
Freeway/Dir of Travel:	EB
Junction:	Route 100 On Ramp
Jurisdiction:	Provincial
Analysis Year:	2033
Description: The Crossing	

Freeway Data \qquad

Type of analysis	Merge	
Number of lanes in freeway	2	
Free-flow speed on freeway	100.0	$\mathrm{~km} / \mathrm{h}$
Volume on freeway	3110	vph

Side of freeway	Right	
Number of lanes in ramp	1	
Free-flow speed on ramp	60.0	km/h
Volume on ramp	829	vph
Length of first accel/decel lane	250	m
Length of second accel/decel lane		m

Does adjacent ramp exist?	No	
Volume on adjacent Ramp		vph
Position of adjacent Ramp		
Type of adjacent Ramp	m	

\qquad

Capacity Checks \qquad

	Actual	Maximum	LOS F?
V FO	4628	4600	Yes
V	4628	4600	Yes

Level of Service Determination (if not F) \qquad
Density, $D=3.402+0.00456 \mathrm{v}+0.0048 \mathrm{v}-0.01278 \mathrm{~L}=22.2 \mathrm{pc} / \mathrm{km} / \mathrm{ln}$
R R 12 A
Level of service for ramp-freeway junction areas of influence F
Speed Estimation

Intersection						
Int Delay, s/veh 0.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	t		\%	\uparrow	\%	「
Traffic Vol, veh/h	312	0	6	270	O	1
Future Vol, veh/h	312	0	6	270	0	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	339	0	7	293	0	1

Intersection						
Int Delay, s/veh 0.8						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「	${ }^{7}$	4	F	
Traffic Vol, veh/h	6	32	22	450	266	4
Future Vol, veh/h	6	32	22	450	266	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	0	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	7	35	24	489	289	4

Intersection						
Int Delay, s/veh 0.6						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*	「	F		*	\uparrow
Traffic Vol, veh/h	24	4	468	22	4	294
Future Vol, veh/h	24	4	468	22	4	294
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	0	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	26	4	509	24	4	320

Intersection						
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	「	${ }^{7}$	4	¢	
Traffic Vol, veh/h	1	3	4	489	317	1
Future Vol, veh/h	1	3	4	489	317	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	500	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1	3	4	532	345	1

	4	\rightarrow		7			4	\dagger			$\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Volume (vph)	2	32	5	179	6	59	4	432	204	34	284	2
Future Volume (vph)	2	32	5	179	6	59	4	432	204	34	284	2
Satd. Flow (prot)	1789	1848	0	1789	1629	0	1789	1793	0	1789	1882	0
Flt Permitted	0.711			0.731			0.570			0.299		
Satd. Flow (perm)	1339	1848	0	1377	1629	0	1074	1793	0	563	1882	0
Satd. Flow (RTOR)		5			64			62			1	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	2	40	0	195	71	0	4	692	0	37	311	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	22.8	22.8		22.8	22.8		37.2	37.2		37.2	37.2	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Act Effct Green (s)	13.0	13.0		13.0	13.0		35.7	35.7		35.7	35.7	
Actuated g/C Ratio	0.23	0.23		0.23	0.23		0.62	0.62		0.62	0.62	
v/c Ratio	0.01	0.10		0.63	0.17		0.01	0.61		0.11	0.27	
Control Delay	15.0	14.7		28.8	6.8		5.8	10.0		6.9	6.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.0	14.7		28.8	6.8		5.8	10.0		6.9	6.6	
LOS	B	B		C	A		A	A		A	A	
Approach Delay		14.7			22.9			10.0			6.6	
Approach LOS		B			C			A			A	
Queue Length 50th (m)	0.2	2.7		17.1	0.5		0.2	32.9		1.3	12.3	
Queue Length 95th (m)	1.4	8.3		33.5	7.7		1.2	78.5		5.7	29.1	
Internal Link Dist (m)		116.7			101.0			79.1			152.8	
Turn Bay Length (m)							25.0			50.0		
Base Capacity (vph)	426	592		439	563		664	1133		348	1164	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.00	0.07		0.44	0.13		0.01	0.61		0.11	0.27	
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 57.7												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.63												
Intersection Signal Delay: 11.8				Intersection LOS: B								
Intersection Capacity Utilization 59.2\%				ICU Level of Service B								
Analysis Period (min) 15												

Splits and Phases: 64: Ashburn \& Access 5

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1}$	7	个		${ }^{7}$	4
Traffic Vol, veh/h	58	25	586	113	33	435
Future Vol, veh/h	58	25	586	113	33	435
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	0	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	63	27	637	123	36	473

Intersection												
Int Delay, s/veh	2.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	F		7	F		${ }^{7}$	F		${ }^{7}$	F	
Traffic Vol, veh/h	31	20	42	10	5	17	7	647	62	19	506	7
Future Vol, veh/h	31	20	42	10	5	17	7	647	62	19	506	7
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	0	-	-	0	-	-	250	-		500	-	
Veh in Median Storage, \#	-	0	-	-	0	-		0		-	0	
Grade, \%	-	0		-	0	-		0			0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	34	22	46	11	5	18	8	703	67	21	550	8

	4	\rightarrow						4			$\frac{1}{\dagger}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		1	\uparrow		${ }^{7}$	\uparrow		${ }^{1}$	\uparrow	
Traffic Volume (vph)	18	12	16	87	13	16	18	654	62	18	531	20
Future Volume (vph)	18	12	16	87	13	16	18	654	62	18	531	20
Satd. Flow (prot)	1789	1723	0	1789	1729	0	1789	1859	0	1789	1872	0
Flt Permitted	0.737			0.738			0.387			0.275		
Satd. Flow (perm)	1388	1723	0	1390	1729	0	729	1859	0	518	1872	0
Satd. Flow (RTOR)		17			17			13			5	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	20	30	0	95	31	0	20	778	0	20	599	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	22.6	22.6		22.6	22.6		37.4	37.4		37.4	37.4	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Act Effct Green (s)	8.8	8.8		8.8	8.8		31.5	31.5		31.5	31.5	
Actuated g/C Ratio	0.19	0.19		0.19	0.19		0.70	0.70		0.70	0.70	
v/c Ratio	0.07	0.09		0.35	0.09		0.04	0.60		0.06	0.46	
Control Delay	16.7	11.5		21.1	11.6		4.4	8.4		4.8	6.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	16.7	11.5		21.1	11.6		4.4	8.4		4.8	6.5	
LOS	B	B		C	B		A	A		A	A	
Approach Delay		13.5			18.7			8.3			6.5	
Approach LOS		B			B			A			A	
Queue Length 50th (m)	1.3	0.8		6.4	0.9		0.5	32.5		0.5	21.5	
Queue Length 95th (m)	5.8	6.0		18.0	6.2		2.6	76.1		2.8	49.1	
Internal Link Dist (m)		97.7			79.8			100.5			62.0	
Turn Bay Length (m)							50.0			25.0		
Base Capacity (vph)	581	732		582	734		537	1374		382	1382	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.03	0.04		0.16	0.04		0.04	0.57		0.05	0.43	
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 45.3												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.60												
Intersection Signal Delay: 8.6				Intersection LOS: A								
Intersection Capacity Utilization 57.2\%				ICU Level of Service B								
Analysis Period (min) 15												

Splits and Phases: 77: Ashburn \& Access 8

Intersection						
Int Delay, s/veh						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	${ }^{7}$	4	\uparrow		${ }^{1 /}$	$\stackrel{7}{ }$
Traffic Vol, veh/h	25	734	566	46	48	26
Future Vol, veh/h	25	734	566	46	48	26
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	-	0	0
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	27	798	615	50	52	28

Intersection						
Int Delay, s/veh 0.1						
Movement	EBT	EBR	WBL		NBL	NBR
Lane Configurations	$\hat{\beta}$		\%	\uparrow	\%	「
Traffic Vol, veh/h	288	0	6	300	0	1
Future Vol, veh/h	288	0	6	300	0	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	0
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	313	0	7	326	0	1

Intersection						
Int Delay, s/veh 1.3						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{*}$	「	${ }^{7}$	4	F	
Traffic Vol, veh/h	5	44	44	302	293	5
Future Vol, veh/h	5	44	44	302	293	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	0	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	5	48	48	328	318	5

Intersection						
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	${ }^{7}$	7	${ }^{7}$	4	\uparrow	
Traffic Vol, veh/h	1	5	6	373	360	1
Future Vol, veh/h	1	5	6	373	360	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	500	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mumt Flow	1	5	7	405	391	1

	4	\rightarrow		7			4	\dagger			$\frac{1}{1}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		${ }^{*}$	\uparrow		${ }^{1}$	\uparrow		${ }^{7}$	个	
Traffic Volume (vph)	3	16	10	110	15	75	9	301	154	85	275	3
Future Volume (vph)	3	16	10	110	15	75	9	301	154	85	275	3
Satd. Flow (prot)	1789	1772	0	1789	1646	0	1789	1787	0	1789	1882	0
Flt Permitted	0.694			0.739			0.576			0.446		
Satd. Flow (perm)	1307	1772	0	1392	1646	0	1085	1787	0	840	1882	0
Satd. Flow (RTOR)		11			82			68			1	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	3	28	0	120	98	0	10	494	0	92	302	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Act Effct Green (s)	8.5	8.5		8.5	8.5		23.3	23.3		23.3	23.3	
Actuated g/C Ratio	0.22	0.22		0.22	0.22		0.61	0.61		0.61	0.61	
v/c Ratio	0.01	0.07		0.38	0.23		0.02	0.44		0.18	0.26	
Control Delay	9.7	8.3		15.3	5.6		5.3	6.8		6.8	6.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	9.7	8.3		15.3	5.6		5.3	6.8		6.8	6.2	
LOS	A	A		B	A		A	A		A	A	
Approach Delay		8.5			10.9			6.8			6.3	
Approach LOS		A			B			A			A	
Queue Length 50th (m)	0.2	0.8		5.8	0.7		0.3	13.3		2.5	8.5	
Queue Length 95th (m)	1.2	4.2		14.3	7.1		1.7	35.9		9.2	22.2	
Internal Link Dist (m)		116.7			101.0			79.1			152.8	
Turn Bay Length (m)							25.0			50.0		
Base Capacity (vph)	622	849		662	826		666	1124		516	1157	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.00	0.03		0.18	0.12		0.02	0.44		0.18	0.26	
Intersection Summary												
Cycle Length: 45												
Actuated Cycle Length: 37.9												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.44												
Intersection Signal Delay: 7.5				Intersection LOS: A								
Intersection Capacity Utilization 53.9\%				ICU Level of Service A								
Analysis Period (min) 15												

Splits and Phases: 64: Ashburn \& Access 5

Intersection						
Int Delay, s/veh						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{1}$	「	个		${ }^{1}$	4
Traffic Vol, veh/h	58	25	439	100	38	360
Future Vol, veh/h	58	25	439	100	38	360
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	500	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	63	27	477	109	41	391

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	\uparrow		${ }^{7}$	\uparrow		\%	F		${ }^{7}$	F	
Traffic Vol, veh/h	6	4	5	40	5	37	6	496	152	57	354	7
Future Vol, veh/h	6	4	5	40	5	37	6	496	152	57	354	7
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	0	-	-	0	-	-	250	-	-	500	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0			0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	7	4	5	43	5	40	7	539	165	62	385	8

Major/Minor	Minor2		Minor1					Major1			Major2			
Conflicting Flow All	1171	1230	389		1152	1151	622		392	0	0	704	0	0
Stage 1	513	513	-		635	635	-		-	-	-	-	-	
Stage 2	658	717	-		517	516	-		-	-	-	-	-	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	-	-	4.12	-	
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	-		-	-	-	-	-	
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	-		-	-	-		-	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218	-	-	2.218	-	
Pot Cap-1 Maneuver	170	178	659		175	198	487		1167	-	-	894	-	
Stage 1	544	536	-		467	472	-		-	-	-	-	-	
Stage 2	453	434	-		541	534	-		-	-	-	-	-	
Platoon blocked, \%										-	-		-	
Mov Cap-1 Maneuver	144	165	659		160	183	487		1167	-	-	894	-	
Mov Cap-2 Maneuver	144	165	-		160	183	-		-	-	-	-	-	
Stage 1	541	499			464	469	-		-	-			-	
Stage 2	408	431	-		495	497	-		-	-	-	-	-	
Approach	EB				WB				NB			SB		
HCM Control Delay, s	23.4				25.1				0.1			1.3		
HCM LOS	C				D									
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	EBLn2	VBLn1	WBLn2	SBL	SBT	SBR				
Capacity (veh/h)	1167	-	-	144	283	160	407	894	-	-				
HCM Lane V/C Ratio	0.006	-	-	0.045	0.035	0.272	0.112	0.069	-	-				
HCM Control Delay (s)	8.1	-	-	31.2	18.2	35.7	15	9.3	-	-				
HCM Lane LOS	A			D	C	E	C	A	-	-				
HCM 95th \%tile Q(veh)	0	-		0.1	0.1	1	0.4	0.2	-	-				

	4			4		4	4	\dagger	p		\dagger	\pm
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow		${ }^{7}$	\uparrow		${ }^{7}$	个		${ }^{7}$	\uparrow	
Traffic Volume (vph)	12	8	11	135	7	37	9	543	152	57	331	11
Future Volume (vph)	12	8	11	135	7	37	9	543	152	57	331	11
Satd. Flow (prot)	1789	1721	0	1789	1648	0	1789	1821	0	1789	1874	0
Flt Permitted				0.755			0.532			0.268		
Satd. Flow (perm)	1883	1721	0	1422	1648	0	1002	1821	0	505	1874	0
Satd. Flow (RTOR)		12			40			28			3	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	13	21	0	147	48	0	10	755	0	62	372	0
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8			2			6		
Total Split (s)	9.0	22.6		9.0	22.6		33.4	33.4		33.4	33.4	
Total Lost Time (s)	4.0	4.5		4.0	4.5		4.5	4.5		4.5	4.5	
Act Effct Green (s)	6.5	6.1		7.3	6.2		32.9	32.9		32.9	32.9	
Actuated g/C Ratio	0.14	0.13		0.16	0.13		0.70	0.70		0.70	0.70	
v/c Ratio	0.05	0.09		0.55	0.19		0.01	0.59		0.18	0.28	
Control Delay	15.6	14.7		24.9	11.2		4.8	8.8		6.5	5.2	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	15.6	14.7		24.9	11.2		4.8	8.8		6.5	5.2	
LOS	B	B		C	B		A	A		A	A	
Approach Delay		15.0			21.6			8.8			5.3	
Approach LOS		B			C			A			A	
Queue Length 50th (m)	0.9	0.6		10.6	0.5		0.2	22.3		1.3	8.5	
Queue Length 95th (m)	3.8	5.6		21.8	7.9		2.1	\#100.7		9.0	33.7	
Internal Link Dist (m)		97.7			79.8			100.5			62.0	
Turn Bay Length (m)							50.0			25.0		
Base Capacity (vph)	249	677		268	666		703	1287		354	1316	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.05	0.03		0.55	0.07		0.01	0.59		0.18	0.28	
Intersection Summary												
Cycle Length: 65												
Actuated Cycle Length: 46.9												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.59												
Intersection Signal Delay: 9.6				Intersection LOS: A								
Intersection Capacity Utilization 67.4\%				ICU Level of Service C								
Analysis Period (min) 15												

\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 77: Ashburn \& Access 8

Intersection						
Int Delay, s/veh						
Movement	NBL	NBT	SBT	SBR	SEL	SER
Lane Configurations	${ }^{1}$	4	\uparrow		${ }^{1}$	F'
Traffic Vol, veh/h	25	673	463	46	48	26
Future Vol, veh/h	25	673	463	46	48	26
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	-	0	0
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	27	732	503	50	52	28

	\checkmark			\pm		4
Lane Group	EBL	EBT	WBT	WBR	SWL	SWR
Lane Configurations	${ }^{7}$	4	4	「	${ }^{7}$	「'
Traffic Volume (vph)	145	329	443	388	489	309
Future Volume (vph)	145	329	443	388	489	309
Satd. Flow (prot)	1789	1883	1883	1601	1789	1601
Flt Permitted	0.342				0.950	
Satd. Flow (perm)	644	1883	1883	1601	1789	1601
Satd. Flow (RTOR)				422		226
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)		0\%	0\%		0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	158	358	482	422	532	336
Turn Type	Perm	NA	NA	Perm	Prot	Perm
Protected Phases		4	8		6	
Permitted Phases	4			8		6
Total Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Act Effct Green (s)	18.0	18.0	18.0	18.0	18.0	18.0
Actuated g/C Ratio	0.40	0.40	0.40	0.40	0.40	0.40
v/c Ratio	0.61	0.48	0.64	0.47	0.74	0.43
Control Delay	25.2	12.6	15.7	3.3	20.3	5.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.2	12.6	15.7	3.3	20.3	5.6
LOS	C	B	B	A	C	A
Approach Delay		16.5	9.9		14.6	
Approach LOS		B	A		B	
Queue Length 50th (m)	9.3	19.6	28.7	0.0	33.6	5.2
Queue Length 95th (m)	\#31.2	36.4	52.4	11.9	\#73.9	17.7
Internal Link Dist (m)		146.4	432.6		133.7	
Turn Bay Length (m)	50.0			50.0		
Base Capacity (vph)	257	753	753	893	715	776
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.61	0.48	0.64	0.47	0.74	0.43
Intersection Summary						
Cycle Length: 45						
Actuated Cycle Length: 45						
Offset: $0(0 \%)$, Referenced to phase 2: and 6:SWL, Start of Green						
Control Type: Pretimed						
Maximum v/c Ratio: 0.74						
Intersection Signal Delay: 13.2				Intersection LOS: B		
Intersection Capacity Utilization 69.7\%						

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 62:

Lane Group	SEL	SET	NWT	NWR	SWL	SWR
Lane Configurations	${ }^{7}$	4	4	「	*	「
Traffic Volume (vph)	134	456	245	709	673	189
Future Volume (vph)	134	456	245	709	673	189
Satd. Flow (prot)	1789	1883	1883	1601	1789	1601
Flt Permitted	0.390				0.950	
Satd. Flow (perm)	735	1883	1883	1601	1789	1601
Satd. Flow (RTOR)				771		205
Confl. Peds. (\#/hr)						
Confl. Bikes (\#/hr)						
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0
Parking (\#/hr)						
Mid-Block Traffic (\%)		0\%	0\%		0\%	
Shared Lane Traffic (\%)						
Lane Group Flow (vph)	146	496	266	771	732	205
Turn Type	pm+pt	NA	NA	Perm	Prot	Perm
Protected Phases	1	6	2		8	
Permitted Phases	6			2		8
Total Split (s)	9.0	36.0	27.0	27.0	39.0	39.0
Total Lost Time (s)	4.0	4.5	4.5	4.5	4.5	4.5
Act Effct Green (s)	25.5	25.0	18.4	18.4	30.8	30.8
Actuated g/C Ratio	0.39	0.38	0.28	0.28	0.47	0.47
v/c Ratio	0.39	0.69	0.50	0.77	0.87	0.24
Control Delay	17.0	22.8	25.0	7.9	30.2	2.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	17.0	22.8	25.0	7.9	30.2	2.8
LOS	B	C	C	A	C	A
Approach Delay		21.5	12.3		24.2	
Approach LOS		C	B		C	
Queue Length 50th (m)	12.4	53.4	30.4	0.0	82.5	0.0
Queue Length 95th (m)	23.3	83.4	51.0	27.2	\#157.4	10.0
Internal Link Dist (m)		152.1	429.7		108.5	
Turn Bay Length (m)	50.0			50.0		
Base Capacity (vph)	372	954	681	1071	992	980
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.39	0.52	0.39	0.72	0.74	0.21

Intersection Summary

Cycle Length: 75
Actuated Cycle Length: 65.3
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.87

Intersection Signal Delay: 18.8
Intersection Capacity Utilization 68.8\%
Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service C
\# 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 27:

