Appendix L

Sorensen Engineering Ltd. 145 Frederick St., St. Andrews, NB E5B 1Z3 Telephone: (506) 529-0093 Email: marc@soreng.ca

Environment and Local Government P.O. Box 6000 Fredericton, NB E3B 5H1 October 17, 2016

Attention: Lee Swanson

## RE: EIA Registration 4561-3-1410 Oak Bay Hatchery Wastewater Treatment Upgrade

Dr. J.A.K. Elliott, with Cooke Aquaculture Ltd. (Cooke,) asked I respond to several of the questions posed to Mr. M. Dickie September 23, 2016 in relation to the ongoing project at Oak Bay Hatchery (the facility.) Please find responses enclosed, answered as best as possible with current information available. Further clarification is available upon request.

Enclosed responses completely supersede previous response issued by Sorensen Engineering Ltd. July 26, 2016.

More Gronsm

Marc Sorensen, P.Eng.



1. Below is the referenced change of scope, taken from the Environmental Impact Assessment Registration Document dated April 17, 2015, with revisions in RED by Sorensen Engineering Ltd. It is proposed these sections 3.1 to 3.3 would replace those in the registration document.

## 3.1 Project Background

Cooke proposes to upgrade the current WTS at their Oak Bay Hatchery by installing a second drum filter to provide redundancy. replacing the existing drum filter installation in order to meet regulatory compliance under paragraph 8(1) of the Water Quality Regulations Clean Environment Act. The facility is currently licensed through the New Brunswick Department of Agriculture, Aquaculture and Fisheries (NB DAAF) and operates under "Approval to Operate I-8539" (the Approval), issued by the New Brunswick Department of Environment (ND DELG), pursuant to Paragraph 8(1) of the Water Quality Regulation – Clean Environment Act (Appendix A). The current Approval is effective from November 1, 2013 until October 31, 2016.

[Moved from 3.2] The Certificate of Approval (COA) for the Oak Bay Hatchery requires that total nitrogen (TN) and total phosphorus (TP) at the edge of the mixing zone must be below the levels outlined in the most recent version of the *Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick.* The performance based standards for TN and TP are 500  $\mu$ g/L and 35  $\mu$ g/L respectively. Monitoring of the receiving waters indicate that these standards are being met with the current drum filter (RFM60120) in place.

The NB Department of Environment and Local Government (NBDELG) has advised Cooke that the WTS upgrade requires registration pursuant to the Environmental Impact Assessment (EIA) Regulations (Reg. 87-83), of the *Clean Environment Act* (N.B. O.C. 87-558/1987). Projects subject to an Environmental Impact Assessment (EIA) are divided into three categories: Category I, Category II, and Category III. In proposing a significant modification to a waste disposal facility or system [Schedule A (m)], the Proponent is required to register the Project as a Category I Undertaking. This document is intended to fulfil the primary requirements for Project Registration under the legislation.

3.2 Purpose and Need for the Project

The primary focus of the project is to upgrade the WTS of the facility. The upgrade will provide redundancy in the event of a mechanical failure of the existing effluent drum filter. While the current drum filter provides sufficient water treatment to meet regulatory compliance, in the event of a mechanical failure there is currently no back-up system in place to prevent unfiltered effluent from being discharged.

The purpose of the Project is to upgrade the WTS in order to improve effluent water quality. The Certificate of Approval (COA) for the Oak Bay Hatchery requires that total nitrogen (TN) and total phosphorus (TP) at the edge of the mixing zone must be below the levels outlined in the most recent version of the Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick. Water quality monitoring has found that effluent sampled from the TWS outflow has shown exceedances of these parameters. It was determined that the existing drum filter was of insufficient capacity during normal operations.

## 3.3 Consideration of Alternatives

Implementing an engineered settling pond for the maximum effluent flow present at the facility was found to be unfeasible. The visible solids that were able to pass through a 60  $\mu$ m drum filter screen have a settling velocity of 1.04 x 10<sup>-4</sup> m/s (37 cm per hour), and to capture 70-75% of the solids would require designing for a settling velocity of 4.2 x 10<sup>-5</sup> m/s (15 cm per hour). There is insufficient space available on site to provide adequate settling for solids which pass through drum filtration.

Improvements for system solids removal are made continually. In 2014 and 2015 these, with improvements to solids transfer to on-site solids holding tanks, reduced the quantity of solids and water volume sent to effluent treatment significantly. While this reduced the potential risk associated with a WTS failure, it did not eliminate it.

It was concluded that installing redundancy in the drum filtration was the most effective method for mitigating the risk of mechanical failure of the WTS.

In an attempt to improve effluent water quality, properly specified back-wash pumps were installed on existing system drum filters in 2014. Additionally, to minimize surges in flow to the WTS, swirl separators were modified to produce a continuous underflow. However, no improvement in system water quality was found, flushing was still necessary, and underflow was found to be uncontrolled during power failures. It was concluded that upgrading the wastewater system was the most effective method to improve effluent quality.

- 2. The scope of the project is as defined above.
- 4. The installation of a second RFM60120 drum filter will provide complete redundancy for the first. To minimize downtime and cost, installation of the second RFM60120 drum filter requires modification to the design detailed in the registration document.

Please see Appendix A for drawings illustrating the currently installed RFM60120 (D-1 Drum Replacement) and drawings detailing the installation of the redundant RFM60120 drum filter (D-2) as well as the detailed site plan (L-3).

9. The TRC Response 2, dated September 23, 2016 indicates "solids are still present within the outfall area as observed during our site visit February 1, 2016 and consistently throughout the receiving Bay".

A request was made June 23, 2016, for any additional sample results taken by DELG to aid in the assessment of the facility. Krista Flanagan indicated, June 28, 2016, there were no additional results available (see correspondence in Appendix C). Please provide the results supporting the quoted statement.

Please provide the method used to discern solids originating from the facility in the receiving bay.

The installed RFM60120 drum filter is designed to remove solids larger than  $60\mu m$ . The drum filter's flow capacity has been demonstrated sufficient to maintain compliance with the Approval to Operate. The removal of all solids is not required for the facility to be compliant with the Approval to Operate. According to the Environmental Management Program for Land

Based Finfish Aquaculture in New Brunswick, only Total Nitrogen (TN) and Total Phosphorus (TP) are the "performance based standard indicators" (NBDELG, 2013).

The term "settling pond" is causing confusion. The area, in fact, acts as a catch basin for storm water runoff and provides some equalization capacity for effluent. It is not an engineering settling pond. The area will be retitled "Catch Basin" in all drawings and reports moving forward.

The Catch Basin does not meet the dimensional requirements of an engineered settling pond for the maximum flow present at the facility. The Catch Basin is not intended to act as an engineered settling pond, though some solids do settle and accumulate. Settled solids are routinely removed from the Catch Basin. Please see #10 in the "Benefit of Extra Settling" section.

We understand that the Catch Basin was larger when constructed and that it has not been intentionally reduced in size. However, the plowing of snow into the Catch Basin over the past 20+ years has infilled it somewhat.

It is important to note: the most significant surges, from E-Line, were eliminated in 2015. Cooke plan to implement the successful management practices and modifications to the other production areas when possible.

10. The installed RFM60120 drum filter has been demonstrated sufficient to meet regulatory thresholds within DELG's Certificate of Approval to Operate (I-8539).

The establishment of a mixing zone was not a component of the initial Registration Document and study. The Registration Document does state that a mixing zone needs to be established.

As per the Approval to Operate (I-8539) #33 "Monitoring shall include samples taken from the outer perimeter and outside of the mixing zone as established by an inspector and approved by the Minister."

Since a mixing zone has not been established empirically by an inspector, regulatory samples have been taken at WQ1 (as Edge of Mixing) and WQ2 (as Control).

Based on triplicate sampling and measurement uncertainty limitations by available chemical analysis (Maxxam and RPC), it is not possible to accurately establish a mixing zone based on empirical data. Bay monitoring shows no measurable impact at locations WQ1 to WQ6. See below under "Validation of Water Quality Analysis (June 2016)".

Barry Loescher, Quality Systems Specialist at Maxxam Analytics and the Chair of Environmental/Life Sciences Division of the Canadian Council of Independent Laboratories, recommends triplicate TN samples be taken and the average reported since single point samples can be highly variable. Correspondence with Barry Loescher can be found in Appendix C.

After the July 2, 2015 response from the TRC, Cooke engaged Strum to complete the water quality study of the receiving waters, as committed to in the April 17, 2015 registration document.

In August 2015, Strum Consulting delivered to Cooke a report entitled Water Quality Baseline Study (WQBS). The study identified (6) locations in Oak Bay, which Strum felt could illustrate dispersion of the facility's effluent. Several parameters were monitored at each location, including: Total Nitrogen (TN), Total Phosphorus (TP), and TSS. A plan illustrating the locations is included in appendix A. Additionally, Strum delivered Cooke a second document entitled Water Quality Management Plan (WQMP). The WQMP is a standard operating procedure for collecting water samples in the same locations used in WQBS omitting WQ4. Water quality was monitored according to the WQMP from August to October 2015 and from May to July 2016. The results were to aid in the establishment of a mixing zone and help quantify the impact of the facility's discharge. Both the WQBS and WQMP are included in Appendix C.

It is important to bear in mind that both the WQBS and WQMP are based on single point samples taken of the receiving water body and so are erroneous. Though samples were taken at the top and bottom of the water column, values were considered independently. Conclusions based on the unreliable data must therefore be understood to be similarly erroneous.

Results from continued monitoring of the locations recommended by Strum can be found in appendix B in the document "Water Quality Monitoring TN&TP Data Sheet". Please note, only data points denoted with an (\*) are triplicate.

All water samples for analysis (TP, TN, TAN, TSS, and COD) were sent to the Bedford, NS Maxxam laboratory. Total Nitrogen samples were then forwarded by Maxxam to their lab in Burnaby, BC. The lab in Bedford is unable to process TN in salt water at such low concentrations.

Samples were stored in accordance with Maxxam requirements and were typically sent within 1-3 days of sampling. Samples were placed in a fridge or on ice within an hour of sampling to maintain a sample temperature between  $1^{\circ}C-6^{\circ}C$ . Sample bottles were provided by Maxxam analytics with the proper preservative included. Total nitrogen and phosphorus samples were preserved with hydro sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) and have an estimated hold time of 28 days (if kept within the prescribed temperature). See "Sample Bottle Requirements" obtained from Maxxam in Appendix C.

Additional settling was initially considered in this project to provide additional redundancy for drum filter failure. There is insufficient space available on site to provide adequate settling for solids which pass through drum filtration. Additional settling would have no significant effect on regulated nutrient (TN or TP) discharge. Additional settling is therefore no longer be a component of the project.

## Validation of Water Quality Analysis (June 2016)

Through the WQMP monitoring, discrepancies in nutrient analysis were observed with Total Phosphorus, Total Nitrogen and Total Suspended Solids. Total phosphorus concentrations across all monitoring locations averaged 0.044 mg/L, which exceeds the regulatory threshold of 0.035 mg/L. Total Nitrogen across all monitoring locations averaged 0.32 mg/L, below the regulatory limit of 0.5 mg/L. There were samples, including at WQ5, with reported TN concentrations greater than the regulatory limit of 0.5 mg/L.

Upon investigation, the laboratory conducting the total phosphorus analysis, Maxxam, do so with a reported measurement uncertainty of  $\pm 0.020$  mg/L at concentrations close to 0.035 mg/L in salt water. Other laboratories, such as RPC, express similar difficulty in accurately measuring total phosphorus in salt water.

Total nitrogen analysis presented similar inaccuracy in point sampling, including with Maxxam though they report a measurement uncertainty of 0.02-0.05 mg/L. Three locations (WQ1, WQ5, and WQ6) were selected for a validation study of the total nitrogen analysis.

Triplicate sample sets were taken from each location on three consecutive days at high tide. Five sets were completed sampling (1) 4 L Van Dorn Bottle at each location. From each bottle (3) sub-samples were taken.

Four sets were completed sampling (3) 4 L Van Dorn Bottles one after another at each location. From each bottle (1) sub-sample was taken.

The results are shown in figure 1 along with a 90% confidence interval (data can be found in appendix B in the document entitled "Triplicate TN Data Sheet").

This indicates that there is 90% confidence that any one total nitrogen sample is  $\pm$  0.15 mg/L on average of the actual concentration. Meaning point samples of total nitrogen concentrations analysed as 0.65 mg/L may be 0.5 mg/L or lower and therefore compliant.

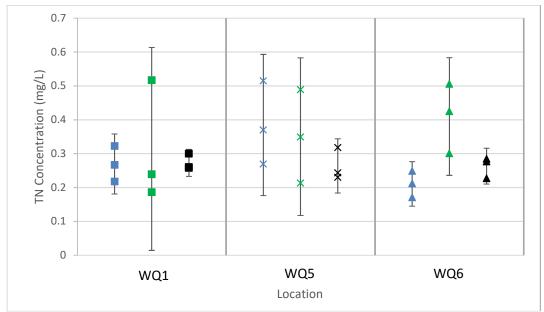



Figure 1: Results from triplicate sample tests at WQ1, WQ5, and WQ6 with 90% confidence interval. The first two sets of triplicate samples at WQ1 and WQ6 were taken from the same 4 L Van Dorn Bottle, the last set of triplicate samples at all locations as well as the second set at WQ5 were taken from three different Van Dorn Bottles at the same location, one after another.

In conclusion, during June 2016, point sampling of total nitrogen and total phosphorus at WQ1 to WQ6 was found to be an unreliable method of determining the existing nutrient concentrations in the receiving water.

Further triplicate sampling of WQ1 and WQ2 support this conclusion (see Triplicate TN Data Sheet in Appendix B).

#### Calculations as to how regulatory thresholds will be met

For an explanation of facility's impact on the bay, see section 26. Further clarification is available upon request.

11. Under the Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick (NBDELG, 2013), the TSS of effluent from the facility is not regulated.

Regarding particle size distribution. Based on the capture efficiency of the WTS drum filter, approximately 57% are less than 60  $\mu$ m. The remaining 43% are greater than 60  $\mu$ m during normal operation. This results in filtrate with an average TSS concentration less than 13 mg/L. The bay TSS is 16.9 ± 2.2 mg/L.

There was initially some variability in TSS measurements, as seen with TN, while monitoring according to the WQMP. Upon discussion with Maxxam it was concluded the variability in TSS results were likely due to sample volume. The analysis of TSS was then changed from submitting 200 mL samples to the labs, to utilizing equipment on site to analyse samples with an average volume of 4.3 L and 3.2 L for water samples taken from the bay and after the drum, respectively. Each bay sample and after drum sample contained on average 55 mg and 24 mg of solids, respectively. These were weighed with less than 2% and 6% uncertainty, respectively.

To analyse the average TSS of the facility's effluent, composite samples were collected taking 60 mL samples every 5 minutes from the drum filter discharge for a 12-hour period (two overnight periods and 2 daytime periods were monitored). Total suspended solids concentrations of the water leaving the facility were 6.9 mg/L from 7 pm to 7 am and 10.6 mg/L from 7 am to 7 pm (see "Composite Sample TSS Data Sheet" in appendix B). This is in agreement with the WQMP monitoring. The average TSS concentration of all bay water sampling locations was found to be  $16.9 \pm 2.2 \text{ mg/L}$  from April-September 2016 (see "Water Quality Monitoring TN&TP Data Sheet" in appendix B). Facility discharge is therefore not negatively impacting the water quality of the receiving waters.

The implementation of a chemical treatment system, as described by Hayter et al. 2016, requires the effluent from systems be divided into two steams: concentrated and dilute. The concentrated stream containing drum filter back-wash, swirl separator and radial flow separator purges, and static filter wash down water. The dilute stream typically only includes system water overflow. E-Line is currently the only system at the facility with effluent divided into the two streams. With the dilute combined stream serving as the facility's effluent, Dr. Couturier with the Department of Chemical Engineering of the University of New Brunswick, found chemical treatment impractical for solids removal.

At Buckman's Creek Hatchery, Hayter et al. (2016) found three different chemical dose regimes were necessary for the two major systems on site. The different regimes are required because of the different solids capturing equipment in the two systems. The regimes must be managed manually. Implementing this type of system on a site with seven systems, even with effluent streams divided into concentrated and dilute, would be difficult to manage.

Dr. Couturier has studied the solids being flushed from swirl separators at the facility. Dr Couturier found the large and sudden surge of flow, generated from flushing swirl separators, produced sufficient turbulence along the tortuous path towards effluent to significantly reduce particle size.

These findings were the basis for the initiative to eliminate surge flows from Swirl Separators to effluent. In 2015 the 10'-0" diameter swirl separator in E-Line was replaced with (4) modern 6'-0" diameter Radial Flow Separators (RFS), (1) per rearing tank. Included in this project was the change from flushing solids to gently metering solids to existing solids holding tanks with a diaphragm pump. Additionally, the angle of the RFS cone bottoms are 60° compared to the 45° swirl separator cone. The 60° cones further concentrate solids and improve their removal from the unit. These changes successfully demonstrated it is possible to capture >40% of TSS generated in a system and retain them.

E-Line drum filter back wash was redirected as well. Traditionally, the drum filter back wash was plumbed to the effluent drum filter and was subject to the same tortuous path as swirl separators. The E-Line drum filter back wash is now plumbed to the existing septic tanks. This has resulted in an additional >40% of TSS generated in the system being retained.

This 2015 project successfully demonstrated it is possible to avoid sending the majority of TSS generated on site to the WTS drum filter and instead retain it offline, without the use of chemical treatment (flocculation).

The installed RFM60120 drum filter has been demonstrated sufficient to meet regulatory thresholds within DELG's Certificate of Approval to Operate. The typical reason for implementing chemical treatment is to meet phosphorus regulatory limits when there is insufficient dilution in the receiving water. There is no proven chemical treatment method for the removal of nitrogen. Chemical treatment is not required for this site.

As mentioned in #10, both Strum WQBS and WQMP reports are based on single point samples taken of the receiving water body and so are erroneous.

Similar to the TN discharge model in #26, the receiving water encompassed by area A (shown in Appendix A) consists of approximately 950,000 m<sup>3</sup> of water. To increase the TSS of this water volume by 1 mg/L, 950 kg of TSS would need to be discharged in less than 12 hours (between low tide and low tide, as the aforementioned area is drained at low tide).

As TSS concentrations at WQ2 were on average 9 mg/L higher than the drum filter filtrate, and the total feed added to the system daily is less than 700 kg, it follows that the hatchery is not negatively impacting the water quality of the receiving waters. See Appendix C for "Water Quality Monitoring TSS Data Sheet".

The facility continuously releases effluent into the intertidal area when the tide is out.

All samples were taken just after high tide, on the ebb tide.

14. Please see the following table for the planned use for each of the wells on site.

## On-site Wells

| Well | Planned Use                                   | Additional Details                  | Well ID            | Flow Rate*<br>(m <sup>3</sup> /h) |
|------|-----------------------------------------------|-------------------------------------|--------------------|-----------------------------------|
| 1    | Production                                    | Level monitoring to<br>be installed |                    |                                   |
| 2    | Production                                    | New cap to be<br>installed          |                    | 72                                |
| 3    | Back-up                                       | Level monitoring to<br>be installed |                    |                                   |
|      |                                               | Pump to be replaced                 |                    |                                   |
| 4    | Domestic<br>Supply                            | -                                   |                    | ?                                 |
| 5    | Possible Either #5 or #6 to be decommissioned |                                     |                    | 0                                 |
| 6    | Possible<br>Observation                       | depending on<br>capacity            | None<br>Identified |                                   |
| 7    | Observation/<br>back-up                       | -                                   |                    | 46.8                              |
| 8    | Production                                    | Level Monitoring<br>Installed       | 0027924            | 40.0                              |
| 9    | Decommission                                  | -                                   |                    |                                   |
| 10   | Decommission                                  | -                                   |                    |                                   |
| 11   | Possible Salt<br>Water                        | -                                   | 0046326            | 0                                 |
| 12   | Decommission                                  | -                                   |                    |                                   |
| 13   | Decommission                                  | -                                   | 0017975            |                                   |

\*Pumping rates recorded September 26, 2016

The drawing "Well Head Locations OBH" is included in Appendix A. The drawing illustrates the location and top of well casing elevation for each well. The top of well casing elevation and water levels presented in the preliminary well testing are referenced to the NB Grid Monuments.

A timeline for decommissioning wells 9, 10, 12 and 13 will be established once approval to proceed and requirements are received from DELG.

An estimate for the pumping capacity of each production and back-up well will be determined as a component of the WSSA.

Well 9 will be decommissioned, so will not require a flow meter.

Well 4 will only be used as a domestic supply in the Tech Room only. (Perhaps a domestic flow totalizer could be sufficient.)

The (2) installed ABB Electro Magnetic Flow meters were highly recommended by Strum and others and were costly to install. They are commonly used in municipal applications. An information sheet for them is included in Appendix C ("WaterMaster FEW325 Data Sheet").

Both flow meters have been inaccurate since their installation in October 2015. Displayed values are commonly 30% higher (and sometimes more) than the actual pumping rate. This was the case during the site visit by DELG February 1, 2016.

Cooke have worked continuously with Coastal Controls and Industrial Instrumentation (CCII) to troubleshoot the issue, since their installation. Installation and water chemistry have been eliminated as potential interferences. CCII is now willing to consider the units may be calibrated incorrectly and are working to resolved the issue.

The flowmeter data is not accurate, so it should not be included in the annual report. The hardware is in place to log the flow rates when the flow meters are made accurate.

The actual pumping rates of the production wells have been periodically monitored throughout the year. The rates do not change frequently. The available data can be submitted.

Following an inventory of wells on site, no well with an ID 29110 has been found.

A preliminary assessment of production wells was conducted on August 26, 2016 and September 27, 2016.

## Well #8 Data Logging

Data logging for Well #8 from June 30, 2016 to September 20, 2016 is shown in figure C.1 in Appendix C "Graphs for Well Testing". There is an apparent steady water level in the well up to June 14<sup>th</sup> at which time the water level began to decrease steadily until August 17<sup>th</sup> where it appears to level off experiencing some decrease up to September 20<sup>th</sup>. The hatchery did not significantly change water usage over this time.

## Well #8 Recovery Monitoring

On August 26, 2016 the recovery of Well #8 was monitored. The well recovered 0.53 m in 13 minutes after the pump was turned off. When the pump was turned back on, the water level in the well returned to the original operating water level.

Additional Well #8 monitoring was conducted on September 27, 2016. The initial water level of the well was -1.62 m with the pumping rate maintained for the 7 days prior.

With the Well #8 water level being monitored and logged every 30 seconds, the well pump was turned off. The level increased from -1.62 m to -1.17 m (0.45 m) over 17.5 minutes. This represents the normal drawdown. The well recovered to within 5 cm of the rest water level in 5 minutes as shown in Figure C.2 in "Graphs for Well Testing" in Appendix C.

## Well #1 & #2 Recovery Monitoring

The water level in Well #2 was monitored for a period of 33 minutes before turning off the pumps for both Well #1 and #2. The water level rose from an operating water level of -0.24 m

to +2.05 m, a recovery of 2.29 m in 17 minutes. The water level recovered to within 5 cm of the stable water level in 4.5 minutes. The pumps were then turned back on to their original operating flow rate and the water level lowered to -0.14 m. The recovery data is shown in figure C.3 in "Graphs for Well Testing" in Appendix C.

These preliminary results are being provided to assist DELG in establishing the requirements for the WSSA. A timeline for completing the WSSA will be established once approval to proceed and requirements are received from the minister. It is understood the WSSA completion will result in the well withdrawal rate stated in the Approval to Operate being revised to reflect the historic usage, now being more accurately quantified.

- 15. See comments in #14 regarding WSSA timeline.
- 19. The shorebird survey has not yet been completed. Is this survey necessary for the completion of the EIA as the project (as described by the revised scope in #1) will not have a negative environmental effect and the facility is currently in compliance with effluent discharge regulations as per the Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick (DELG, 2013)?

Fish and Benthic surveys have been completed by Strum Consulting and will be delivered to the TRC when received.

- 20. The complete ACCDC report obtained from Strum Consulting can be found in Appendix C.
- 22. A drawing of the site plan of the facility is included in Appendix A.
- 26. The regulatory thresholds for facilities with outfalls into coastal or estuarine waters are found in table 2. These thresholds are measured at the edge of effluent mixing zone with primary focus on total nitrogen as it is the limiting nutrient for primary growth (plant and algae) (NBDELG, 2013).

 Table 1: Regulatory thresholds for facilities with outfalls into coastal or estuarine waters (NBDELG, 2013)

| Parameter        | Regulatory Threshold (mg/L) |
|------------------|-----------------------------|
| Total Nitrogen   | 0.5 mg/L                    |
| Total Phosphorus | 0.035 mg/L                  |

Oak Bay Hatchery uses different types of feed for the varying stages of salmon development with a protein content ranging from 43-55%. Nitrogen can then be calculated from the protein content, as protein is 16% nitrogen. The discharge of Nitrogen and Phosphorus is directly linked to the feeding rate of the facility. Since 2012, the maximum average daily feed rate has been less than 700 kg<sub>FEED</sub>/day. This maximum was used to model the nitrogen discharge.

$$TN_{FEED,MAX} < 700 \frac{kg_{FEED}}{day} \times 55\% \frac{kg_{PROTIEN}}{kg_{FEED}} \times 16\% \frac{kg_{TN}}{kg_{PROTIEN}} < 61.6 \frac{kg_{TN}}{day}$$

The nitrogen present in feed has three possible outcomes:

Retained by the fish (21-30%):  $TN_{RETAINED, MAX} < 61.6 \frac{kg_{TN}}{day} \times 22\% < 13.6 \frac{kg_{TN}}{day}$ 

Dissolved excretion (49-60%):
$$TN_{DISSOLVED, MAX} < 61.6 \frac{kg_{TN}}{day} \times 55\% < 34 \frac{kg_{TN}}{day}$$
Particulate excretion (15-30%): $TN_{PARTICULAT}$ ,  $MAX < 61.6 \frac{kg_{TN}}{day} \times 19\% < 14 \frac{kg_{TN}}{day}$ 

Two nitrogen scenarios were considered:

(1) An average of dissolved and particulate percentages was used along with a 30% solids capture efficiency of the drum filter.

$$TN_{DISCHARG}$$
,  $AVG < TN_{DISSOLVED}$ ,  $AVG + (1 - 30\%)TN_{PARTICULATE}$ ,  $AVG$ 

$$TN_{DISCHARGE, AVG} < 34 \frac{kg_{TN}}{day} + (1 - 30\%) 14 \frac{kg_{TN}}{day} < 43.8 \frac{kg_{TN}}{day}$$

(2) All nitrogen in the feed is discharged (with no fish uptake and 0% drum filter capture efficiency).

-

$$TN_{DISCHARGE, MAX} < TN_{FEED,MAX} < 61.6 \frac{kg_{TN}}{day}$$

The receiving water (Oak Bay) experiences extreme tidal action, at low tide the area between the facility and Spoon Island (shown in appendix A) is drained. To estimate the worst case scenario, the daily nitrogen discharge is assumed to be discharged over one tidal cycle (low tide to high tide).

The volume at high tide bounded by WQ2 (shown in appendix A) is estimated as 950,000 m<sup>3</sup>. With nitrogen discharge evenly mixed through this volume, the increase in TN would be:

(1)

$$\Delta T N_{BAY} < \frac{T N_{DISCHARGE, AVG}}{V_{BAY}} < \frac{43.8 \frac{kg_{TN}}{day}}{950,000m^3} < 0.046 \frac{mg_{TN}/L}{DAY}$$

(2)

$$\Delta T N_{BAY} < \frac{T N_{DISCHARGE, MAX}}{V_{BAY}} < \frac{61.6 \frac{kg_{TN}}{day}}{950,000m^3} < 0.065 \frac{mg_{TN}/L}{DAY}$$

In reality, the nitrogen does not dilute evenly, rather a higher concentration is observed at the discharge point of the facility. As well, this assumes all nitrogen discharged from the facility remains within this bounded area and does not dilute further into the receiving waters.

Using this same approach, the total nitrogen and phosphorus discharge from the facility was modelled based on the mass of feed added to the systems.

Below is a table showing average feed rates and the associated predicted increases at WQ2 for 2014-2016.

| Year | Month     | Average<br>Daily<br>Feed<br>(kg/day) | Present<br>in Feed<br>(kg/day) | 61.25%<br>Nitrogen<br>Discharge*<br>(kg/day) | Expected<br>Max. Increase<br>@ WQ2**<br>(mg/L) | 100%<br>Nitrogen<br>Discharge<br>(kg/day) | Expected<br>Max. Increase<br>@ WQ2**<br>(mg/L) |
|------|-----------|--------------------------------------|--------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|
| 2014 | July      | 497                                  | 43.7                           | 30.7                                         | 0.032                                          | 43.7                                      | 0.046                                          |
| 2014 | August    | 567                                  | 49.9                           | 35.1                                         | 0.037                                          | 49.9                                      | 0.053                                          |
| 2014 | September | 408                                  | 35.9                           | 25.2                                         | 0.027                                          | 35.9                                      | 0.038                                          |
| 2014 | October   | 302                                  | 26.6                           | 18.7                                         | 0.020                                          | 26.6                                      | 0.028                                          |
| 2014 | November  | 325                                  | 28.6                           | 18.7                                         | 0.020                                          | 28.6                                      | 0.028                                          |
| 2015 | June      | 242                                  | 21.3                           | 20.1                                         | 0.021                                          | 21.3                                      | 0.030                                          |
| 2015 | July      | 308                                  | 27.1                           | 15.0                                         | 0.016                                          | 27.1                                      | 0.022                                          |
| 2015 | August    | 463                                  | 40.7                           | 19.0                                         | 0.020                                          | 40.7                                      | 0.029                                          |
| 2015 | September | 454                                  | 40.0                           | 28.6                                         | 0.030                                          | 40.0                                      | 0.043                                          |
| 2015 | October   | 453                                  | 39.9                           | 28.1                                         | 0.030                                          | 39.9                                      | 0.042                                          |
| 2015 | November  | 400                                  | 35.2                           | 28.0                                         | 0.029                                          | 35.2                                      | 0.042                                          |
| 2016 | June      | 368                                  | 32.4                           | 22.7                                         | 0.024                                          | 32.4                                      | 0.034                                          |
| 2016 | July      | 460                                  | 40.5                           | 28.4                                         | 0.030                                          | 40.5                                      | 0.043                                          |
| 2016 | August    | 612                                  | 53.9                           | 37.8                                         | 0.040                                          | 53.9                                      | 0.057                                          |
| 2016 | September | 683                                  | 60.1                           | 42.2                                         | 0.044                                          | 60.1                                      | 0.063                                          |

Table 2: Nitrogen discharge modelling data

\*Assuming average Dissolved Nitrogen (54.5%) and 30% drum filter capture of particulate with average nitrogen content (22.5%) (Wallin & Kakanson, 1991)

\*\*Approximating 950,000 m<sup>3</sup>, well mixed system in which all nitrogen is discharged between low and high tide and all nitrogen remains within area A

Based on water quality testing recommended by Strum (section 27), total nitrogen discharge ranged from 20.2-47.7 kg/day (for feeding rates of 242-683 kg/day, corresponding with predicted 21.3-60.1 kg/day for scenario 2) showing the conservative nature of this model. The water quality testing indicated there was no measurable difference in total nitrogen concentrations between WQ2, WQ3, WQ5, and WQ6, as was expected based on the feed model (see figure 2). Furthermore, no measurable difference was observed between WQ2 and WQ1. This indicates that there is no measurable effect of the facility's effluent on the bay up to and including WQ1. Total nitrogen concentrations at the effluent outfall (i.e. directly above the discharge pipe at high tide) ranged between 0.482-1.62 mg/L while total nitrogen concentrations at the drum filter outlet ranged between 5.8-13.7 mg/L. See attached data in appendix B labelled "Drum Filter Outlet and Effluent TN Data".

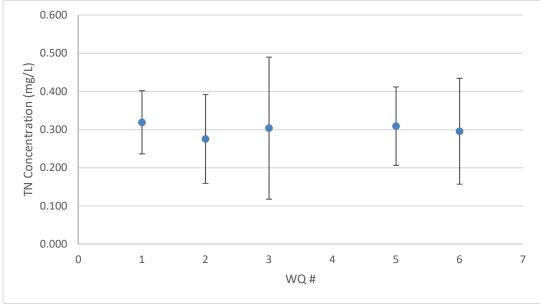



Figure 2: Average Total Nitrogen concentration with standard deviation at the different water quality points in Oak Bay receiving waters from data taken July 2015 – September 2016 (inclusive)

A phosphorus mass balance was calculated in a similar manner where the feed has a phosphorus content of 1.3% and 15-30% of the phosphorus present in the feed is retained by the fish, 16-26% is excreted in a dissolved form and 51-59% is discharged as particulate matter (Wallin & Hakanson, 1991). With similar dilution, with 700 kg<sub>feed</sub>, the increase over ambient conditions in total phosphorus concentration at WQ2 was expected to be insignificant (0.0057 mg/L). This was supported by water quality monitoring results which showed no measurable difference between WQ1, WQ2, WQ3, WQ5, and WQ6. See attached data in appendix C labelled "Water Quality Monitoring TN&TP Data Sheet".

This modelling and supporting data suggests that at no point since 2013 has the discharge of regulated nutrients (as described by Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick) from Oak Bay Hatchery produced a measurable (by Maxxam or RPC) effect on receiving waters. This is further evidenced by 2016 monthly sampling in which no exceedances have been observed (See "2016 Regulatory Testing to Date 161004" and associated "Regulatory TN&TP Data Sheet" and "Regulatory TSS Data Sheet" in Appendix B).

27. Strum provided a Water Quality Management Plan which included five water quality monitoring locations around Spoon Island and Oak Bay Hatchery (see appendix C). These locations were monitored on a monthly basis from July-November 2015 and April-July 2016 in an attempt to determine the effect of the facility on the bay.

Historic regulatory sampling locations (primarily "edge of mixing zone") were questionable when analysed. Table 4 shows total nitrogen concentrations at three regulatory sampling locations for 2015: after drum, effluent, and mixing zone.

| Month           | Month After Drum Effluent Mixing Zone |       |       |     |  |  |
|-----------------|---------------------------------------|-------|-------|-----|--|--|
| June, 2015      | 6.1                                   | 4.8   | 5.2   | 242 |  |  |
| July, 2015      | 7.6                                   | 5.8   | 6.0   | 308 |  |  |
| August, 2015    | 8.4                                   | 0.8   | 0.6   | 463 |  |  |
| September, 2015 | 8.0                                   | < 2   | < 2   | 454 |  |  |
| October, 2015   | No Data                               | 0.482 | 0.301 | 453 |  |  |
| November, 2015  | 9.89                                  | 1.62  | 0.304 | 400 |  |  |

Table 3: Total nitrogen concentrations as reported in 2015 regulatory submittals for after drum, effluent, and "mixing zone"

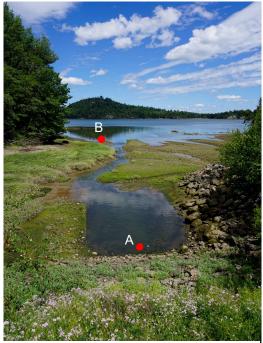



Figure 3: Effluent (A) and "edge of mixing zone" at arbitrary water's edge during ebb tide (B), locations for pre-August 2015.

In 2015, regulatory samples submitted for the socalled "edge of mixing zone" and "effluent" for June and July were taken as the tide went out, as shown in figure 3, not at high tide. This produced "mixing zone" TN concentrations essentially equal to "effluent", indicating insignificant mixing. This location did not accurately demonstrate the impact of the hatchery on the receiving water. Taking the sample as the tide went out also distorted the TN concentration at the "effluent" location as is evidenced by June and July's dilution factor (1.3 times dilution) compared to that of November (6.1

August-November 2015, "edge of mixing zone" samples were taken at UTM Coordinate NAD83 19N 641816, 5008448 from WQMP as recommended by Strum Consulting (see Appendix C). (Note: June-Sept 2015 TN samples were analysed by RPC with a measurement uncertainty of ±50% at TN concentrations close to 0.5 mg/L. Maxxam was used from October-November as they reported measurement uncertainties between 0.02-

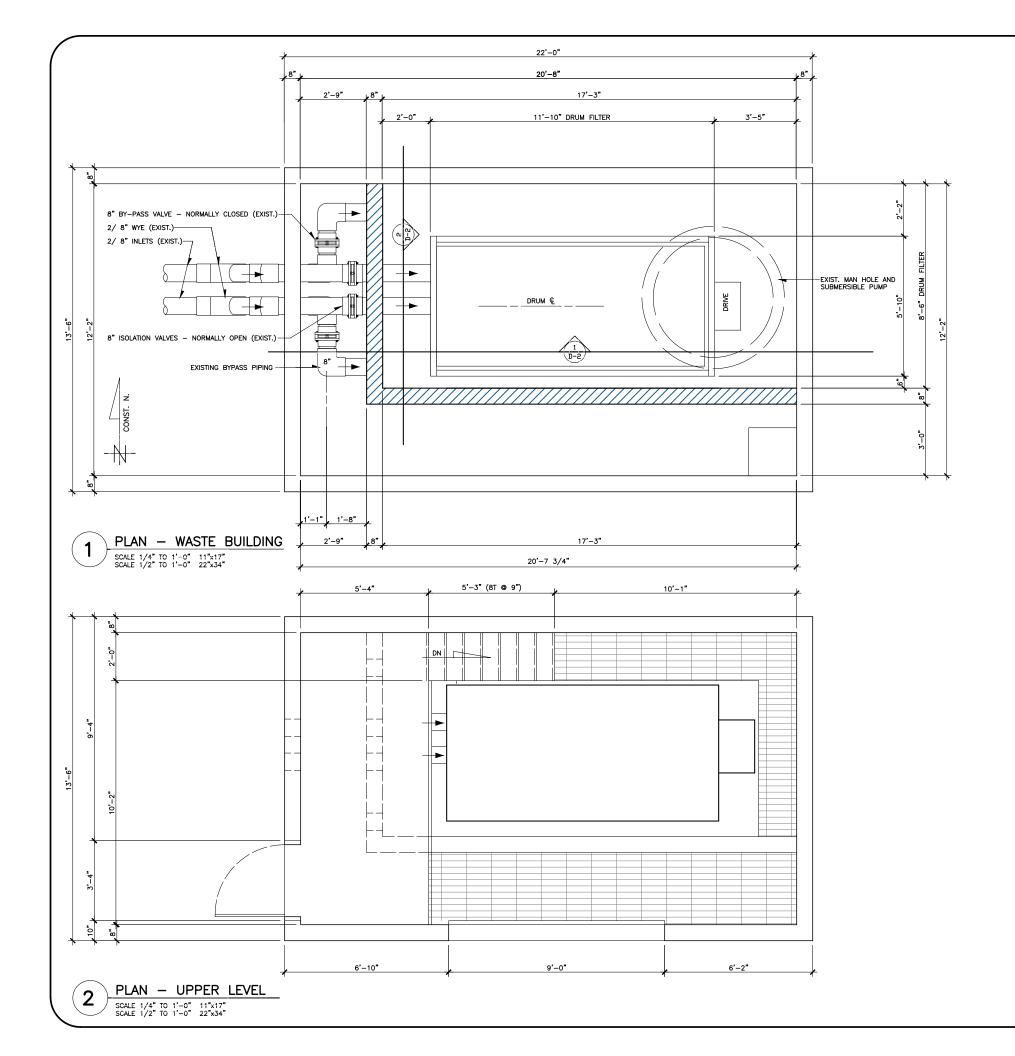
0.05 mg/L though this accuracy for single samples was later discredited, see #10 for more information.)

Water quality monitoring studies have shown:

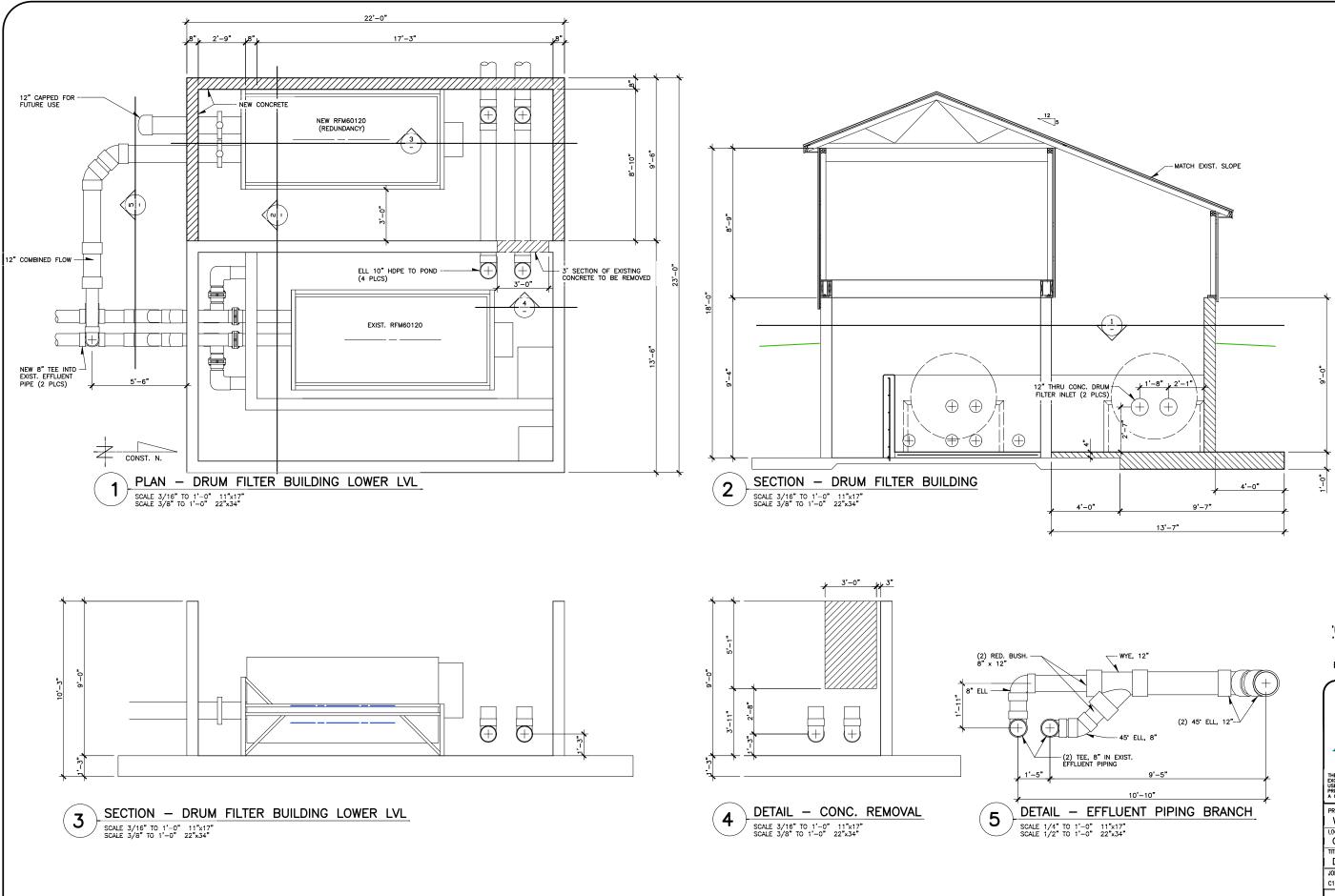
- 1. Point sampling is not a reliable method of monitoring regulated nutrient levels in the receiving water.
- 2. The facility does not have an effect on the regulated nutrients in bay that is measurable by Maxxam or RPC.

Monitoring of the bay will continue with regulated nutrient samples taken monthly at WQ1, as 'Edge of Mixing' and WQ2 as 'Control Point' (see map in appendix A) until further discussion with DELG takes place.

## **References:**

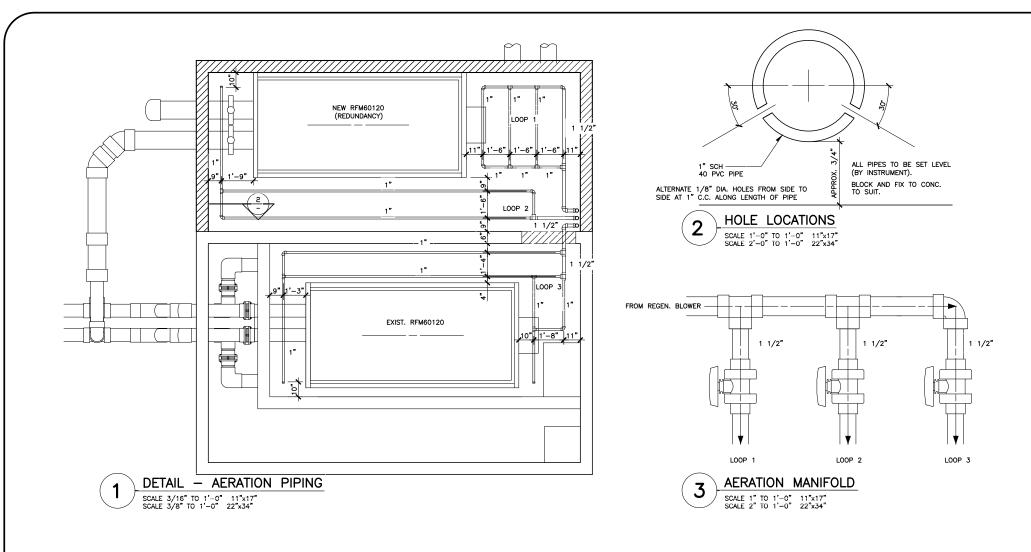

DELG. (2013, October). Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick. Retrieved from http://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/MarineAquaculture-AquacoleMarin/EnvironmentalManagementProgramLandBasedFinfish.pdf

Ebeling, J. M., & Timmons, M. B. (2010). *Recirculating Aquaculture*. Ithaca: Cayuga Aqua Ventures.


- Hayter, L. T., Sorensen, M., & Couturier, M. (2016). Reduction of total suspended solids and phosphorus concentrations in salmon-smolt hatchery effluent using chemical treatment. *Bulletin of the Aquaculture Association of Canada*, 18-25.
- Wallin, M. and L. Hakanson, 1991. Nutrient loading models for estimating the environmental effects of marine fish farms. In Marine aquaculture and Environment, edited

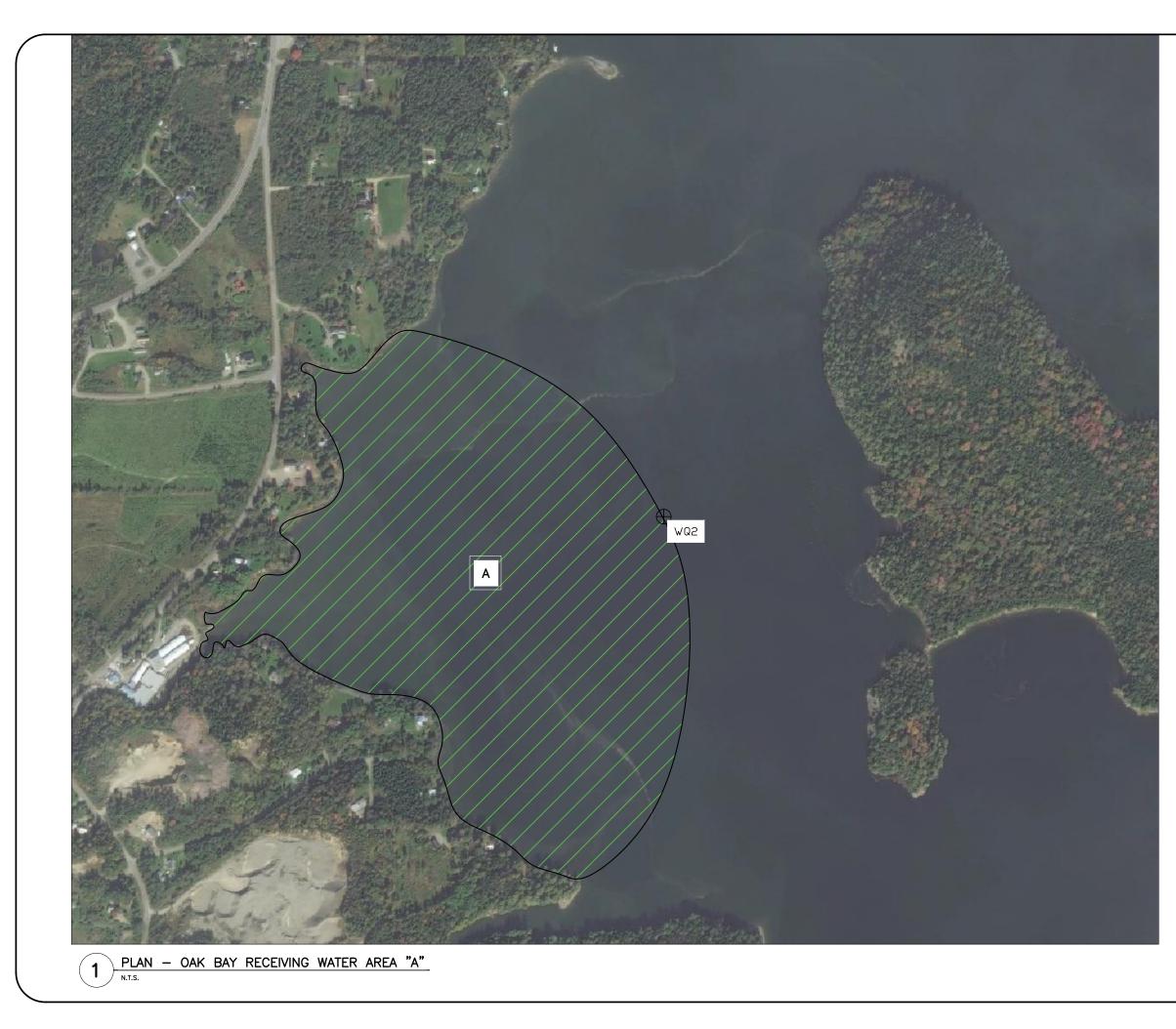
# **Appendix A: Drawings**

- Figure A.1: Drawing of RFM60120 drum filter [D-1 RFM60120 150818]
- Figure A.2: Drawing of WTS Proposed Upgrade [D-1 WTS Upgrade 160816]
- Figure A.3: D-2 WTS Upgrade Aeration 160816
- Figure A.4: Feed modelling area "A" [L-1 OBH Receiving water area A 160725]
- Figure A.5: Well locations [L-2 Well locations 160725]
- Figure A.6: L-3 Oak Bay Site Plan 160802
- Figure A.7: Well Head Locations OBH

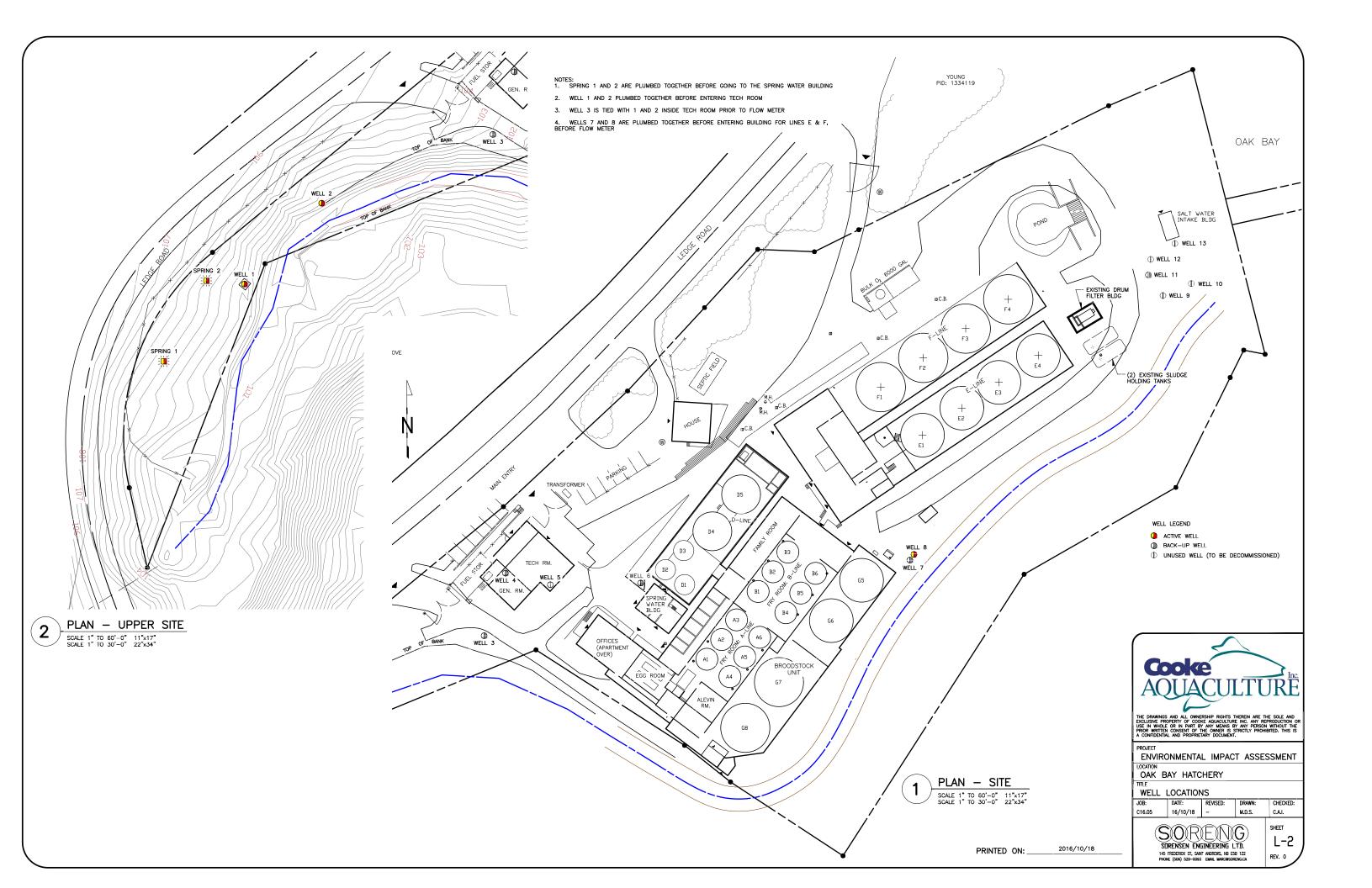


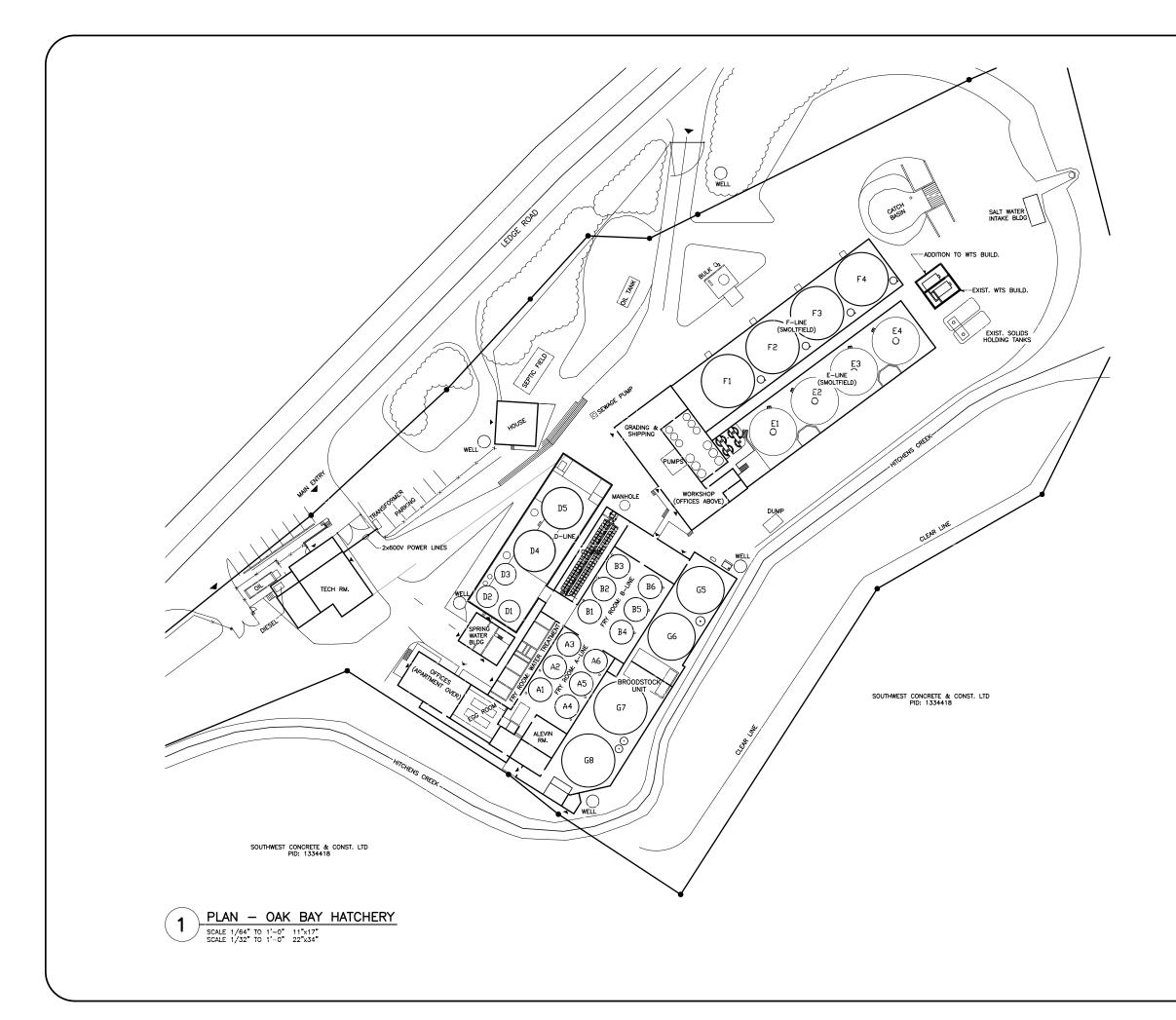

| 'PRELIMINARY'<br>'NOT FOR CONSTRUCTION'                                                                                              |                                                                                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PRINTED ON:                                                                                                                          | 2016/07/22                                                                                             |  |  |  |  |  |
| COOCIECE<br>AQUIACU<br>THE DRAWINGS AND ALL OWNERSHIP RIK<br>USE NU WHOLE OR IN PART BY ANY ME<br>A CONFIDENTIAL AND PROPRIETARY DOC | CULTURE INC. ANY REPRODUCTION OR<br>ANS BY ANY PERSON WITHOUT THE<br>R IS STRICTLY PROHIBITED. THIS IS |  |  |  |  |  |
| OAKBAY EFFLUENT                                                                                                                      | TREATMENT                                                                                              |  |  |  |  |  |
| OAK BAY HATCHERY                                                                                                                     | (                                                                                                      |  |  |  |  |  |
| TITLE<br>BUILDING PLANS                                                                                                              |                                                                                                        |  |  |  |  |  |
| JOB: DATE: REVISE<br>C12-01 15/10/05 -                                                                                               | D: DRAWN: CHECKED:<br>M.D.S. C.A.I.                                                                    |  |  |  |  |  |
| LIMIT<br>28 YOMS STREET, GAND BAY-HEST<br>PHONE (504) 738-731 FAX (504)<br>BHAL COSECOI GARGERS.CO                                   | 6) 738-6794 REV. 0                                                                                     |  |  |  |  |  |




| PRINTE                                                                                                                                                                                                                                                                                                                                                                                                   | 6/08/16  |          |         |          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|----------|--|--|
| THE DRAWINGS AND ALL OWNERSHIP RIGHTS THEREIN ARE THE SOLE AND<br>EXCLUSIVE PROPERTY OF COOKE ADJUCATION OR<br>EXCLUSIVE PROPERTY OF COOKE ADJUCATION OR<br>USE IN WHOLE OR IN PART BY ANY MEANS THE ANY REPRODUCTION OR<br>USE IN WHOLE OR IN PART BY ANY MEANS THE ANY REPRODUCTION OF<br>PROOR WHITTEN CONCEPT OF THE OWNER IS STRICTLY PROVIDENTED. THIS IS<br>A COMPRETING AND PROPERTING YOCUMENT. |          |          |         |          |  |  |
| LOCATION                                                                                                                                                                                                                                                                                                                                                                                                 | TREATM   | ENT SYS  | STEM UP | GRADE    |  |  |
| TITLE                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |         |          |  |  |
| DRUM                                                                                                                                                                                                                                                                                                                                                                                                     | FILTER   | BUILDING | MODIFI  | CATION   |  |  |
| JOB:                                                                                                                                                                                                                                                                                                                                                                                                     | DATE:    | REVISED: | DRAWN:  | CHECKED: |  |  |
| C16.05                                                                                                                                                                                                                                                                                                                                                                                                   | 16/08/16 | -        | L.T.H.  | -        |  |  |
| SURENSEN ENGINEERING LTD.<br>145 FREDERICK ST, SMAT ANDREDS, NO ESS 172<br>PHONE (506) 529-0003 EMIL IMPROPERIES.A                                                                                                                                                                                                                                                                                       |          |          |         |          |  |  |

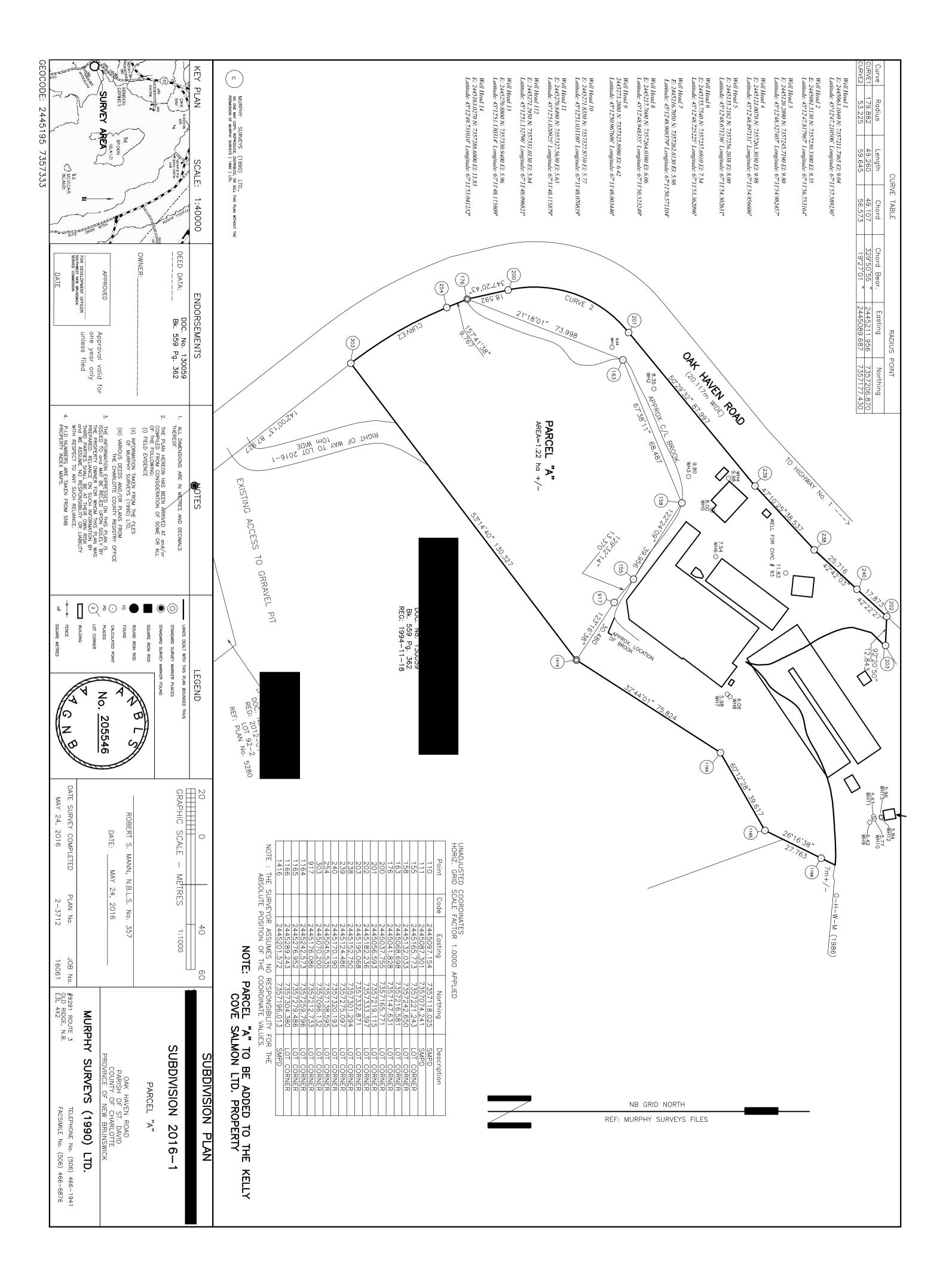
'PRELIMINARY' 'NOT FOR CONSTRUCTION'





PRINTED ON: \_ 2016/08/16 Cooke AQUACUL 6 THE DRAWINGS AND ALL OWNERSHIP RIGHTS THEREIN ARE THE SOLE AND EXCLUSIVE PROPERTY OF COOKE AQUACULTURE INC. ANY REPRODUCTION OI USE IN WHOLE OR IN PART BY ANY MEANS BY ANY PERSON WITHOUT THE PRIOR WRITTEN CONSENT OF THE OWNER IS STRICTLY PROHIBITED. THIS IS A CONFIDENTIAL AND PROPENTIARY DOCUMENT. PROJECT WATER TREATMENT SYSTEM UPGRADE LOCATION OAK BAY HATCHERY DRUM FILTER BUILDING AERATION JOB: DATE: REVISED: DRAWN: CHECKED: C16.05 16/08/16 L.T.H. SURPASSION STATEMENT STATE SHEET D-2 REV. 0

'PRELIMINARY' 'NOT FOR CONSTRUCTION'




| 'PRELIMINARY'<br>'NOT FOR CONSTRUCTION'                                                                                                                                                  |                                                                                                       |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PRINTED ON:                                                                                                                                                                              | 2016/07/25                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                          |                                                                                                       |  |  |  |  |  |
|                                                                                                                                                                                          | JLTURE                                                                                                |  |  |  |  |  |
|                                                                                                                                                                                          |                                                                                                       |  |  |  |  |  |
| THE DRAWINGS AND ALL OWNERSHIP RIC<br>EXCLUSIVE PROPERTY OF COOKE AQUAC<br>USE IN WHOLE OR IN PART BY ANY ME<br>PRIOR WRITTEN CONSENT OF THE OWNE<br>A CONFIDENTIAL AND PROPRIETARY DOCI | ULTURE INC. ANY REPRODUCTION OR<br>ANS BY ANY PERSON WITHOUT THE<br>R IS STRICTLY PROHIBITED. THIS IS |  |  |  |  |  |
| PROJECT<br>OAK BAY HATCHERY                                                                                                                                                              | ´ EIA                                                                                                 |  |  |  |  |  |
| OAK BAY HATCHERY                                                                                                                                                                         | ,                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                          | WATER                                                                                                 |  |  |  |  |  |
| JOB: DATE: REVISEI<br>C16.05 16/07/25 -                                                                                                                                                  | D: DRAWN: CHECKED:<br>L.T.H. –                                                                        |  |  |  |  |  |
| SURENSEN ENGINEERI<br>145 FREDERICK ST, SMIT ANDERERI<br>146 FREDERICK ST, SMIT ANDERERI<br>PHORE (506) 529-0003 EMIL MA                                                                 | NB E58 122 REV 0                                                                                      |  |  |  |  |  |





| PRINTE                                                                                                                                                                                                                                                                                                                                                                         | ED ON:   | 201       | 6/10/05 |          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|----------|--|--|--|
| THE DRAWINGS AND ALL OWNERSHIP RICHTS THEREIN ARE THE SOLE AND<br>EXCLUSIVE PROPERTY OF COOKE ADJUCULTURE INC. MAY REPRODUCTION OR<br>EXCLUSIVE PROPERTY OF COOKE ADJUCULTURE INC. MAY REPRODUCTION OR<br>USE IN WHOLE OR IN PARTS OF ANY PERSON WITHOUT THE<br>PRIOR WRITTEN CONSENT OF THE OWNER IS STRICTLY PROHIBITED. THIS IS<br>A COMPRENNENI AND PROPRIENT OF COMPRENT. |          |           |         |          |  |  |  |
| PROJECT<br>OAKBA                                                                                                                                                                                                                                                                                                                                                               | Y EFFLU  | ENT TRE   | ATMENT  |          |  |  |  |
| LOCATION<br>OAK B                                                                                                                                                                                                                                                                                                                                                              | АҮ НАТС  | HERY      |         |          |  |  |  |
| mie<br>SITE P                                                                                                                                                                                                                                                                                                                                                                  | 'LAN     |           |         |          |  |  |  |
| JOB:                                                                                                                                                                                                                                                                                                                                                                           | DATE:    | REVISED:  | DRAWN:  | CHECKED: |  |  |  |
| C16.05                                                                                                                                                                                                                                                                                                                                                                         | 16/08/02 | <u> -</u> | L.T.H.  | -        |  |  |  |
| SURENSEN ENGINEERING LTD.<br>1065 FREEDRICK 3T, SWAT ANGREWS, NS CEB 122<br>PHONE (SOB) 529-0003 EMAIL MARGEORENICIA                                                                                                                                                                                                                                                           |          |           |         |          |  |  |  |

'PRELIMINARY' 'NOT FOR CONSTRUCTION'



# Appendix B: October 4, 2016 Water Quality Data

- Water Quality Analysis Report
  - o 2015 Regulatory
  - Maxxam Reports
    - October 2015
    - November 2015
    - May 2016
    - June 2016
    - August 2016
    - September 2016
- 2016 Regulatory Testing to Date
- Composite Sample TN&TP Data Sheet
- Composite Sample TSS Data Sheet
- Regulatory TN&TP Data Sheet
- Regulatory TSS Data Sheet
- Triplicate TN Data Sheet
- Water Quality Monitoring TN&TP Data Sheet
- Water Quality Monitoring TSS Data Sheet
- After Drum and Effluent TN Data Sheet

## 2016 Regulatory Testing – Oak Bay Hatchery

June to September, 2016

| Date             | Location            | TN<br>(mg/L)  | TP<br>(mg/L) | Temp.<br>(°C) | DO<br>(mg/L) | рН   | TAN   | TSS            | Flow<br>(m³/h) | COD<br>(mg/L) |
|------------------|---------------------|---------------|--------------|---------------|--------------|------|-------|----------------|----------------|---------------|
| Regulatory Limit |                     | 0.50          | 0.035        | N/A           | N/A          | N/A  | N/A   | N/A            | N/A            | N/A           |
| K                | Intake              | 0.282         | ND           | 7.5           | 8            | 7.10 | ND    |                | 105            |               |
|                  | Before Drum         | 9.47          | 1.5          | 11            | 9.1          | 7.10 | 1.2   | 6.8            |                |               |
| 16-Jun-16        | After Drum          | 7.98          | 0.83         | 11            | 9.4          | 7.10 | 0.76  | 7.04 +/- 1.26  |                |               |
| 10-JUII-10       | Effluent            | 1.26          | 0.15         | 12.1          | 11.1         | 7.95 | 0.20  |                | 105            | 820           |
|                  | Edge of Mixing Zone | 0.248*        | 0.036        | 11.5          | 10.7         | 7.82 | 0.074 | 17.96 +/- 0.38 |                |               |
|                  | Control Station     | 0.105*        | 0.038        | 11.2          | 10.7         | 8.02 | ND    | 16.97 +/- 0.37 |                |               |
|                  | Intake              | 0.326         | 0.021        |               |              |      | 0.11  |                | 115            |               |
|                  | Before Drum         | 9.01          | 0.76         | 11.4          | 8.9          |      |       | -              |                |               |
| 20 1 10          | After Drum          | 8.60          | 0.68         | 11.4          | 8.9          |      | 1.2   | 3.87 +/- 0.70  |                |               |
| 30-Jun-16        | Effluent            | 0.685         | 0.083        | 15.7          | 9.8          | ***  | 0.22  |                | 115            | 940           |
|                  | Edge of Mixing Zone | 0.285 ± 0.031 | 0.049        | 15.4          | 9            | ***  | 0.12  | 17.38 +/- 0.21 |                |               |
|                  | Control Station     | 0.272*        | 0.038        | 14.8          | 9.6          | ***  | 0.054 | 17.16 +/- 0.34 |                |               |
|                  | Intake              | 0.825         | ND           | 8.3           | 8.1          | 6.70 | 0.26  |                | ***            |               |
|                  | Before Drum         | 11.1          | 0.56         | 12            | 9.5          | 7.09 |       | 17.32 +/- 2.83 |                |               |
| 24.4             | After Drum          | 12.6          | 0.85         | 12.4          | 10.8         | 7.01 | 1.2   | 11.19 +/- 0.56 |                |               |
| 24-Aug-16        | Effluent            | 1.19          | 0.081        | 18.5          | 9.6          | 8.03 | 0.32  | 21.33 +/- 1.92 | ***            | 710           |
|                  | Edge of Mixing Zone | 0.386 ± 0.225 | 0.10         | 18.7          | 10.1         | 8.09 | 0.29  | 22.01 +/- 1.02 |                |               |
|                  | Control Station     | 0.348 ± 0.304 | 0.11         | 18.7          | 10.4         | 8.10 | 0.44  | 19.81 +/- 1.83 |                |               |
|                  | Intake              | 0.582         | ND           | 7.9           | -            | 7.18 | 0.35  | -              | 80             |               |
|                  | Before Drum         | 14.2          | 0.82         | 11.5          | 9.4          | 7.15 |       | 31.89 +/- 7.26 |                |               |
| 14.6 46          | After Drum          | 13.7          | 0.64         | 11.6          | 9.2          | 6.99 | 1.3   | 14.13 +/- 0.26 |                |               |
| 14-Sep-16        | Effluent            | 0.518         | 0.20         | 16.3          | 8.2          | 8.14 | 0.20  | 22.79 +/- 0.86 | 80             | 710           |
|                  | Edge of Mixing Zone | 0.339 ± 0.183 | ND           | 16.9          | 9.8          | 8.21 | 0.26  | 21.55 +/- 3.14 |                |               |
|                  | Control Station     | 0.376 ± 0.424 | 0.23         | 16.9          | 10           | 8.23 | 0.29  | 17.85 +/- 0.19 |                |               |

ND – Not detected by Maxxam Analytics \*\*\* Probe not functioning

\*Not in triplicate

|                      | Composite Testing Data |                                               |          |              |     |              |                                          |  |  |  |
|----------------------|------------------------|-----------------------------------------------|----------|--------------|-----|--------------|------------------------------------------|--|--|--|
| Sampling<br>Location | Maxxam Job #           | Date/Time                                     | ID#      | TN<br>(mg/L) | ID# | TP<br>(mg/L) | Measurement<br>Uncertainty<br>(+/- mg/L) |  |  |  |
|                      | B6D8539, B655785       | June 27, 2016 7:00 pm - 11:30 pm              | 102, 103 | 7.61         | 102 | 0.75         | 0.094                                    |  |  |  |
|                      | B6D8539, B655785       | June 28, 2016 7:00 am - 1:00 pm               | 113, 114 | 8.35         | 113 | 0.85         | 0.10                                     |  |  |  |
| After                | B6D8539, B655785       | June 28, 2016 1:00 pm - 7:00 pm               | 120, 121 | 7.76         | 120 | 0.77         | 0.096                                    |  |  |  |
| Drum                 | B6D8539, B655785       | June 28, 2016 7:00 pm - June 29, 2016 7:00 am | 123, 124 | 8.345        | 123 | 0.84         | 0.10                                     |  |  |  |
|                      | B6D8539, B655785       | June 29, 2016 7:30 am - 7:30 pm               | 134      | 7.97         | 134 | 0.86         | 0.11                                     |  |  |  |
|                      | B6D8539, B655785       | June 29, 2016 8:30 pm - June 30, 2016 8:30 am | 141      | 8.39         | 141 | 0.80         | 0.12                                     |  |  |  |

| Composite TSS Data |                              |            |           |                      |  |  |  |  |  |
|--------------------|------------------------------|------------|-----------|----------------------|--|--|--|--|--|
| Date               | Location                     | Volume (L) | Mass (mg) | Concentration (mg/L) |  |  |  |  |  |
| 6/27/2016          | Composite 7:00 pm - 11:30 pm | 3.2        | 25        | 7.89                 |  |  |  |  |  |
| 6/28/2016          | Composite 7:00 am - 1:00 pm  | 7.6        | 105       | 13.77                |  |  |  |  |  |
| 0/20/2010          | Composite 1:00 pm - 7:00 pm  | 8.3        | 86.0      | 10.35                |  |  |  |  |  |
| 6/29/2016          | Composite 7:30 am - 7:30 pm  | 5.2        | 47.0      | 9.09                 |  |  |  |  |  |
| 30-Jun-16          | Composite 8:30 pm - 8:30 am  | 6.3        | 37        | 5.92                 |  |  |  |  |  |

|                        |                              |           | Regulatory Data              | - TN & TP    |        |                 |              |                                          |
|------------------------|------------------------------|-----------|------------------------------|--------------|--------|-----------------|--------------|------------------------------------------|
| Sampling<br>Location   | Maxxam Job #                 | Date      | ID#                          | TN<br>(mg/L) | 90% CI | ID#             | TP<br>(mg/L) | Measurement<br>Uncertainty<br>(+/- mg/L) |
|                        | B650760, B6C7304             | 6/16/2016 | Intake                       | 0.282        | -      | Intake          | ND           | -                                        |
| Intake -               | B655795, B6D6954             | 6/30/2016 | Intake                       | 0.326        | -      | Intake          | 0.021        | 0.020                                    |
| IIItake                | B6I3368, B674358             | 8/24/2016 | Intake                       | 0.825        | -      | Intake          | ND           | -                                        |
|                        | B6K0974, B682125             | 9/14/2016 | Intake                       | 0.582        | -      | Intake          | ND           | -                                        |
|                        | B650760, B6C7304             | 6/16/2016 | Before Drum                  | 9.47         | -      | Before Drum     | 1.5          | 0.18                                     |
| Before                 | B655795, B6D6954             | 6/30/2016 | Before Drum                  | 9.01         | -      | Before Drum     | 0.76         | 0.094                                    |
| Drum                   | B6I3368, B674358             | 8/24/2016 | Before Drum                  | 11.1         | -      | Before Drum     | 0.56         | -                                        |
|                        | B6K0974, B682125             | 9/14/2016 | Before Drum                  | 14.2         | -      | Before Drum     | 0.82         | -                                        |
|                        | B650760, B6C7304             | 6/16/2016 | After Drum                   | 7.98         | -      | After Drum      | 0.83         | 0.1                                      |
| After Drum             | B655795, B6D6954             | 6/30/2016 | After Drum                   | 8.6          | -      | After Drum      | 0.68         | 0.086                                    |
| Alter Drum             | B6I3368, B674358             | 8/24/2016 | After Drum                   | 12.6         | -      | After Drum      | 0.48         | 0.045                                    |
|                        | B6K0974, B682125             | 9/14/2016 | After Drum                   | 13.7         | -      | After Drum      | 0.64         | 0.056                                    |
|                        | B650760, B6C7304             | 6/16/2016 | Effluent                     | 1.26         | -      | Effluent        | 0.15         | 0.029                                    |
| Effluent -             | B655795, B6D6954             | 6/30/2016 | Effluent                     | 0.685        | -      | Effluent        | 0.083        | 0.024                                    |
| Effluent               | B6I3368, B674358             | 8/24/2016 | Effluent                     | 1.19         | -      | Effluent        | 0.081        | 0.025                                    |
| Ī                      | B6K0974, B682125             | 9/14/2016 | Effluent                     | 0.518        | -      | Effluent        | 0.20         | < 0.20                                   |
|                        | B650771, B6C7308             | 6/16/2016 | N-1                          | 0.248        | -      | N-1             | 0.031        | 0.021                                    |
| WQ1                    | B655795, B6D6954             | 6/30/2016 | Mixing Zone                  | 0.285        | -      | Mixing Zone     | 0.049        | 0.021                                    |
| Edge of<br>Mixing Zone | B674260, B6I3368,<br>B674358 | 8/24/2016 | Mixing Zone,<br>101, 102     | 0.386        | 0.225  | Mixing Zone     | 0.10         | -                                        |
|                        | B682122, B6K0974,<br>B682125 | 9/14/2016 | Mixing Zone,<br>101, 102     | 0.339        | 0.183  | Mixing Zone     | ND           | -                                        |
|                        | B650771, B6C7308             | 6/16/2016 | M-1                          | 0.105        | -      | M-1             | 0.022        | 0.02                                     |
| WQ2                    | B6D8539, B655785             | 6/30/2016 | M-1                          | 0.272        | -      | M-1             | 0.038        | 0.021                                    |
| Control<br>Station     | B674260, B6I3368,<br>B674358 | 8/24/2016 | Control Station,<br>103, 104 | 0.348        | 0.304  | Control Station | 0.11         | -                                        |
| Station                | B682122, B6K0974,<br>B682125 | 9/14/2016 | Control Station,<br>103, 104 | 0.376        | 0.424  | Control Station | 0.23         | -                                        |

|            | Regulatory Data - TSS |     |           |                      |                                 |                       |  |  |  |  |  |
|------------|-----------------------|-----|-----------|----------------------|---------------------------------|-----------------------|--|--|--|--|--|
| Date       | Date Location         |     | Mass (mg) | Concentration (mg/L) | Average Concentration<br>(mg/L) | Standard<br>Deviation |  |  |  |  |  |
|            |                       | 4.1 | 72        | 17.38                |                                 | 0.37                  |  |  |  |  |  |
|            | WQ5                   | 4.1 | 68        | 16.65                | 16.97                           |                       |  |  |  |  |  |
|            |                       | 4.1 | 70        | 16.89                |                                 |                       |  |  |  |  |  |
|            |                       | 4.0 | 71        | 17.64                | _                               |                       |  |  |  |  |  |
|            | WQ6                   | 4.0 | 74        | 18.38                | 17.96                           | 0.38                  |  |  |  |  |  |
|            |                       | 4.1 | 73        | 17.87                |                                 |                       |  |  |  |  |  |
|            |                       | 4.1 | 75        | 18.36                |                                 |                       |  |  |  |  |  |
|            | WQ2                   | 4.2 | 74        | 17.60                | 18.19                           | 0.52                  |  |  |  |  |  |
|            |                       | 4.1 | 76        | 18.60                |                                 |                       |  |  |  |  |  |
| 6/16/2016  |                       | 4.1 | 74        | 18.11                | _                               |                       |  |  |  |  |  |
| 10:00 AM   | WQ3                   | 4.1 | 74        | 17.86                | 17.87                           | 0.24                  |  |  |  |  |  |
| 10:00 Alvi |                       | 4.1 | 72        | 17.62                |                                 |                       |  |  |  |  |  |
|            |                       | 4.0 | 75        | 18.63                |                                 |                       |  |  |  |  |  |
|            | WQ1                   | 4.1 | 74        | 17.86                | 18.28                           | 0.39                  |  |  |  |  |  |
|            |                       | 4.1 | 76        | 18.34                |                                 |                       |  |  |  |  |  |
|            | After Drum            | 4.0 | 24        | 5.98                 |                                 | 1.26                  |  |  |  |  |  |
|            |                       | 2.5 | 17        | 6.72                 | 7.04                            |                       |  |  |  |  |  |
|            |                       | 2.6 | 22        | 8.43                 |                                 |                       |  |  |  |  |  |
|            | After Catch Basin     | 2.1 | 23        | 10.81                |                                 | 0.26                  |  |  |  |  |  |
|            |                       | 2.4 | 25        | 10.38                | 10.51                           |                       |  |  |  |  |  |
|            |                       | 2.8 | 29        | 10.34                |                                 |                       |  |  |  |  |  |
|            | WQ5                   | 4.0 | 70        | 17.54                | 17.16                           | 0.34                  |  |  |  |  |  |
|            |                       | 4.0 | 68        | 16.88                |                                 |                       |  |  |  |  |  |
|            |                       | 4.0 | 68        | 17.04                |                                 |                       |  |  |  |  |  |
|            | WQ6                   | 3.9 | 69        | 17.62                |                                 |                       |  |  |  |  |  |
|            |                       | 4.0 | 69        | 17.29                | 17.38                           | 0.21                  |  |  |  |  |  |
|            |                       | 4.1 | 70        | 17.22                |                                 |                       |  |  |  |  |  |
|            |                       | 4.1 | 65        | 15.85                |                                 | 1.09                  |  |  |  |  |  |
|            | WQ2                   | 3.9 | 68        | 17.53                | 16.29                           |                       |  |  |  |  |  |
|            |                       | 4.1 | 63        | 15.50                |                                 |                       |  |  |  |  |  |
| 6/30/2016  | WQ3                   | 4.0 | 66        | 16.70                | 13.27                           | 4.85                  |  |  |  |  |  |
| 8:45 AM    | WQS                   | 8.1 | 80        | 9.84                 | 15.27                           | 4.05                  |  |  |  |  |  |
|            |                       | 4.0 | 68        | 17.20                |                                 |                       |  |  |  |  |  |
|            | WQ1                   | 4.0 | 70        | 17.54                | 17.79                           | 0.74                  |  |  |  |  |  |
|            |                       | 4.0 | 75        | 18.62                |                                 |                       |  |  |  |  |  |
|            | After Drum            | 3.1 | 13        | 4.15                 |                                 | 0.70                  |  |  |  |  |  |
|            |                       | 3.3 | 10        | 3.07                 | 3.87                            |                       |  |  |  |  |  |
|            |                       | 3.4 | 15        | 4.39                 |                                 |                       |  |  |  |  |  |
|            |                       | 3.1 | 18        | 5.90                 |                                 |                       |  |  |  |  |  |
|            | After Catch Basin     | 2.8 | 19        | 6.76                 | 5.99                            | 0.73                  |  |  |  |  |  |
|            |                       | 3.0 | 16        | 5.31                 |                                 |                       |  |  |  |  |  |

| Regulatory Data - TSS (Continued) |                   |                      |     |                      |                                 |                       |  |  |  |  |
|-----------------------------------|-------------------|----------------------|-----|----------------------|---------------------------------|-----------------------|--|--|--|--|
| Date                              | Location          | Volume (L) Mass (mg) |     | Concentration (mg/L) | Average Concentration<br>(mg/L) | Standard<br>Deviation |  |  |  |  |
|                                   | Before Drum       | 3.39                 | 59  | 17.39                |                                 | 2.83                  |  |  |  |  |
|                                   |                   | 3.43                 | 69  | 20.11                | 17.32                           |                       |  |  |  |  |
|                                   |                   | 3.80                 | 55  | 14.46                |                                 |                       |  |  |  |  |
|                                   |                   | 3.24                 | 37  | 11.40                |                                 |                       |  |  |  |  |
|                                   | After Drum        | 3.51                 | 37  | 10.56                | 11.19                           | 0.56                  |  |  |  |  |
|                                   |                   | 2.24                 | 26  | 11.62                |                                 |                       |  |  |  |  |
| 0/24/2010                         |                   | 3.92                 | 77  | 19.67                |                                 |                       |  |  |  |  |
| 8/24/2016                         | Effluent          | 3.88                 | 81  | 20.89                | 21.33                           | 1.92                  |  |  |  |  |
| 6:00 PM                           |                   | 3.54                 | 83  | 23.43                |                                 |                       |  |  |  |  |
|                                   |                   | 3.88                 | 82  | 21.14                |                                 |                       |  |  |  |  |
|                                   | WQ1               | 3.62                 | 77  | 21.29                | 21.72                           | 0.88                  |  |  |  |  |
|                                   |                   | 3.43                 | 78  | 22.74                |                                 |                       |  |  |  |  |
|                                   | WQ2               | 3.73                 | 67  | 17.97                |                                 | 1.83                  |  |  |  |  |
|                                   |                   | 3.73                 | 74  | 19.84                | 19.81                           |                       |  |  |  |  |
|                                   |                   | 3.65                 | 79  | 21.62                |                                 |                       |  |  |  |  |
|                                   | Before Drum       | 2.50                 | 64  | 25.62                |                                 | 7.26                  |  |  |  |  |
|                                   |                   | 2.65                 | 80  | 30.22                | 31.89                           |                       |  |  |  |  |
|                                   |                   | 2.61                 | 104 | 39.84                | _                               |                       |  |  |  |  |
|                                   | After Drum        | 2.50                 | 36  | 14.41                |                                 | 0.26                  |  |  |  |  |
|                                   |                   | 2.01                 | 28  | 13.91                | 14.13                           |                       |  |  |  |  |
|                                   |                   | 2.27                 | 32  | 14.07                | _                               |                       |  |  |  |  |
|                                   | After Catch Basin | 4.10                 | 63  | 15.36                | 46.52                           | 1.65                  |  |  |  |  |
| 0/14/2016                         |                   | 3.51                 | 62  | 17.69                | 16.52                           |                       |  |  |  |  |
| 9/14/2016                         |                   | 3.54                 | 84  | 23.71                |                                 | 0.86                  |  |  |  |  |
| 10:45 AM                          | Effluent          | 3.84                 | 87  | 22.65                | 22.79                           |                       |  |  |  |  |
|                                   |                   | 3.54                 | 78  | 22.02                | 1                               |                       |  |  |  |  |
|                                   | WQ1               | 3.73                 | 78  | 20.92                |                                 | 3.14                  |  |  |  |  |
|                                   |                   | 3.73                 | 70  | 18.77                | 21.55                           |                       |  |  |  |  |
|                                   |                   | 2.68                 | 67  | 24.95                |                                 |                       |  |  |  |  |
|                                   |                   | 3.69                 | 66  | 17.88                |                                 |                       |  |  |  |  |
|                                   | WQ2               | 3.69                 | 65  | 17.61                | 17.82                           | 0.19                  |  |  |  |  |
|                                   | ~~                | 3.73                 | 67  | 17.97                |                                 |                       |  |  |  |  |

|           |                     |                | Triplicate Data |       |         |         |          |
|-----------|---------------------|----------------|-----------------|-------|---------|---------|----------|
| Date      | Location            | Maxxam Job #   | ID #            | TN    | Average | St. Dev | 90% C.I. |
|           |                     |                | 104             | 0.267 |         |         |          |
| 28-Jun-16 | Near-field          | B655785        | 105             | 0.218 | 0.269   | 0.053   | 0.089    |
|           | (WQ1)               |                | 106             | 0.323 | 1       |         |          |
|           |                     |                | 107             | 0.249 |         |         |          |
| 28-Jun-16 | Far-field           | B655785        | 108             | 0.171 | 0.211   | 0.039   | 0.066    |
|           | (WQ6)               |                | 109             | 0.212 |         |         |          |
|           |                     |                | 110             | 0.269 |         |         |          |
| 28-Jun-16 | WQ5                 | B655785        | 111             | 0.515 | 0.385   | 0.124   | 0.208    |
|           |                     |                | 112             | 0.37  | 1       |         |          |
|           |                     |                | 125             | 0.239 |         |         |          |
| 29-Jun-16 | Near-field          | B655785        | 126             | 0.517 | 0.314   | 0.178   | 0.300    |
|           | (WQ1)               |                | 127             | 0.186 | 7       |         |          |
|           |                     |                | 128             | 0.301 |         | 0.103   |          |
| 29-Jun-16 | Far-field           | B655785        | 129             | 0.425 | 0.411   |         | 0.174    |
|           | (WQ6)               |                | 129             | 0.506 |         |         |          |
|           | WQ5                 |                | 131             | 0.489 |         | 0.138   |          |
| 29-Jun-16 |                     | B655785        | 132             | 0.213 | 0.350   |         | 0.233    |
|           |                     |                | 133             | 0.349 | 1       |         |          |
|           | Near-field<br>(WQ1) | B655785        | N-1             | 0.26  | 0.285   | 0.031   |          |
| 20 1 10   |                     |                | 135             | 0.258 |         |         | 0.050    |
| 30-Jun-16 |                     |                | 136             | 0.3   |         |         | 0.052    |
|           |                     | B655795        | Mixing Zone     | 0.321 | 1       |         |          |
|           | Far-field<br>(WQ6)  | B655785        | F-1             | 0.227 | 0.263   | 0.031   | 0.053    |
| 30-Jun-16 |                     |                | 137             | 0.277 |         |         |          |
|           |                     |                | 138             | 0.285 |         |         |          |
|           |                     |                | C-1             | 0.23  |         | 0.047   |          |
| 20 1      | WQ5                 | B655785        | 139             | 0.243 | 1       |         | 0.000    |
| 30-Jun-16 |                     |                | 140             | 0.318 | 0.250   |         | 0.080    |
|           |                     | B655795        | Control Station | 0.21  | 1       |         |          |
|           | N 6 11              | B674358        | Mixing Zone     | 0.485 |         |         |          |
| 24-Aug-16 | Near-field<br>(WQ1) | DC742C0        | 101             | 0.438 | 0.386   | 0.133   | 0.225    |
|           |                     | B674260        | 102             | 0.234 |         |         |          |
|           |                     | B674358        | Mixing Zone     | 0.550 |         |         |          |
| 24-Aug-16 | Mid-field<br>(WQ2)  | <b>D674360</b> | 103             | 0.288 | 0.348   | 0.180   | 0.304    |
|           |                     | B674260        | 104             | 0.205 | ]       |         |          |
|           | Near-field<br>(WQ1) |                | Mixing Zone     | 0.456 |         |         |          |
| 14-Sep-16 |                     |                | 101             | 0.241 | 0.339   | 0.109   | 0.183    |
| ·         |                     |                | 102             | 0.32  | 1       |         |          |
|           |                     | B682125        | Mixing Zone     | 0.666 |         |         |          |
| 14-Sep-16 | Mid-field           | DC02422        | 103             | 0.216 | 0.376   | 0.252   | 0.424    |
|           | (WQ2)               | B682122        | 104             | 0.246 | 1       |         |          |

|                      |                                      | Water Qu   | uality Monitorir | ng Data TN      | & TP   |                |                |                                          |
|----------------------|--------------------------------------|------------|------------------|-----------------|--------|----------------|----------------|------------------------------------------|
| Sampling<br>Location | Maxxam Job #                         | Date       | ID#              | TN<br>(mg/L)    | 90% CI | ID#            | TP<br>(mg/L)   | Measurement<br>Uncertainty<br>(+/- mg/L) |
|                      | Strum Water Quality Report           | 7/15/2015  | SW14, SW13       | 0.462           | -      | SW14, SW13     | 0.08           | -                                        |
|                      | B5L2695, B593159                     | 10/15/2015 | WQ1              | 0.296           | -      | WQ1            | 0.049          | -                                        |
|                      | B5A4132, B5N7763                     | 11/17/2015 | WQ1              | 0.478           | -      | WQ1            | ND             | -                                        |
|                      | B6A1905, B639599                     | 5/17/2016  | N-1              | 0.225           | -      | N-1            | 0.034          | -                                        |
|                      | B646130, B64611                      | 6/2/2016   | N-1              | 0.202           | -      | N-1            | 0.045          | -                                        |
|                      | B646139, B6B4597                     | 0/2/2010   | Mixing Zone      | 0.314           | -      | Mixing Zone    | 0.045          | -                                        |
| WQ1                  | B650771, B6C7308                     | 6/16/2016  | N-1              | 0.248           | -      | N-1            | 0.031          | 0.021                                    |
| WQI                  | B6D8539, B655785                     | 6/28/2016  | 104, 105, 106    | 0.269*          | 0.089  | 104            | 0.048          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/28/2016  | 117              | 0.259           | -      | 117            | 0.044          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/29/2016  | 125, 126, 127    | 0.314*          | 0.300  | 125            | 0.042          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/30/2016  | N-1, 135, 136    | 0.273*          | 0.052  | N-1            | 0.044          | 0.021                                    |
|                      | B655795, B6D6954                     |            | Mixing Zone      | 0.321           | -      | Mixing Zone    | 0.049          | 0.021                                    |
|                      | B674260, B6I3368, B674358            | 8/24/2016  | Mixing Zone      | 0.386*          | 0.225  | Mixing Zone    | 0.10           | 0.026                                    |
|                      | B682122, B6K0974, B682125            | 9/14/2016  | Mixing Zone      | 0.339*          | 0.183  | Mixing Zone    | ND             | N/A                                      |
|                      | Strum Water Quality Report           | 7/15/2015  | SW16, SW15       | 0.382           | -      | SW16, SW15     | 0.0465         | -                                        |
|                      | B5L2695, B593159                     | 10/15/2015 | WQ2              | 0.245           | -      | WQ2            | 0.049          | -                                        |
|                      | B5A4132, B5N7763                     | 11/17/2015 | WQ2              | 0.432           | -      | WQ2            | 0.059          | -                                        |
|                      | B6A1905, B639599                     | 5/17/2016  | M-1              | 0.17            | -      | M-1            | 0.037          | -                                        |
| WQ2                  | B646130, B64611                      | 6/2/2016   | M-1              | 0.149           | -      | M-1            | 0.036          | -                                        |
|                      | B650771, B6C7308                     | 6/16/2016  | M-1              | 0.105           | -      | M-1            | 0.022          | 0.020                                    |
|                      | B6D8539, B655785                     | 6/30/2016  | M-1              | 0.272           | -      | M-1            | 0.038          | 0.021                                    |
|                      | B674260, B6I3368, B674358            | 8/24/2016  | Control          | 0.348*          | 0.304  | Control        | 0.11           | 0.026                                    |
|                      | B682122, B6K0974, B682125            | 9/14/2016  | Control          | 0.376*          | 0.424  | Control        | 0.23           | < 0.20                                   |
|                      | Strum Water Quality Report           | 7/15/2015  | SW18, SW17       | 0.442           | -      | SW18, SW17     | 0.0225         | -                                        |
|                      | B5L2695, B593159                     | 10/15/2015 | WQ3              | 0.242           | -      | WQ3            | 0.049          | -                                        |
|                      | B5A4132, B5N7763                     | 11/17/2015 | WQ3              | 0.67            | -      | WQ3            | 0.051          | -                                        |
| WQ3                  | B6A1905, B639599                     | 5/17/2016  | M-2              | 0.216           | -      | M-2            | 0.043          | -                                        |
| WQ3                  | B646130, B64611                      | 6/2/2016   | M-2              | 0.196           | -      | M-2            | 0.040          | -                                        |
|                      | B650771, B6C7308                     | 6/16/2016  | M-2              | 0.162           | -      | M-2            | 0.025          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/30/2016  | M-2              | 0.199           | -      | M-2            | 0.037          | 0.021                                    |
|                      | Strum Water Quality Report           | 7/15/2015  | SW22, SW21       | 0.356           | -      | SW22, SW21     | 0.0285         | -                                        |
|                      | B5L2695, B593159                     | 10/15/2015 | WQ5              | 0.328           |        | WQ5            | 0.0285         |                                          |
|                      | B6A1905, B639599                     | 5/17/2016  | C-1              | 0.187           | -      | C-1            | 0.047          | _                                        |
|                      | B646130, B64611                      | 5/17/2010  | C-1<br>C-1       | 0.187           | _      | C-1            | 0.040          | _                                        |
|                      | B646139, B6B4597                     | 6/2/2016   | Control          | 0.178           | -      | Control        | 0.038          | -                                        |
|                      | B650771, B6C7308                     |            | Control<br>C-1   | 0.117           | -      | Control<br>C-1 | 0.043          | 0.020                                    |
| WQ5                  | B650760, B6C7304                     | 6/16/2016  | Control          | 0.117           | -      | Control        | 0.038          | 0.020                                    |
|                      | B6D8539, B655785                     | 6/28/2016  | 110, 111, 112    | 0.385*          | 0.208  | 110            | 0.038          | 0.021                                    |
|                      |                                      | 6/28/2016  | 110, 111, 112    |                 | 0.208  |                |                | 0.021                                    |
|                      | B6D8539, B655785<br>B6D8539, B655785 | 6/29/2016  | 131, 132, 133    | 0.461<br>0.350* | 0.233  | 119<br>131     | 0.037<br>0.072 | 0.021                                    |
|                      | B6D8539, B655785                     | 0/29/2010  | C-1, 139, 140    | 0.330           | 0.233  | C-1            | 0.072          | 0.025                                    |
|                      |                                      | 6/30/2016  |                  |                 | 0.080  |                |                |                                          |
|                      | B655795, B6D6954                     | 7/15/2015  | Control          | 0.210           | -      | Control        | 0.038          | 0.021                                    |
|                      | Strum Water Quality Report           | 7/15/2015  | SW24, SW23       | 0.4705          | -      | SW24, SW23     | 0.0255         | -                                        |
|                      | B5L2695, B593159                     | 10/15/2015 | WQ6              | 0.306           | -      | WQ6            | 0.047          | -                                        |
|                      | B5A4132, B5N7763                     | 11/17/2015 | WQ6              | 0.557           | -      | WQ6            | 0.053          | -                                        |
|                      | B6A1905, B639599                     | 5/17/2016  | F-1              | 0.188           | -      | F-1            | 0.043          | -                                        |
| MOC                  | B646130, B64611                      | 6/2/2016   | F-1              | 0.182           | -      | F-1            | 0.038          | -                                        |
| WQ6                  | B650771, B6C7308                     | 6/16/2016  | F-1              | 0.115           | -      | F-1            | 0.023          | 0.020                                    |
| l l                  | B650760, B6C7304                     |            | Mixing Zone      | 0.174           | -      | Mixing Zone    | 0.036          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/28/2016  | 107, 108, 109    | 0.211*          | 0.066  | 107            | 0.038          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/28/2016  | 118              | 0.225           | -      | 118            | 0.039          | 0.021                                    |
|                      | B6D8539, B655785                     | 6/29/2016  | 128, 129, 130    | 0.411*          | 0.233  | 128            | 0.05           | 0.021                                    |
|                      | B6D8539, B655785                     | 6/30/2016  | F-1, 137, 138    | 0.263*          | 0.053  | F-1            | 0.038          | 0.021                                    |

\*\*\*\* Only data marked with (\*) are triplicate samples, all other data are point samples and are not a reliable representation of actual TN concentrations

|           | Water Quality Monitoring Data TSS (Page 1) |     |           |                      |                                 |                       |  |  |  |  |  |
|-----------|--------------------------------------------|-----|-----------|----------------------|---------------------------------|-----------------------|--|--|--|--|--|
| Date      | Date Location                              |     | Mass (mg) | Concentration (mg/L) | Average Concentration<br>(mg/L) | Standard<br>Deviation |  |  |  |  |  |
|           | WQ5                                        | 3.7 | 64        | 17.34                |                                 | 0.85                  |  |  |  |  |  |
|           |                                            | 3.8 | 63        | 16.56                | 16.51                           |                       |  |  |  |  |  |
|           |                                            | 4.0 | 63        | 15.64                |                                 |                       |  |  |  |  |  |
|           |                                            | 3.9 | 58        | 14.96                |                                 |                       |  |  |  |  |  |
|           | WQ6                                        | 3.9 | 65        | 16.60                | 15.83                           | 0.83                  |  |  |  |  |  |
|           |                                            | 4.1 | 66        | 15.95                |                                 |                       |  |  |  |  |  |
|           |                                            | 3.8 | 57        | 15.13                |                                 |                       |  |  |  |  |  |
|           | WQ2                                        | 4.1 | 60        | 14.76                | 14.88                           | 0.22                  |  |  |  |  |  |
|           |                                            | 4.1 | 61        | 14.74                |                                 |                       |  |  |  |  |  |
| 5/17/2016 |                                            | 3.7 | 61        | 16.36                |                                 |                       |  |  |  |  |  |
|           | WQ3                                        | 4.0 | 69        | 17.46                | 16.26                           | 1.25                  |  |  |  |  |  |
| 10:00 AM  |                                            | 3.9 | 58        | 14.96                |                                 |                       |  |  |  |  |  |
|           |                                            | 5.9 | 69        | 11.64                |                                 |                       |  |  |  |  |  |
|           | WQ1                                        | 2.8 | 57        | 20.66                | 14.89                           | 5.01                  |  |  |  |  |  |
|           |                                            | 4.8 | 60        | 12.38                |                                 |                       |  |  |  |  |  |
|           | After Drum                                 | 3.9 | 16        | 4.07                 |                                 | 0.27                  |  |  |  |  |  |
|           |                                            | 4.1 | 15        | 3.70                 | 4.00                            |                       |  |  |  |  |  |
|           |                                            | 4.0 | 17        | 4.23                 |                                 |                       |  |  |  |  |  |
|           | After Catch Basin                          | 4.9 | 33        | 6.79                 |                                 | 1.05                  |  |  |  |  |  |
|           |                                            | 4.4 | 25        | 5.66                 | 6.74                            |                       |  |  |  |  |  |
|           |                                            | 4.4 | 34        | 7.77                 |                                 |                       |  |  |  |  |  |
|           |                                            | 5.4 | 81        | 14.87                |                                 | 0.78                  |  |  |  |  |  |
|           | WQ5                                        | 5.8 | 78        | 13.45                | 14.34                           |                       |  |  |  |  |  |
|           |                                            | 5.9 | 87        | 14.70                |                                 |                       |  |  |  |  |  |
|           |                                            | 4.6 | 73        | 15.81                |                                 | 0.83                  |  |  |  |  |  |
|           | WQ6                                        | 5.2 | 75        | 14.40                | 14.85                           |                       |  |  |  |  |  |
|           |                                            | 5.1 | 73        | 14.34                |                                 |                       |  |  |  |  |  |
|           |                                            | 5.7 | 77        | 13.55                |                                 |                       |  |  |  |  |  |
|           | WQ2                                        | 6.0 | 78        | 12.92                | 12.68                           | 1.01                  |  |  |  |  |  |
|           |                                            | 6.4 | 74        | 11.57                |                                 |                       |  |  |  |  |  |
| 6/2/2016  |                                            | 5.7 | 73        | 12.85                |                                 | 1.27                  |  |  |  |  |  |
|           | WQ3                                        | 5.0 | 75        | 15.08                | 14.31                           |                       |  |  |  |  |  |
| 10:30 AM  |                                            | 4.7 | 71        | 14.99                |                                 |                       |  |  |  |  |  |
|           |                                            | 5.4 | 82        | 15.06                |                                 |                       |  |  |  |  |  |
|           | WQ1                                        | 5.9 | 83        | 14.02                | 13.97                           | 1.12                  |  |  |  |  |  |
|           |                                            | 6.4 | 82        | 12.83                |                                 |                       |  |  |  |  |  |
|           |                                            | 2.7 | 19        | 7.10                 |                                 |                       |  |  |  |  |  |
|           | After Drum                                 | 2.6 | 20        | 7.84                 | 8.70                            | 2.16                  |  |  |  |  |  |
|           |                                            | 3.3 | 37        | 11.16                |                                 |                       |  |  |  |  |  |
|           |                                            | 2.7 | 27        | 10.08                |                                 |                       |  |  |  |  |  |
|           | After Catch Basin                          | 2.8 | 40        | 14.26                | 15.58                           | 6.27                  |  |  |  |  |  |
|           |                                            | 2.7 | 60        | 22.41                |                                 |                       |  |  |  |  |  |

| Water Quality Monitoring Data TSS (Page 2) |                   |            |           |                      |                                 |                       |  |  |  |
|--------------------------------------------|-------------------|------------|-----------|----------------------|---------------------------------|-----------------------|--|--|--|
| Date                                       | Location          | Volume (L) | Mass (mg) | Concentration (mg/L) | Average Concentration<br>(mg/L) | Standard<br>Deviation |  |  |  |
|                                            | WQ5               | 4.1        | 72        | 17.38                | _                               | 0.37                  |  |  |  |
|                                            |                   | 4.1        | 68        | 16.65                | 16.97                           |                       |  |  |  |
|                                            |                   | 4.1        | 70        | 16.89                |                                 |                       |  |  |  |
|                                            |                   | 4.0        | 71        | 17.64                | -                               |                       |  |  |  |
|                                            | WQ6               | 4.0        | 74        | 18.38                | 17.96                           | 0.38                  |  |  |  |
|                                            |                   | 4.1        | 73        | 17.87                |                                 |                       |  |  |  |
|                                            |                   | 4.1        | 75        | 18.36                | -                               |                       |  |  |  |
|                                            | WQ2               | 4.2        | 74        | 17.60                | 18.19                           | 0.52                  |  |  |  |
|                                            |                   | 4.1        | 76        | 18.60                |                                 |                       |  |  |  |
| 6/16/2016                                  |                   | 4.1        | 74        | 18.11                | _                               |                       |  |  |  |
| 10:00 AM                                   | WQ3               | 4.1        | 74        | 17.86                | 17.87                           | 0.24                  |  |  |  |
| 10.007.00                                  |                   | 4.1        | 72        | 17.62                |                                 |                       |  |  |  |
|                                            |                   | 4.0        | 75        | 18.63                | -                               |                       |  |  |  |
|                                            | WQ1               | 4.1        | 74        | 17.86                | 18.28                           | 0.39                  |  |  |  |
|                                            |                   | 4.1        | 76        | 18.34                |                                 |                       |  |  |  |
|                                            |                   | 4.0        | 24        | 5.98                 | _                               |                       |  |  |  |
|                                            | After Drum        | 2.5        | 17        | 6.72                 | 7.04                            | 1.26                  |  |  |  |
|                                            |                   | 2.6        | 22        | 8.43                 |                                 |                       |  |  |  |
|                                            | After Catch Basin | 2.1        | 23        | 10.81                |                                 | 0.26                  |  |  |  |
|                                            |                   | 2.4        | 25        | 10.38                | 10.51                           |                       |  |  |  |
|                                            |                   | 2.8        | 29        | 10.34                |                                 |                       |  |  |  |
|                                            | WQ5               | 3.9        | 80        | 20.63                | 20.66                           | 1.05                  |  |  |  |
|                                            |                   | 4.0        | 79        | 19.62                |                                 |                       |  |  |  |
|                                            |                   | 3.7        | 81        | 21.72                |                                 |                       |  |  |  |
|                                            | WQ6               | 3.9        | 72        | 18.57                | 18.14                           | 0.47                  |  |  |  |
|                                            |                   | 4.3        | 75        | 17.64                |                                 |                       |  |  |  |
| 6/28/2016                                  |                   | 4.1        | 74        | 18.21                |                                 |                       |  |  |  |
| 7:00 AM                                    |                   | 4.0        | 76        | 18.87                |                                 | 0.39                  |  |  |  |
|                                            | WQ1               | 4.0        | 78        | 19.55                | 19.10                           |                       |  |  |  |
|                                            |                   | 4.0        | 76        | 18.87                |                                 |                       |  |  |  |
|                                            |                   | 4.0        | 30        | 7.48                 |                                 | 0.62                  |  |  |  |
|                                            | After Drum        | 3.6        | 27        | 7.60                 | 7.18                            |                       |  |  |  |
|                                            |                   | 3.6        | 23        | 6.47                 |                                 |                       |  |  |  |
|                                            |                   | 4.1        | 69        | 16.98                |                                 |                       |  |  |  |
|                                            | WQ5               | 4.1        | 67        | 16.33                | 16.55                           | 0.37                  |  |  |  |
|                                            |                   | 4.1        | 67        | 16.33                | -                               |                       |  |  |  |
|                                            |                   | 4.0        | 74        | 18.55                |                                 |                       |  |  |  |
|                                            | WQ6               | 3.6        | 69        | 19.08                | 18.45                           | 0.69                  |  |  |  |
|                                            |                   | 4.1        | 72        | 17.71                |                                 |                       |  |  |  |
|                                            |                   | 4.1        | 70        | 17.22                |                                 | 0.40                  |  |  |  |
|                                            | WQ1               | 4.1        | 73        | 17.96                | 17.50                           |                       |  |  |  |
| 6/28/2016                                  |                   | 4.1        | 71        | 17.31                |                                 |                       |  |  |  |
| 7:00 PM                                    |                   | 4.1        | 29        | 7.07                 |                                 |                       |  |  |  |
|                                            |                   | 4.0        | 32        | 8.02                 |                                 |                       |  |  |  |
|                                            | After Drum        | 3.3        | 17        | 5.18                 | 6.76                            | 1.45                  |  |  |  |

|           |                   | Water C    | Quality Monit | toring Data TSS (Page 3) |                                 |                       |  |
|-----------|-------------------|------------|---------------|--------------------------|---------------------------------|-----------------------|--|
| Date      | Location          | Volume (L) | Mass (mg)     | Concentration (mg/L)     | Average Concentration<br>(mg/L) | Standard<br>Deviation |  |
|           |                   | 4.0        | 66            | 16.70                    | _                               |                       |  |
|           | WQ5               | 4.1        | 66            | 16.24                    | 16.15                           | 0.59                  |  |
|           |                   | 4.3        | 66            | 15.53                    |                                 |                       |  |
|           |                   | 4.0        | 64            | 16.04                    |                                 |                       |  |
|           | WQ6               | 4.1        | 64            | 15.60                    | 15.67                           | 0.35                  |  |
| 5/29/2016 |                   | 4.1        | 63            | 15.36                    |                                 |                       |  |
| 8:00 AM   |                   | 4.1        | 65            |                          |                                 |                       |  |
|           | WQ1               | 4.1        | 67            | 16.01                    | 0.42                            |                       |  |
|           |                   | 4.1        | 65            | 15.85                    |                                 |                       |  |
|           |                   | 2.8        | 26            | 9.30                     |                                 |                       |  |
|           | After Drum        | 2.5        | 24            | 9.46                     | 9.02                            | 0.62                  |  |
|           |                   | 2.6        | 22            | 8.31                     |                                 |                       |  |
|           |                   | 4.0        | 70            | 17.54                    |                                 |                       |  |
| -         | WQ5               | 4.0        | 68            | 16.88                    | 17.16                           | 0.34                  |  |
|           |                   | 4.0        | 68            | 17.04                    | 1                               |                       |  |
|           |                   | 3.9        | 69            | 17.62                    |                                 |                       |  |
|           | WQ6               | 4.0        | 69            | 17.29                    | 17.38                           | 0.21                  |  |
|           |                   | 4.1        | 70            | 17.22                    |                                 |                       |  |
| -         | WQ2               | 4.1        | 65            | 15.85                    |                                 |                       |  |
|           |                   | 3.9        | 68            | 17.53                    | 16.29                           | 1.09                  |  |
|           |                   | 4.1        | 63            | 15.50                    |                                 |                       |  |
| 6/30/2016 | WQ3<br>WQ1        | 4.0        | 66            | 16.70                    | 42.27                           | 4.05                  |  |
| 8:45 AM   |                   | 8.1        | 80            | 9.84                     | 13.27                           | 4.85                  |  |
| -         |                   | 4.0        | 68            | 17.20                    |                                 |                       |  |
|           |                   | 4.0        | 70            | 17.54                    | 17.79                           | 0.74                  |  |
|           |                   | 4.0        | 75            | 18.62                    |                                 |                       |  |
| -         | After Drum        | 3.1        | 13            | 4.15                     |                                 |                       |  |
|           |                   | 3.3        | 10            | 3.07                     | 3.87                            | 0.70                  |  |
|           |                   | 3.4        | 15            | 4.39                     | -                               |                       |  |
| -         |                   | 3.1        | 18            | 5.90                     |                                 |                       |  |
|           | After Catch Basin | 2.8        | 19            | 6.76                     | 5.99                            | 0.73                  |  |
|           |                   | 3.0        | 16            | 5.31                     | -                               |                       |  |
|           |                   | 3.39       | 59            | 17.39                    |                                 |                       |  |
|           | Before Drum       | 3.43       | 69            | 20.11                    | 17.32                           | 2.83                  |  |
|           |                   | 3.80       | 55            | 14.46                    | 1                               |                       |  |
| -         |                   | 3.24       | 37            | 11.40                    |                                 |                       |  |
|           | After Drum        | 3.51       | 37            | 10.56                    | 11.19                           | 0.56                  |  |
|           |                   | 2.24       | 26            | 11.62                    |                                 |                       |  |
| 0/04/05-5 |                   | 3.92       | 77            | 19.67                    |                                 |                       |  |
| 8/24/2016 | Effluent          | 3.88       | 81            | 20.89                    | 21.33                           | 1.92                  |  |
| 6:00 PM   |                   | 3.54       | 83            | 23.43                    |                                 |                       |  |
| -         |                   | 3.88       | 82            | 21.14                    |                                 |                       |  |
|           | WQ1               | 3.62       | 77            | 21.29                    | 21.72                           | 0.88                  |  |
|           |                   | 3.43       | 78            | 22.74                    |                                 |                       |  |
|           |                   | 3.73       | 67            | 17.97                    |                                 |                       |  |
|           | WQ2               | 3.73       | 74            | 19.81                    | 1.83                            |                       |  |
|           |                   | 3.65       | 79            | 19.84<br>21.62           |                                 | 1.05                  |  |

|                      |                            | After D    | rum and Efflu | uent TN D    | Data   |            |              |                                          |
|----------------------|----------------------------|------------|---------------|--------------|--------|------------|--------------|------------------------------------------|
| Sampling<br>Location | Maxxam Job #               | Date       | ID#           | TN<br>(mg/L) | 90% CI | ID#        | TP<br>(mg/L) | Measurement<br>Uncertainty<br>(+/- mg/L) |
|                      | From Regulatory Submittal  | 7/2/2014   | -             | 10           | -      | -          | 2.62         | -                                        |
|                      | From Regulatory Submittal  | 8/1/2014   | -             | 8.2          | -      | -          | 0.65         | -                                        |
|                      | From Regulatory Submittal  | 9/3/2014   | -             | 6.7          | -      | -          | 0.87         | -                                        |
|                      | From Regulatory Submittal  | 10/7/2014  | -             | 7.4          | -      | -          | 1.36         | -                                        |
|                      | From Regulatory Submittal  | 10/30/2014 | -             | 5.8          | -      | -          | 0.92         | -                                        |
|                      | From Regulatory Submittal  | 6/17/2015  | -             | 6.1          | -      | -          | 0.46         | -                                        |
|                      | From Regulatory Submittal  | 7/7/2015   | -             | 7.6          | -      | -          | 2.27         | -                                        |
|                      | From Regulatory Submittal  | 8/10/2015  | -             | 8.4          | -      | -          | 1.07         | -                                        |
|                      | From Regulatory Submittal  | 9/15/2015  | -             | 8            | -      | -          | 0.68         | -                                        |
|                      | From Regulatory Submittal  | 11/17/2015 | -             | 9.89         | -      | -          | 0.72         | -                                        |
| After Drum           | B676809, B629604           | 4/13/2016  | After Drum    | 6.2          | -      | After Drum | 0.40         | -                                        |
| Allei Diulli         | B646139, B6B4597           | 6/3/2016   | After Drum    | 6.85         | -      | After Drum | 0.50         | -                                        |
|                      | B650760, B6C7304           | 6/16/2016  | After Drum    | 7.98         | -      | After Drum | 0.83         | 0.10                                     |
|                      | B6D8539, B655785           | 6/28/2016  | 101           | 7.9          | -      | 101        | 0.63         | 0.080                                    |
|                      | B6D8539, B655785           | 6/28/2016  | 116           | 7.89         | -      | 116        | 0.74         | 0.093                                    |
|                      | B6D8539, B655785           | 6/29/2016  | 122           | 7.91         | -      | 122        | 0.64         | 0.082                                    |
|                      | B6D8539, B655785           | _ / /      | After Drum    | 8.46         | -      | After Drum | 0.74         | 0.092                                    |
|                      | B655795, B6D6954           | 6/30/2016  | After Drum    | 8.6          | -      | After Drum | 0.68         | 0.086                                    |
|                      | B6I3368, B674358           | 8/24/2016  | After Drum    | 12.6         | -      | After Drum | 0.48         | 0.045                                    |
|                      | B6K0974, B682125           | 9/14/2016  | After Drum    | 13.7         | -      | After Drum | 0.64         | 0.056                                    |
|                      | Strum Water Quality Report | 10/15/2015 | -             | 0.482        | -      | -          | 0.098        | -                                        |
|                      | From Regulatory Submittal  | 11/17/2015 | -             | 1.62         | -      | -          | 0.12         | -                                        |
|                      | B646139, B6B4597           | 6/3/2016   | Effluent      | 0.997        | -      | Effluent   | 0.077        | -                                        |
| Effluent             | B650760, B6C7304           | 6/16/2016  | Effluent      | 1.26         | -      | Effluent   | 0.15         | 0.029                                    |
|                      | B655795, B6D6954           | 6/30/2016  | Effluent      | 0.685        | -      | Effluent   | 0.083        | 0.024                                    |
|                      | B6I3368, B674358           | 8/24/2016  | Effluent      | 1.19         | -      | Effluent   | 0.081        | 0.025                                    |
|                      | B6K0974, B682125           | 9/14/2016  | Effluent      | 0.518        | -      | Effluent   | 0.20         | < 0.20                                   |

## Appendix C: October 4, 2016 Additional Items

- Correspondence Requesting Information on Bay WQ
- Correspondence with Barry Loescher Regarding TN Sampling
- Water Quality Management Plan (Strum Consulting)
- Water Quality Baseline Study (Strum Consulting)
- Sample Bottle Requirements
- WaterMaster FEW325 Data Sheet
- Well Testing Graphs
- ACCDC Report for Oak Bay Hatchery

## RE: EIA Registration 456131410 Oak Bay Hatchery Wastewater Treatment Upgrade and Water Supply Source Assessment Compliance

Flanagan, Krista (ELG/EGL)

Tue, Jun 28, 2016 at 10:49 AM

To: marc@soreng.ca

Cc: "Glynn, Mark (ELG/EGL)", "Lyons, Troy (ELG/EGL)", "glenn.ketchum@cookeaqua.com", "Swanson, Lee (ELG/EGL)"

Mr. Sorensen, I have consulted with my colleague in regards to your questions, and have been informed that the non-compliance is based on the results submitted by Cooke Aquaculture.

Regards, Krista Flanagan, EIT

Coordinator / Coordinateur

Impact Management Branch / Direction de la gestion des impacts

Department of Environment and Local Government / Ministère de l'Environment et Gouvernements Locaux

Tel: (506) 4535305

Email: Krista.Flanagan@gnb.ca

From: Marc Sorensen [mailto:marc@soreng.ca]

Sent: Thursday, June 23, 2016 4:23 PM

To: Swanson, Lee (ELG/EGL)

Cc: Lyons, Troy (ELG/EGL); Mitchell Dickie; Glenn Ketchum

Subject: RE: EIA Registration 456131410 Oak Bay Hatchery Wastewater Treatment Upgrade and Water Supply Source Assessment Compliance

Lee, regarding letter addressed to Mitch Dickie dated June 9, 2015. The province has assessed the Oak Bay Hatchery as out of compliance with the thresholds identified in the DELG Environmental Management Program for Land Based Aquaculture in New Brunswick.

Is this assessment based solely on the 2015 Annual Monitoring Report submitted by Cooke Aquaculture on January 25, 2016?

Or, did DELG take additional samples to verify the reported results and aid in the assessment? If so, can you share the results including concentration, sampling location and lab used for analysis?

Thanks, Marc Sorensen 5065290093



### **Triplicate Analyis**

1 message

**Barry Loescher** <BLoescher@maxxam.ca> To: Lionel Hayter <lionel@soreng.ca> Tue, Oct 4, 2016 at 8:08 PM

Hello Lionel

Regarding your triplicate analysis of seawater for total nitrogen. This is the recommended procedure for samples where larger than normal variability might be expected due to the difficult matrix. Statistically, the best estimate of the true value is the mean of the three results.

I trust this clarifies the matter. If anything further is required, please do not hesitate to contact me directly.

Sincerely

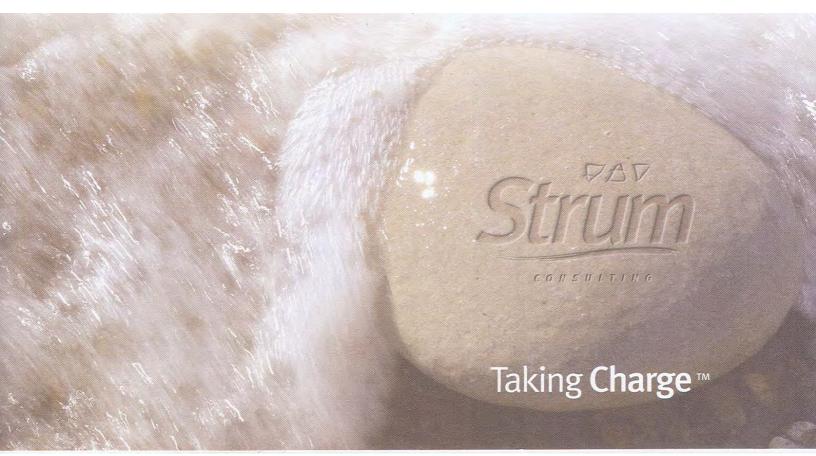
**BARRY LOESCHER, PhD PChem** Quality Systems Specialist

Office 250 325 8887 / Mobile 250 713 4244

#### Maxxam Analytics - A Bureau Veritas Group Company

Success Through Science®. maxxam.ca

Click here if you do not wish to receive announcements or occasional marketing updates from Maxxam.


The information in this e-mail and any attachments is confidential and for the sole use of the intended recipient(s). If you have received this e-mail in error, please: accept our apologies for the inconvenience; note that any use of the information is strictly prohibited; notify the sender as soon as possible; and then delete all copies from your system.

Lionel Hayter <lionel@soreng.ca>



#### WATER QUALITY MANAGEMENT PLAN OAK BAY HATCHERY

August 14, 2015





August 14, 2015

Mr. Mitch Dickie Cooke Aquaculture Ltd. 669 Main Street Blacks Harbour, NB E5H 1K1

Dear Mr. Dickie,

#### Re: Water Quality Management Plan Oakbay Hatchery

Attached is the Water Quality Management Plan prepared for the Oak Bay Hatchery

We trust this report to be satisfactory at this time. Once you have had an opportunity to review this correspondence, please contact us to address any questions you may have.

Thank you,

her Mosher

Heather Mosher, MSc. Environmental Scientist hmosher@strum.com

Shawn Duncan, BSc. Vice President sduncan@strum.com

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389

Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574 <u>Deer Lake Office</u> 101 Nicholsville Road Deer Lake, NL A8A 1V5 t. 1.855.770.5560 (24/7) f. 902.835.5574

#### **TABLE OF CONTENTS**

#### Page

| 1      |
|--------|
| 1      |
| 2      |
| 4      |
| 4      |
| 4      |
| 5<br>5 |
| 7      |
| 9      |
|        |

#### TABLES

| Table 1: Guideline and Baseline variables for TN, TP, and TSS  | 2 |
|----------------------------------------------------------------|---|
| Table 2: Sampling Locations and Frequency                      |   |
| Table 3: Marine Sampling Locations for Station 4 and Station 5 |   |
| Table 4: Required Sampling Parameters                          |   |

#### APPENDICES

Appendix A: Water Quality Sampling Location Map (Drawing 1) Appendix B: Field Data Sheet



#### **1.0 INTRODUCTION**

Strum Consulting was retained by Cooke Aquaculture (Cooke) to develop a Water Quality Management Plan (WQMP) for their Oak Bay Hatchery (the Hatchery) in Oak Haven, NB. The WQMP will ultimately aid in providing a consistent and replicable approach to monitoring effluent quality and water quality of the receiving environment.

The WQMP is designed to provide a standard operating procedure (SOP) for water sample collection required by their Approval to Operate and to aid with:

- The establishment of an effluent mixing zone within Oak Bay;
- The determination of the impact of wastewater effluent on the water quality of Oak Bay; and
- The identification of any non-compliances in regards to water quality with the Approval to Operate.

#### 2.0 BACKGROUND

The Approval to Operate (#I-8539) requires that the level of total nitrogen (TN) and total phosphorus (TP) at the edge of the established mixing zone is in accordance with the performance based standard (PBS) variables listed in Table 2.10 of the *Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick* (NB DELG, 2013). Although total suspended solids (TSS) is not listed as a requirement in the Approval, it is included in the WQMP as it is of special interest to provincial regulators. However, TSS is unique from TN and TP as the guideline thresholds outlined by the Canadian Council of Ministers of the Environment (CCME) are relative to the baseline values and are different for short term (less than 24 hours) and long term (more than 24 hours) events. The PBS thresholds for TN and TP, and the CCME guideline for TSS, are as follows:

| PBS Variable                                                   | Threshold                  |
|----------------------------------------------------------------|----------------------------|
| Total Phosphorus (TP)                                          | 0.5 mg/L                   |
| Total Nitrogen (TN)                                            | 0.035 mg/L                 |
| CCME Guidelines (CCME 2007)                                    |                            |
| Total Suspended Solids (TSS) – short term (24 hrs or less)     | 5 mg/L above<br>background |
| Total Suspended Solids (TSS) – long term (greater than 24 hrs) | 5 mg/L above background    |

An environmental baseline study (EBS) was completed in July 2015 and analyzed water quality for TN, TP, and TSS from various locations throughout Oak Bay. The results from the EBS were used to identify baseline conditions within Oak Bay and influence the location of a control site.



#### Total Nitrogen (TN)

The EBS identified elevated TN values throughout Oak Bay with some exceedances occurring on the ebb tide. The results of the EBS suggest that there are a number of factors influencing TN values in Oak Bay that get incorporated into the water column during high tide and that any exceedances observed throughout Oak Bay are not solely due to the influence of effluent from the Hatchery. The EBS identified baseline values for TN in Oak Bay between 0.215 mg/L to 0.686 mg/L.

#### Total Phosphorus (TP)

The EBS identified a high number of exceedances in TP within close proximity to the Hatchery. For this reason, TP is of concern and should be monitored closely. The results of the EBS suggested that the TP values observed on the opposite side of Spoon Island, between 0.025 mg/L to 0.030 mg/L, should be used as baseline values.

#### Total Suspended Solids (TSS)

The EBS identified TSS values between 3.2mg/L to 15 mg/L throughout the bay to be used as baseline TSS values.

Table 1 highlights the guideline and baseline variables for TN, TP, and TSS in Oak Bay.

| Variable        | Guideline Threshold     | Baseline <sup>3</sup>    |
|-----------------|-------------------------|--------------------------|
| TN              | 0.5 mg/L <sup>1</sup>   | 0.215 mg/L to 0.686 mg/L |
| TP              | 0.035 mg/L <sup>1</sup> | 0.025 mg/L to 0.030 mg/L |
| TSS - long term | 5 mg/L <sup>2</sup>     | 3.2 mg/L to 15 mg/L      |
| TSS – long term | 25 mg/L <sup>2</sup>    | 3.2 mg/L to 15 mg/L      |

#### Table 1: Guideline and Baseline variables for TN, TP, and TSS

<sup>1</sup>NB DELG, 2013

<sup>2</sup> CCME 2007

<sup>3</sup> Based on results of the EBS, 2015

#### 3.0 SAMPLE REQUIREMENTS

The Approval requires monthly sampling at five stations (Table 2, below). Although the Approval only requires monthly sampling, more frequent sampling is recommended to aid in the establishment of a mixing zone and to capture different stages of operation at the hatchery. Until non-compliance issues are amended, at least bi-monthly and possibly weekly sampling should be completed.



| Locatior                                      | n ID | Sample Location                                               | WQMP Recommended<br>Sampling Frequency |                    |  |  |  |
|-----------------------------------------------|------|---------------------------------------------------------------|----------------------------------------|--------------------|--|--|--|
| Station                                       | 1    | Hatchery water intake                                         | Monthly                                | Monthly            |  |  |  |
| Station                                       | 2    | Effluent water prior to entry<br>into settling pond           | Monthly                                | Bi-monthly or more |  |  |  |
| Station                                       | 3    | Effluent water at point of<br>discharge from settling<br>pond | Monthly                                | Bi-monthly or more |  |  |  |
| N-1           M-1           M-2           F-1 |      | Oak Bay: Edge of mixing<br>zone                               | Monthly                                | Bi-monthly or more |  |  |  |
| Station 5                                     | C-1  | Oak Bay: Control station                                      | Monthly                                | Bi-monthly or more |  |  |  |

#### Table 2: Sampling Locations and Frequency

Sample locations for Station 1, Station 2, and Station 3 are the same as those previously sampled for monthly monitoring. Station 4 and Station 5 have been changed to better provide support for effluent mixing in Oak Bay (Table 3, below, Drawing 1, Appendix A). Four new sample locations have been provided for Station 4: one near-field, two mid-field, and one far-field location which correspond with the water quality sampling locations in the EBS. The EBS also identified a new control site (Station 5) which better represents baseline conditions.

| Samp      | ole ID | Sample     | UTM Co<br>NAD | Corresponding EBS |          |  |
|-----------|--------|------------|---------------|-------------------|----------|--|
|           |        | Location   | Х             | Y                 | Location |  |
|           | 4N-1   | Near-field | 641816        | 5008448           | WQ1      |  |
| Station 4 | 4M-1   | Mid-field  | 642347        | 5008536           | WQ2      |  |
| Station 4 | 4M-2   | wid-field  | 642534        | 5008150           | WQ3      |  |
|           | 4F-1   | Far-field  | 642500        | 5009296           | WQ6      |  |
| Station 5 | 5C-1   | Control    | 643322        | 5008895           | WQ5      |  |

#### Table 3: Marine Sampling Locations for Station 4 and Station 5



#### 4.0 STANDARD OPERATING PROCEDURE

#### 4.1 Scope

To comply with the requirements of the Approval and to provide consistency between sampling events, the SOP should be followed during each sampling event. Table 4 outlines the required sampling parameters at each location.

#### Table 4: Required Sampling Parameters

|                     |           |      |               | Sampl | ing Param | eters |      |      |
|---------------------|-----------|------|---------------|-------|-----------|-------|------|------|
| Sample Location     |           | Temp | DO            | TN    | TSS       |       |      |      |
| Sample L            | ocation   | °C   | % and<br>mg/L |       | L/min     | mg/L  | mg/L | mg/L |
| Statio              | n 1       |      |               |       | Х         |       |      |      |
| Statio              | Station 2 |      | Х             | Х     | Х         | Х     | Х    | Х    |
| Statio              | n 3       | Х    | Х             | Х     | Х         | Х     | Х    | Х    |
|                     | 4N-1      | Х    | Х             | Х     |           | Х     | Х    | Х    |
|                     | 4M-1      | Х    | Х             | Х     |           | Х     | Х    | Х    |
| Station 4 4M-2 4F-1 |           | Х    | Х             | Х     |           | Х     | Х    | Х    |
|                     |           | Х    | Х             | Х     |           | Х     | Х    | Х    |
| Station 5           | 5C-1      | Х    | Х             | Х     |           | Х     | Х    | Х    |

#### 4.2 Materials

The required equipment/materials for this procedure are:

- Sample containers
- YSI unit
- Flow meter
- Cooler and ice
- Camera
- Waterproof field book
- Pencils
- Waterproof marker
- Sampling location map
- Boat
- Anchor
- Paddles
- Life jacket
- Boat safety equipment

Sample containers should be supplied from an analytical laboratory to ensure that they have been cleaned according to recommended methods. Sample containers may be ordered prelabeled for convenience. Containers required are as follows:

- 1 x 100 ml glass amber bottle with preservative (TN)
- 1 x 100 ml glass amber bottle with preservative (TP)
- 1 x 500 ml plastic bottle (TSS)



#### 4.3 Sampling Procedure: Station 1-3

The sampling procedure is as follows:

- 1. Using the provided map and/or GPS, pinpoint the sampling location.
- 2. Note general site observations in a field book or on field data sheets (Appendix B), including:
  - a. Location ID
  - b. Time
  - c. General weather conditions
  - d. Air temperature
  - e. Water level and surface conditions
  - f. Any unusual circumstances (i.e. higher than normal water flow, swirl separator flushing, drum filter backwash)
- 3. Place YSI into the water and allow values to stabilize. Record temperature, pH, and DO (in % saturation and mg/L) in a field book or on field data sheet.
- 4. Using the flow meter, measure flow following manufacturer's directions and record result in a field book or on field data sheet.
- 5. Label sample bottle with the Location ID and date if they are not pre-labeled.
- 6. Fill sample bottles ensuring that none of the preservative escapes by holding the samples vertically in the water or filling the 500 mL plastic bottle and pouring water into the amber bottles in the boat.
  - a. The inner portion of sample containers and caps should not be touched under any circumstances.
  - b. Avoid the inclusion of particles such as leaves and detritus when collecting a sample.
  - c. Keep all sampling equipment clean.
- 7. Place sample bottles in a cooler with ice, ensuring that they do not break.
- Samples should be sent to the laboratory as soon as possible but may be stored for up to 7 days, depending on laboratory protocol. In the interim they should be stored in a cool, dark place and kept below 10°C.
- 9. Upon completion, field notes should be scanned, entered into a digital spreadsheet, and saved.

#### 4.4 Sampling Procedure: Station 4-5

Water quality sampling should be completed at all five marine sampling locations (Station 4 and 5) during the ebb tide as close to high tide as possible. Sampling locations are indicated on Drawing 1 in Appendix A and tide cycles should be checked prior to planning the sampling program.

- 1. Using the provided map and/or GPS, pinpoint the sampling location.
- 2. Anchor the boat at the sampling site.
- 3. Secure all sampling equipment.



- 4. Note general site observations in a field book or on field data sheets, including:
  - a. Location ID
  - b. Time
  - c. General weather conditions
  - d. Air temperature
  - e. Water level and surface conditions
  - f. Any unusual circumstances (i.e. unnatural water colour/odour, excessive algae, indications of foreign substances, signs of fish kills)
- 5. Place YSI into the water and allow values to stabilize. Record temperature, pH, and DO (in % saturation and mg/L) in a field book.
- 6. Label sample bottle with the Location ID and date, if they are not pre-labeled.
- 7. Fill sample bottles ensuring that none of the preservative escapes by holding the samples vertically in the water or filling the 500 mL plastic bottle and pouring water into the amber bottles in the boat.
  - a. The inner portion of sample containers and caps should not be touched under any circumstances.
  - b. Avoid the inclusion of particles such as leaves and detritus when collecting a sample.
  - c. Keep all sampling equipment clean.
- 8. Place sample bottles in a cooler with ice, ensuring that they do not break.
- Samples should be sent to the laboratory as soon as possible but may be stored for up to 7 days, depending on laboratory protocol. In the interim they should be stored in a cool, dark place and kept below 10°C.
- 10. Upon completion, field notes should be scanned, entered into a digital spreadsheet and saved.



#### **5.0 STATEMENT OF QUALIFICATIONS AND LIMITATIONS**

This Report (the "Report") has been prepared by Strum Consulting ("Consultant") for the benefit of Cooke Aquaculture ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations, and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations")
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports
- may be based on information provided to Consultant which has not been independently verified
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued
- must be read as a whole and sections thereof should not be read out of such context
- was prepared for the specific purposes described in the Report and the Agreement
- in the case of subsurface, environmental, or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental, or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

The Report is to be treated as confidential and may not be used or relied upon by third parties, except:

- as agreed in writing by Consultant and Client
- as required by law
- for use by governmental reviewing agencies

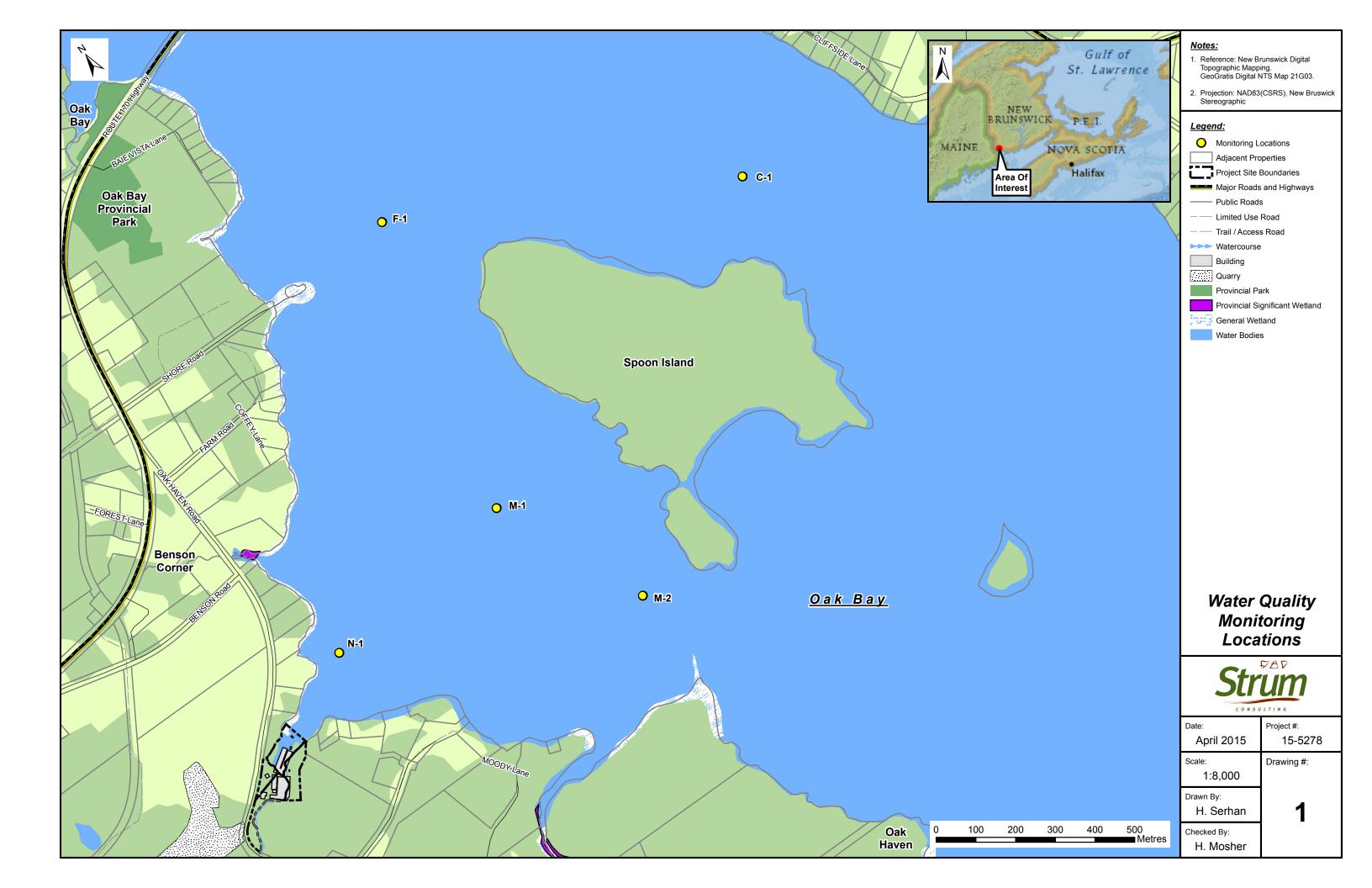


Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss, or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any damages arising from improper use of the Report or parts thereof shall be borne by the party making such use.

This Statement of Qualifications and Limitations forms part of the Report and any use of the Report is subject to the terms hereof.

Should additional information become available, Strum requests that this information be brought to our attention immediately so that we can re-assess the conclusions presented in this report. This report was prepared by Heather Mosher, MSc., Environmental Scientist, and was reviewed by Shawn Duncan, BSc., Vice President.




#### 6.0 REFERENCES

NBDELG (New Brunswick Department of Environment and Local Government). 2013. Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick. Accessed from <u>http://www2.gnb.ca/content/dam/gnb/Departments/env/pdf/MarineAquaculture-AquacoleMarin/EnvironmentalManagementProgramLandBasedFinfish.pdf</u>

CCME (Canadian Council of Ministers of the Environment). 2014. Water Quality Guidelines for the Protection of Aquatic Life. Accessed from <u>http://st-ts.ccme.ca/en/index.html?lang=en&factsheet=218#aql\_marine\_concentration</u>



APPENDIX A WATER QUALITY SAMPLING LOCATION MAP (DRAWING 1)



Appendix B Field Data Sheet

#### WATER QUALITY FIELD SAMPLING SHEETS

Samplers:

Date: General Weather Conditions:

ID Time **Field Parameters** Observations Station 1 Flow Flow Temp (°C) pН Station 2 DO (%) (mg/L) Flow Temp (°C) Station 3 pН DO (%) (mg/L) ID Time Water Level and Surface Conditions **Field Parameters** Temp (°C) pН Station 4: N-1 DO (%) (mg/L) Temp (°C) pН Station 4: M-1 DO (%) (mg/L) Temp (°C) pН Station 4: M-2 DO (%) (mg/L) Temp (°C) pН Station 4: F-1 DO (%) (mg/L) Temp (°C) pН Station 4: C-1 DO (%) (mg/L)



August 20, 2015

Mr. Mitchell Dickie Cooke Aquaculture 669 Main Street Blacks Harbour, NB E5H 1K1

Dear Mr. Dickie,

#### Re: Water Quality Environmental Baseline Study Oak Bay Hatchery, Oak Haven, NB

Strum Consulting was retained by Cooke Aquaculture to conduct an Environmental Assessment which included an environmental baseline assessment at their Oak Bay Hatchery in Oak Haven, NB (Drawing 1, attached). The objective of the study was to determine environmental baseline conditions for benthic habitat, fish, and water quality within Oak Bay. This report outlines the results of the water quality assessment.

#### INTRODUCTION

The Oak Bay Hatchery includes a broodstock rearing operation for gamete production and incubation room for housing salmon eggs. All wastewater is treated through drum filtration prior to being discharged into Oak Bay. The facility is licensed through the New Brunswick Department of Agriculture, Aquaculture, and Fisheries (NB DAAF) and operates under 'Approval to Operate I-8539' (COA), issued by the New Brunswick Department of environment and Local Government (NB DELG) and effective from November 1, 2013 until October 31, 2016.

The COA requires monthly water quality sampling events at five locations around the hatchery at a 'Level 1' effort as listed in Table 2.10 of the *Environmental Management Program for Land Based Finfish Aquaculture in New Brunswick* (NB DELG, 2013) (the Regulations), including at the edge of an established mixing zone. The COA states that the level of total nitrogen (TN) and total phosphorus (TP) at the edge of the mixing zone is in accordance with the performance based standard (PBS) variables listed in the Regulations. However, a mixing zone has not been established for the facility and water samples from the current sampling locations are out of compliance for TN and TP. In response, Strum was retained to complete a water quality study to identify baseline water quality conditions and aid in the identification of proper sampling locations for the monthly water quality sampling required by the COA.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574 <u>Deer Lake Office</u> 101 Nicholsville Road Deer Lake, NL A8A 1V5 t. 1.855.770.5560 (24/7) f. 902.835.5574

#### METHODOLOGY

Field sampling was completed July 15, 2015, during the flood and ebb tide. Using a Van Dorn bottle, water samples were collected from the top and bottom of the water column at six locations around Oak Bay for a total of 24 samples (Drawing 1). Sampling time and water depth was recorded with each sampling. A handheld YSI unit was used to record temperature, conductivity, salinity, dissolved oxygen, total dissolved solids, and pH during the ebb tide.

Samples were analyzed for TN, TP, total suspended solids (TSS), total ammonia nitrogen (TAN), and chemical oxygen demand (COD). TN and TP are both required sampling parameters in the COA. TSS is a required sampling parameter and although compliance with TSS is not stated in the COA, it is of special interest to provincial regulators and its guideline thresholds are outlined by the Canadian Council of Ministers of the Environment (CCME). TAN and COD are currently not required sampling parameters in the COA. However, they were included in the study as further non-compliances may require that monthly sampling is increased from a 'Level 1' effort to a 'Level 2' effort which would include sampling for TAN and COD.

Water quality values were compared against surface water results collected during monthly sampling by Cooke employees at the outflow pipe from the setting pond into Oak Bay.

#### RESULTS

#### Total Nitrogen (TN)

Values for TN varied from 0.215 mg/L to 0.686 mg/L (Table 1, below). Four (4) samples, collected from WQ1, WQ3, WQ4, and WQ6, exceeded the PBS threshold of 0.500 mg/L. Additional high values (greater than 0.400 mg/L), although not in exceedance, were observed at all sampling locations except for WQ2, which did not have a sample higher than 0.400 mg/L. All of the exceedances were collected on the ebb tide.

Although monthly monitoring observed TN values as high as 8.2 mg/L, the wide spread distribution of high TN values throughout the bay suggests that a number of influences are impacting water TN values, not just hatchery effluent. Additionally, the higher values in ebb tide samples suggests that the sources of nitrogen are incorporated into the water column during high tide.

#### **Total Phosphorus (TP)**

Values for TP varies from 0.021 mg/L to 0.095 mg/L (Table 1). Ten (10) samples exceeded the PBS threshold of 0.035 mg/L; seven (7) samples were collected from WQ1 and WQ2, two (2) samples from WQ4 and one (1) sample from WQ6. No exceedances were observed at WQ3 and WQ5.

The results of the samples taken in June 2015 from the effluent pond outflow into the bay observed a TP value of 0.69 mg/L and monthly monitoring values obtained from Cooke noted TP values as high as 2.62 mg/L. It is probable that TP values will vary with the type of effluent being released from the hatchery. During periods of high flow, drum filter bypass, surges, and swirl separator flushes, TP values in hatchery effluent will be higher.



The lack of exceedances observed at WQ3 suggest that the exceedance at WQ4 is irrespective of hatchery effluent. However, the high number of exceedances at WQ1 and WQ2 is of concern and TP should continue to be monitored closely in both the effluent and within Oak Bay. For TP analyses, WQ5 should be used as a control site and its values of 0.025 mg/L – 0.030 mg/L as a baseline for future monitoring activities.

#### **Total Suspended Solids (TSS)**

TSS results showed high bottom values which may be a result of the substrate being stirred up during sampling. Therefore, bottom samples were disregarded and further analysis was done only on the surface samples. Surface TSS values varied from 3.2 mg/L to 15 mg/L (Table 1). The highest value, 15 mg/L, was observed at WQ5, on the opposite side of Spoon Island to the hatchery.

If the TSS values are used as baseline values around Oak Bay, then the TSS value taken from the effluent pond discharge pipe in June, 2015 of 6.8 mg/L is within the acceptable limit of a 5 mg/L increase for long-term exposure. However values from monthly monitoring events collected by Cooke employees vary between 7 mg/L to 128 mg/L. CCME guidelines limit a maximum increase of 25 mg/L for short-term exposure, and outflow values of 128 mg/L greatly exceeds this value.

As in the case with TP, TSS values will vary with the type of effluent being released from the hatchery. It is likely that standard operations do not result in an exceedance in TSS thresholds, however, events that result in effluent bypassing drum filtration is of particular concern. TSS monitoring should continue observing both TSS in hatchery effluent and within Oak Bay.

#### Chemical Oxygen Demand (COD)

Values for COD varied between 640 mg/L and 1200 mg/L (Table 1). The regulations do not identify any thresholds for COD (NB DELG, 2013). Values greater than 900 mg/L were observed at all sites.

#### Total Ammonia Nitrogen (TAN)

Values for TAN varied between 0.065 mg/L and 0.27 mg/L (Table 1). The regulations do not identify any thresholds for TAN (NB DELG, 2013). Values varied between 0.065 mg/L (WQ5) and 0.270 mg/L (WQ6). All sites had values below the reportable detection limit of 0.050 mg/L.



#### Project # 15-5278

|                  |                                                                                             |             |             |        |           | Lab F            | Paramete      | ers        |            |                     |                     |        | Field Pa  | arameters  |                |       |                         |
|------------------|---------------------------------------------------------------------------------------------|-------------|-------------|--------|-----------|------------------|---------------|------------|------------|---------------------|---------------------|--------|-----------|------------|----------------|-------|-------------------------|
|                  | Oak Bay Water Quality                                                                       |             |             | ity    | TN (mg/L) | TP (mg/L)        | TSS (mg/L)    | COD (mg/L) | TAN (mg/L) | Sample Depth<br>(m) | Temperature<br>(°C) | DO (%) | DO (mg/L) | TDS (mg/L) | Salinity (ppt) | Hd    | Conductivity<br>(µS/cm) |
|                  |                                                                                             | Flood       | SW2         | Тор    | 0.276     | 0.036            | 8.5           | 910        | 0.072      | 0                   |                     |        |           |            |                |       |                         |
|                  | 3                                                                                           | FIOOD       | SW1         | Bottom | 0.432     | 0.054            | 21            | 640        | 0.220      | 1.97                | 15.5                | 127.3  | 10.40     | 28815      | 29.79          | 7.14  | 37552                   |
|                  | WQ1                                                                                         | The         | SW 14       | Тор    | 0.686     | 0.082            | 8.8           | 910        | 0.096      | 0                   | 15.5                | 127.3  | 10.49     | 20010      | 29.79          | 7.14  | 37552                   |
|                  | Ebb<br>Flood<br>Ebb<br>Ebb                                                                  | SW 13       | Bottom      | 0.238  | 0.078     | 67               | 1000          | ND         | 3.96       |                     |                     |        |           |            |                |       |                         |
|                  |                                                                                             | Flood       | SW4         | Тор    | 0.285     | 0.025            | 4.0           | 950        | ND         | 0                   |                     |        |           |            |                |       |                         |
|                  | 32                                                                                          | FIOOD       | SW3         | Bottom | 0.369     | 0.038            | 30            | 760        | ND         | 3.27                | 14.3                | 150.9  | 12.76     | 29763      | 29.68          | 7.66  | 36447                   |
|                  | Ň                                                                                           | Ebb         | SW16        | Тор    | 0.365     | 0.041            | 4.3           | 1100       | 0.150      | 0                   | 14.5                | 150.9  | 12.70     | 29703      | 29.00          | 7.00  | 50447                   |
|                  |                                                                                             | EDD         | SW15        | Bottom | 0.399     | 0.052            | 50            | 1100       | ND         | 4.45                |                     |        |           |            |                |       |                         |
|                  | Flood                                                                                       | SW6         | Тор         | 0.342  | 0.026     | 4.2              | 1000          | 0.130      | 0          | 14.9                |                     |        | 29971     |            | 7.73           |       |                         |
| su               |                                                                                             | SW5         | Bottom      | 0.492  | 0.030     | 4.2              | 1100          | 0.250      | 3.70       |                     | 147.3               | 12.31  |           | 29.94      |                | 37166 |                         |
| Sample Locations | Ň                                                                                           | Ebb -       | SW18        | Тор    | 0.597     | 0.024            | 4.2           | 1000       | 0.230      | 0                   |                     | 147.5  | 12.01     | 23371      | 23.34          |       | 57100                   |
| 00               |                                                                                             |             | SW17        | Bottom | 0.287     | 0.021            | 5.8           | 1100       | ND         | 4.45                |                     |        |           |            |                |       |                         |
| ole I            |                                                                                             | Flood       | SW8         | Тор    | 0.231     | 0.028            | 3.2           | 700        | ND         | 0                   |                     |        |           |            |                |       |                         |
| amp              | WQ4                                                                                         | Tiood       | SW7         | Bottom | 0.474     | 0.095            | 41            | 1200       | 0.097      | 5.05                | 14.0                | 139.9  | 11.73     | 29159      | 29.01          | 7.91  | 35384                   |
| S                | ≥                                                                                           | Ebb         | SW20        | Тор    | 0.526     | 0.036            | 8.8           | 960        | 0.100      | 0                   | 14.0                | 100.0  | 11.70     | 20100      | 20.01          | 7.01  | 00004                   |
|                  |                                                                                             |             | SW19        | Bottom | 0.300     | 0.033            | 5.8           | 1000       | ND         | 5.45                |                     |        |           |            |                |       |                         |
|                  |                                                                                             | Flood       | SW10        | Тор    | 0.239     | 0.027            | 5.2           | 930        | 0.110      | 0                   |                     |        |           |            |                |       |                         |
|                  | Q5                                                                                          |             | SW9         | Bottom | 0.243     | 0.025            | 6.8           | 910        | ND         | 5.80                | 14.8                | 138.3  | 11.95     | 29997      | 29.96          | 7.92  | 37114                   |
|                  | >                                                                                           | Ebb         | SW22        | Тор    | 0.227     | 0.027            | 15.0          | 970        | 0.090      | 0                   |                     |        |           |            | _0.00          |       | 2                       |
| 1                |                                                                                             |             | SW21        | Bottom | 0.485     | 0.030            | 7.3           | 840        | 0.065      | 5.05                |                     |        |           |            |                |       |                         |
| 1                |                                                                                             | Flood       | SW12        | Тор    | 0.215     | 0.029            | 7.4           | 940        | ND         | 0                   |                     |        |           |            |                |       |                         |
|                  | S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | SW11        | Bottom      | 0.455  | 0.044     | 33               | 1200          | ND         | 5.30       | 15.6                | 133.6               | 11.11  | 29666     | 26.68      | 7.90           | 37467 |                         |
|                  | 3                                                                                           | Ebb         | SW24        | Тор    | 0.523     | 0.023            | 7.4           | 1200       | 0.270      | 0                   |                     |        |           |            |                |       |                         |
|                  |                                                                                             |             | SW23        | Bottom | 0.418     | 0.028            | 7.8           | 990        | ND         | 5.38                |                     |        |           |            |                |       |                         |
|                  |                                                                                             | Settling Po | ond Effluer | nt⁵    | <1 - 8.2  | 0.069 -<br>2.620 | 6.0 -<br>59.0 | 34         | 0.47       |                     |                     |        |           |            |                |       |                         |
|                  |                                                                                             | Regulator   | y Guideline | es     | 0.5       | 0.035            | -             | -          | -          | -                   | -                   | -      | -         | -          | -              | -     | -                       |



August 20, 2015

Project # 15-5278

Table Notes:

- Highest and lowest values are bolded
   Values exceeding regulatory thresholds are highlighted in red
   TSS values highlighted in grey have been disregarded
   Regulatory guideline thresholds were taken from NB DELG, 2013
- 5. Setting pond effluent ranges are taken from Cooke monthly monitoring results

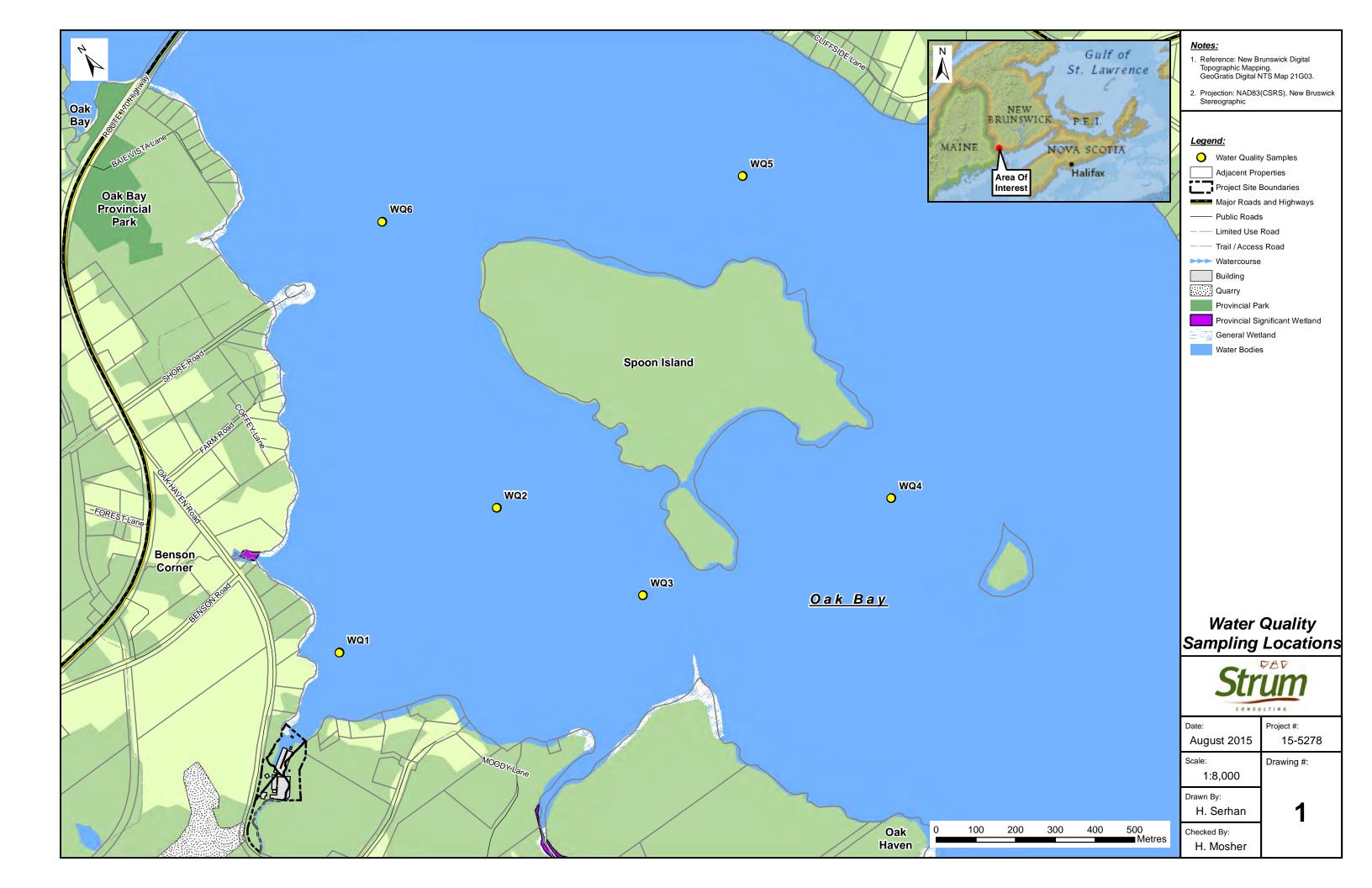


#### CONCLUSION AND RECOMMENDATIONS

Water quality sampling results indicate that the Oak Bay Hatchery is currently out of compliance for TSS during high flow events (e.g. flushing of the swirl separators and backwash of drum filters) and for TP. The results of this sampling do not indicate that wastewater effluent from the hatchery is increasing TN values above regulatory levels.

It is recommended that effluent quality and water quality in Oak Bay continue to be monitored in order to determine the complete impact of wastewater effluent on the receiving environment. Additionally, an established effluent mixing zone is required to fully assess non-compliance issues and continued water quality monitoring may aid in its determination.

If you have any questions, please contact us.


Thank you,

her Mosher

Heather Mosher, MSc. Environmental Scientist hmosher@strum.com

Shawn Duncan, BSc. Vice President sduncan@strum.com







Report Date: 2015/07/27

Strum Environmental Client Project #: 15-5278

#### **RESULTS OF ANALYSES OF WATER**

| /laxxam ID                                                                                                                |         | AQP    | 738   |            | AQP7     | 39               | AQP74        | 11    | AQP            | 741        |            |          |      | AQP7        | 742   |       |        |
|---------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|------------|----------|------------------|--------------|-------|----------------|------------|------------|----------|------|-------------|-------|-------|--------|
| Sampling Date                                                                                                             |         | 2015/  | 07/15 |            | 2015/07  | 7/15 2           | 2015/07      | /15   | 2015/0         | )7/15      |            |          |      | 2015/0      | 7/15  |       |        |
| OC Number                                                                                                                 |         | N,     | /A    |            | N/A      | 1                | N/A          |       | N//            | A          |            |          |      | N/A         | 4     |       |        |
|                                                                                                                           | Unit    | s SW1  | -JL15 | RDL        | SW2-JI   | L15              | SW3-JL       | 15    | SW3-J<br>Lab-D |            | RDL        | QC Ba    | tch  | SW4-J       | L15   | RDL   | QC Bat |
| norganics                                                                                                                 |         |        |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
| otal Chemical Oxygen Demand                                                                                               | mg/l    | - 64   | 10    | 100        | 910      | )                | 760          |       |                |            | 100        | 41138    | 38   | 950         | C     | 100   | 411391 |
| litrogen (Ammonia Nitrogen)                                                                                               | mg/l    | . 0.2  | 22    | 0.050      | 0.072    | 2                | ND           |       |                |            | 0.050      | 41154    | 74   | ND          | )     | 0.050 | 411547 |
| otal Phosphorus                                                                                                           | mg/l    | 0.0    | )54   | 0.020      | 0.03     | 6                | 0.038        | 3     |                |            | 0.020      | 41169    | 21   | 0.02        | 25    | 0.020 | 411692 |
| otal Suspended Solids                                                                                                     | mg/l    | . 2    | 1     | 1.0        | 8.5      |                  | 30           |       |                |            | 2.0        | 41149    | 23   | 4.0         | )     | 1.0   | 411492 |
| otal Kjeldahl Nitrogen                                                                                                    | mg/l    | . 0.:  | 19    | 0.10       | 0.31     | L                | 0.35         |       | 0.2            | 6          | 0.10       | 41148    | 84   | 0.3         | 4     | 0.10  | 41148  |
| DL = Reportable Detection Limi                                                                                            | t       |        |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
| C Batch = Quality Control Batch                                                                                           | า       |        |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
| ab-Dup = Laboratory Initiated D                                                                                           | uplicat | e      |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
| D = Not detected                                                                                                          |         |        |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
| axxam ID                                                                                                                  |         | AQP7   | 743   | AQP        | 744      | AQP74            | 14 A         | AQP74 | 45             | AQP7       | 46         | AQP7     | 47   | AQP         | 748   |       |        |
| mpling Date                                                                                                               |         | 2015/0 | 7/15  | 2015/0     | 07/15 20 | 15/07,           | /15 20       | 15/07 | /15 2          | 015/0      | 7/15       | 2015/07  | 7/15 | 5 2015/07/1 |       |       |        |
| OC Number                                                                                                                 |         | N//    | ۹.    | N//        | A        | N/A              |              | N/A   |                | N/A        | 4          | N/A      |      | N/          | /A    |       |        |
|                                                                                                                           | Units   | SW5-J  | L15   | 5 SW6-JL15 |          | W6-JL:<br>Lab-Du | S(M/7        |       | .15            | 5 SW8-JL15 |            | SW9-JL15 |      | 5 SW10-JL15 |       | RDL   | QC Ba  |
| organics                                                                                                                  |         |        |       |            |          |                  |              |       |                |            |            |          |      | _           |       |       |        |
| tal Chemical Oxygen Demand                                                                                                | mg/L    | 110    | 0     | 100        | 00       |                  |              | 1200  | )              | 700        | )          | 910      |      | 93          | 30    | 100   | 4113   |
| trogen (Ammonia Nitrogen)                                                                                                 | mg/L    | 0.2    | 5     | 0.1        | 3        |                  |              | 0.097 | 7              | ND         | )          | ND       |      | 0.1         | 11    | 0.050 | 41154  |
| tal Phosphorus                                                                                                            | mg/L    | 0.03   | 30    | 0.02       | 26       |                  |              | 0.095 | 5              | 0.02       | .8         | 0.02     | 5    | 0.0         | )27   | 0.020 | 41169  |
| tal Suspended Solids                                                                                                      | mg/L    | 4.2    | 2     | 4.2        | 2        |                  |              | 41    |                | 3.2        | 2          | 6.8      |      | 5.          | .2    | 1.0   | 41149  |
| tal Kjeldahl Nitrogen                                                                                                     | mg/L    | 0.2    | 2     | 0.3        | 2        | 0.29             |              | 0.32  |                | 0.2        | 5          | 0.29     |      | 0.2         | 27    | 0.10  | 41148  |
| DL = Reportable Detection Limit<br>C Batch = Quality Control Batch<br>b-Dup = Laboratory Initiated Du<br>D = Not detected |         | 2      |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
| Maxxam ID                                                                                                                 |         |        | AQP   | 749        | AQP749   | 9                | AQP750       | )     | AQP75          | 51         | AQP7       | 752      | AOF  | P753        |       |       |        |
| Sampling Date                                                                                                             |         |        |       |            | 2015/07/ |                  |              |       |                |            |            |          |      |             |       |       |        |
| COC Number                                                                                                                |         |        | N/2   |            | N/A      |                  | N/A          | _     | N/A            | -          | N//        |          |      | /A          |       |       |        |
|                                                                                                                           |         | Units  | sw11- |            | SW11-JL  |                  | ,<br>W12-JL: | L5 S  | W13-J          |            | ,<br>SW14- |          |      | ,<br>5-JL15 | RDL   | QC B  | atch   |
| Inorganics                                                                                                                |         |        |       |            |          | -                |              |       |                |            |            |          |      |             |       |       |        |
| Total Chemical Oxygen Der                                                                                                 | mand    | mg/L   | 120   | 00         |          |                  | 940          |       | 1000           | )          | 91         | 0        | 11   | 00          | 100   | 4113  | 8916   |
| Nitrogen (Ammonia Nitrog                                                                                                  | en)     | mg/L   | NE    |            | ND       |                  | ND           |       | ND             | 1          | 0.09       | 96       |      | ID          | 0.050 |       |        |
| Total Phosphorus                                                                                                          |         | mg/L   | 0.04  | 44         |          |                  | 0.029        |       | 0.078          | 3          | 0.08       | 32       | 0.0  | )52         | 0.020 | 4116  | 5921   |
| Total Suspended Solids                                                                                                    |         | mg/L   | 33    | 3          |          |                  | 7.4          |       | 67             |            | 8.8        | 3        | 5    | 50          | 1.0   | 4114  | 923    |
| Total Kjeldahl Nitrogen                                                                                                   |         | mg/L   | 0.3   | 2          |          |                  | 0.30         |       | 0.30           |            | 0.5        | 8        | 0.   | 43          | 0.10  | 4114  | 887    |
| RDL = Reportable Detectio<br>QC Batch = Quality Control<br>Lab-Dup = Laboratory Initia<br>ND = Not detected               | Batch   |        |       |            |          |                  |              |       |                |            |            |          |      |             |       |       |        |
|                                                                                                                           |         |        |       |            |          | Page 2           | 2 of 7       |       |                |            |            |          |      |             |       |       |        |



Report Date: 2015/07/27

Strum Environmental Client Project #: 15-5278

#### **RESULTS OF ANALYSES OF WATER**

| Maxxam ID                      |       | AQP754           |       | AQP755          | .    |          | AQP756           | AQP75                    | 6          | AQP757             |       | 1        |
|--------------------------------|-------|------------------|-------|-----------------|------|----------|------------------|--------------------------|------------|--------------------|-------|----------|
|                                |       | 2015/07/15       |       | 2015/07/        |      |          | -                | 2015/07                  |            | 2015/07/1          | -     | _        |
| ampling Date                   |       |                  |       |                 | 12   |          |                  |                          | /15        |                    | 5     |          |
|                                | Units | N/A<br>SW16-JL15 | RDL   | N/A<br>SW17-JL1 | 15 0 | QC Batch | N/A<br>SW18-JL15 | N/A<br>SW18-JL<br>Lab-Du | OC Bate    | N/A<br>h SW19-JL15 | 5 RDL | QC Bate  |
| norganics                      |       |                  |       |                 |      |          |                  |                          |            |                    |       |          |
| otal Chemical Oxygen Demand    | mg/L  | 1100             | 100   | 1100            | 2    | 4113916  | 1000             | 1100                     | 411391     | 5 1000             | 100   | 411391   |
| litrogen (Ammonia Nitrogen)    | mg/L  | 0.15             | 0.050 | ND              | 2    | 4115479  | 0.23             |                          | 411547     | 9 ND               | 0.05  | 0 411547 |
| otal Phosphorus                | mg/L  | 0.041            | 0.020 | 0.021           | 2    | 4116921  | 0.024            |                          | 411692     | 1 0.033            | 0.02  | 0 411692 |
| otal Suspended Solids          | mg/L  | 4.3              | 2.0   | 5.8             | 4    | 4114923  | 4.2              |                          | 411492     | 3 5.8              | 1.0   | 411493   |
| otal Kjeldahl Nitrogen         | mg/L  | 0.52             | 0.10  | 0.35            | 4    | 4114887  | 0.36             |                          | 411737     | 3 0.26             | 0.10  | 411737   |
| Maxxam ID                      |       | AQP758           | A     | QP758           |      |          | AQP759           |                          | AQP760     | AQP761             |       |          |
| Sampling Date                  |       | 2015/07/1        |       | 5/07/15         |      |          | 2015/07/15       | -                        | 2015/07/15 | 2015/07/15         |       |          |
| COC Number                     |       | N/A              |       | N/A             |      |          | N/A              | ,                        | N/A        | N/A                |       |          |
|                                | Unit  |                  | s sw  | ,<br>20-11 15   | RDL  | QC Batcl | -                | RDL                      | SW22-JL15  | SW23-JL15          | RDL   | QC Batch |
| Inorganics                     |       |                  |       |                 |      |          |                  |                          |            |                    |       |          |
| Total Chemical Oxygen Demand   | l mg/ | L 960            |       |                 | 100  | 4113916  | 840              | 100                      | 970        | 990                | 100   | 4113916  |
| Nitrogen (Ammonia Nitrogen)    | mg/   | L 0.10           | 0     | 0.081 0         | .050 | 4115474  | 0.065            | 0.050                    | 0.090      | ND                 | 0.050 | 4115479  |
| Total Phosphorus               | mg/   | L 0.036          |       | 0               | .020 | 4116922  | 0.030            | 0.020                    | 0.027      | 0.028              | 0.020 | 4116922  |
| Total Suspended Solids         | mg/   | L 8.8            |       |                 | 1.0  | 4114931  | . 7.3            | 2.0                      | 15         | 7.8                | 1.0   | 4114931  |
| Total Kjeldahl Nitrogen        | mg/   | L 0.27           |       | (               | 0.10 | 4117378  | 0.18             | 0.10                     | 0.26       | 0.19               | 0.10  | 4117378  |
| RDI = Reportable Detection Lim | it.   | •                |       |                 |      |          | •                |                          |            |                    |       |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ND = Not detected

| Maxxam ID                                                            |       | AQP762     |       |          |
|----------------------------------------------------------------------|-------|------------|-------|----------|
| Sampling Date                                                        |       | 2015/07/15 |       |          |
| COC Number                                                           |       | N/A        |       |          |
|                                                                      | Units | SW24-JL15  | RDL   | QC Batch |
| Inorganics                                                           |       |            |       |          |
| Total Chemical Oxygen Demand                                         | mg/L  | 1200       | 100   | 4119016  |
| Nitrogen (Ammonia Nitrogen)                                          | mg/L  | 0.27       | 0.050 | 4115479  |
| Total Phosphorus                                                     | mg/L  | 0.023      | 0.020 | 4116922  |
| Total Suspended Solids                                               | mg/L  | 7.4        | 1.0   | 4114931  |
| Total Kjeldahl Nitrogen                                              | mg/L  | 0.29       | 0.10  | 4117378  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |       |          |



Maxxam Job #: B564540

Report Date: 2015/07/30

MAXXAM ANALYTICS Client Project #: DB5E1711

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| Maxxam ID                        |       | MT7019               | MT7020               |          | MT7021               |          | MT7022               |       |          |  |
|----------------------------------|-------|----------------------|----------------------|----------|----------------------|----------|----------------------|-------|----------|--|
| Sampling Date                    |       | 2015/07/15           | 2015/07/15           |          | 2015/07/15           |          | 2015/07/15           |       |          |  |
| COC Number                       |       | 08412354             | 08412354             |          | 08412354             |          | 08412354             |       |          |  |
|                                  | UNITS | SW1-JL15<br>(AQP738) | SW2-JL15<br>(AQP739) | QC Batch | SW3-JL15<br>(AQP741) | QC Batch | SW4-JL15<br>(AQP742) | RDL   | QC Batch |  |
| Nutrients                        |       |                      |                      |          |                      |          |                      |       |          |  |
| Total Nitrogen (N)               | mg/L  | 0.432                | 0.276                | 7984903  | 0.369                | 7984901  | 0.285                | 0.020 | 7984903  |  |
| RDL = Reportable Detection Limit |       |                      |                      |          |                      |          |                      |       |          |  |
|                                  |       |                      |                      |          |                      |          |                      |       |          |  |

| Maxxam ID     |       | MT7023     | MT7024     |          | MT7025     | MT7026     |          | MT7027     |     |          |
|---------------|-------|------------|------------|----------|------------|------------|----------|------------|-----|----------|
| Sampling Date |       | 2015/07/15 | 2015/07/15 |          | 2015/07/15 | 2015/07/15 |          | 2015/07/15 |     |          |
| COC Number    |       | 08412354   | 08412354   |          | 08412354   | 08412354   |          | 08412354   |     |          |
|               | UNITS | SW5-JL15   | SW6-JL15   | QC Batch | SW7-JL15   | SW8-JL15   | QC Batch | SW9-JL15   | RDL | QC Batch |
|               |       | (AQP743)   | (AQP744)   |          | (AQP745)   | (AQP746)   |          | (AQP747)   |     |          |

| Nutrients          |      |          |       |         |       |       |         |       |       |         |
|--------------------|------|----------|-------|---------|-------|-------|---------|-------|-------|---------|
| Total Nitrogen (N) | mg/L | 0.492    | 0.342 | 7984901 | 0.474 | 0.231 | 7984903 | 0.243 | 0.020 | 7984901 |
| DDI Dementable     |      | L facili |       |         |       |       |         |       |       |         |

RDL = Reportable Detection Limit

|       | MT7028                |                                                       | MT7029                                                | MT7030                                                                                                                                       | MT7030                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                    | MT7031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|-----------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2015/07/15            |                                                       | 2015/07/15                                            | 2015/07/15                                                                                                                                   | 2015/07/15                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    | 2015/07/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 08412354              |                                                       | 08412354                                              | 08412354                                                                                                                                     | 08412354                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    | 08412354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UNITS | SW10-JL15<br>(AQP748) | QC Batch                                              | SW11-JL15<br>(AQP749)                                 | SW12-JL15<br>(AQP750)                                                                                                                        | SW12-JL15<br>(AQP750)<br>Lab-Dup                                                                                                                                                                                                 | QC Batch                                                                                                                                                                                                                                                                                           | SW13-JL15<br>(AQP751)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RDL                                                                                                                                                                                                                                                                                                                                                                                   | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                       |                                                       |                                                       |                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/L  | 0.239                 | 7984903                                               | 0.455                                                 | 0.215                                                                                                                                        | 0.231                                                                                                                                                                                                                            | 7984901                                                                                                                                                                                                                                                                                            | 0.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.020                                                                                                                                                                                                                                                                                                                                                                                 | 7984903                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                       | 2015/07/15<br>08412354<br>UNITS SW10-JL15<br>(AQP748) | 2015/07/15<br>08412354<br>UNITS SW10-JL15<br>(AQP748) | 2015/07/15         2015/07/15           08412354         08412354           UNITS         SW10-JL15<br>(AQP748)         QC Batch<br>(AQP749) | 2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354           UNITS         SW10-JL15<br>(AQP748)         QC Batch         SW11-JL15<br>(AQP749)         SW12-JL15<br>(AQP750) | 2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354           UNITS         SW10-JL15<br>(AQP748)         QC Batch         SW11-JL15<br>(AQP749)         SW12-JL15<br>(AQP750)         SW12-JL15<br>(AQP750) | 2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354           UNITS         SW10-JL15<br>(AQP748)         QC Batch         SW11-JL15<br>(AQP749)         SW12-JL15<br>(AQP750)         SW12-JL15<br>(AQP750)         QC Batch           units         units | 2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354         08412354           UNITS         SW10-JL15<br>(AQP748)         QC Batch         SW11-JL15<br>(AQP749)         SW12-JL15<br>(AQP750)         SW12-JL15<br>(AQP750)         QC Batch         SW13-JL15<br>(AQP751) | 2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354         08412354         08412354           UNITS         SW10-JL15<br>(AQP748)         QC Batch         SW11-JL15<br>(AQP749)         SW12-JL15<br>(AQP750)         SW12-JL15<br>(AQP750)         QC Batch         SW13-JL15<br>(AQP751)         RDL |

RDL = Reportable Detection Limit

| Maxxam ID          |       | MT7032     | MT7033     | MT7034     | MT7035     |          | MT7036     |       |          |
|--------------------|-------|------------|------------|------------|------------|----------|------------|-------|----------|
| Sampling Date      |       | 2015/07/15 | 2015/07/15 | 2015/07/15 | 2015/07/15 |          | 2015/07/15 |       |          |
| COC Number         |       | 08412354   | 08412354   | 08412354   | 08412354   |          | 08412354   |       |          |
|                    | UNITS | SW14-JL15  | SW15-JL15  | SW16-JL15  | SW17-JL15  | QC Batch | SW18-JL15  | RDL   | QC Batch |
|                    |       | (AQP752)   | (AQP753)   | (AQP754)   | (AQP755)   |          | (AQP756)   |       |          |
|                    |       |            |            |            |            |          |            | _     |          |
| Nutrients          |       |            |            |            |            |          |            |       |          |
| Total Nitrogen (N) | mg/L  | 0.686      | 0.399      | 0.365      | 0.287      | 7984903  | 0.597      | 0.020 | 7984901  |
| 0 ()               | 5     | 1          | 1          | 1          | 1          | 1        | 1          | -     | 1        |
|                    |       |            |            |            |            |          |            |       |          |



Maxxam Job #: B564540 Report Date: 2015/07/30 MAXXAM ANALYTICS Client Project #: DB5E1711

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

|       | MT7037                | MT7038                                                | MT7039                                                                             | MT7040                                                                                                                                                                                                          | MT7040                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                               | MT7041                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-----------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2015/07/15            | 2015/07/15                                            | 2015/07/15                                                                         | 2015/07/15                                                                                                                                                                                                      | 2015/07/15                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                               | 2015/07/15                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 08412354              | 08412354                                              | 08412354                                                                           | 08412354                                                                                                                                                                                                        | 08412354                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                               | 08412354                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UNITS | SW19-JL15<br>(AQP757) | SW20-JL15<br>(AQP758)                                 | SW21-JL15<br>(AQP759)                                                              | SW22-JL15<br>(AQP760)                                                                                                                                                                                           | SW22-JL15<br>(AQP760)<br>Lab-Dup                                                                                                                                                                                                                                                                        | QC Batch                                                                                                                                                                                                                                                                                                                                                                      | SW23-JL15<br>(AQP761)                                                                                                                                                                                                                                                                                                                                                | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                       |                                                       |                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mg/L  | 0.299                 | 0.526                                                 | 0.485                                                                              | 0.227                                                                                                                                                                                                           | 0.230                                                                                                                                                                                                                                                                                                   | 7984903                                                                                                                                                                                                                                                                                                                                                                       | 0.418                                                                                                                                                                                                                                                                                                                                                                | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7984901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |                       | 2015/07/15<br>08412354<br>UNITS SW19-JL15<br>(AQP757) | 2015/07/15 2015/07/15<br>08412354 08412354<br>UNITS SW19-JL15<br>(AQP757) (AQP758) | 2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354           UNITS         SW19-JL15<br>(AQP757)         SW20-JL15<br>(AQP758)         SW21-JL15<br>(AQP759) | 2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354           UNITS         SW19-JL15         SW20-JL15         SW21-JL15         SW22-JL15           (AQP757)         (AQP758)         (AQP759)         (AQP760) | 2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354         08412354           UNITS         SW19-JL15         SW20-JL15         SW21-JL15         SW22-JL15         SW22-JL15           (AQP757)         (AQP758)         (AQP759)         (AQP760)         Lab-Dup | 2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15           08412354         08412354         08412354         08412354         08412354           UNITS         SW19-JL15<br>(AQP757)         SW20-JL15<br>(AQP758)         SW21-JL15<br>(AQP759)         SW22-JL15<br>(AQP760)         SW22-JL15<br>(AQP760)         QC Batch | 2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07 | 2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07/15         2015/07 |

#### RDL = Reportable Detection Limit

| Maxxam ID                              |       | MT7042                |       |          |
|----------------------------------------|-------|-----------------------|-------|----------|
| Sampling Date                          |       | 2015/07/15            |       |          |
| COC Number                             |       | 08412354              |       |          |
|                                        | UNITS | SW24-JL15<br>(AQP762) | RDL   | QC Batch |
|                                        |       |                       |       |          |
|                                        |       | 1                     | 1     | 1        |
| Nutrients                              |       |                       |       |          |
| <b>Nutrients</b><br>Total Nitrogen (N) | mg/L  | 0.523                 | 0.020 | 7984903  |



## **SAMPLING GUIDE & BOTTLE REQUISITION FORM**

Fax your request 902-420-8612 or call Shipping Department 902-420-0203e251 or 1-800-565-7227

| Company: Attention:     |              |                              |                                  |                                                                       |                |                              |
|-------------------------|--------------|------------------------------|----------------------------------|-----------------------------------------------------------------------|----------------|------------------------------|
| Addres                  | s (for Cou   |                              |                                  |                                                                       |                |                              |
|                         |              |                              |                                  | Maxxam Project Manag                                                  | er             |                              |
| Date R                  | equired:     |                              | Proi#                            | for Billing Rush or Remote Shipments which                            | are charged by | ack to client                |
| (Shinm                  | ents are r   | ush if Purolator 9a          | m or 10:30am charges apply       | y, Shipments are remote if Purolator Express S                        | ervice takes 3 | davs)                        |
| •                       |              | Instructions :               |                                  |                                                                       |                | uujo.)                       |
| Specia                  |              |                              | 's Proprinted labels &           | Pre-packed bottle kits available, ask y                               | our Project I  | Managor                      |
|                         |              | ustonnized ood               |                                  |                                                                       |                | #Samples                     |
| SOIL T                  |              |                              | Container                        | Preservative Description/Comments                                     | Hold Time      | If cases specify             |
| RBCA-H                  | ydrocarbo    | ns –BTEX                     | 2 x 40 mL vials w MeOH           | BTEX(C6-C10): Methanol                                                | 28d            |                              |
| Note11                  |              | -Extractable                 | 60 mL glass                      | Extractables (C10-C32) and Moisture : None                            | 14d            |                              |
|                         | PA 8260)     |                              | 2 x 40 mL vials w MeOH           | Methanol                                                              | 28d            |                              |
|                         |              | PA 8270, etc.)               |                                  | Organics                                                              | 14d            |                              |
|                         | c Metals (no | ot including Mercury)        | 250 mL glass                     | Metal Scan                                                            | 6m             |                              |
| Mercury                 |              |                              | 100 1 1                          | Mercury                                                               | 28d            |                              |
| Sulfide                 |              |                              | 120 mL glass                     |                                                                       | 7d             |                              |
| WATER TESTS             |              |                              | Container                        | Preservative Description/Comments                                     | Hold Time      | #Samples<br>If cases specify |
|                         | Halides AC   | DX,TOX,EOX,TX                | 500 mL amber glass               |                                                                       | 7d             |                              |
| BOD                     |              |                              | 500 mL plastic                   |                                                                       | 48hr           |                              |
|                         |              | Phenol/TOC/Total P           | 100 mL amber glass               | 50% H <sub>2</sub> SO <sub>4</sub> to pH<2                            | 28d            |                              |
|                         | (Total /Fe   | cal/E.coli) <sub>Note5</sub> | 300 mL sterile plastic           | Sodium Thiosulphate (for sewage Note4)                                | 24hr           |                              |
| Cyanide                 |              |                              | 60 mL amber glass                | NaOH to pH>12                                                         | 14d            |                              |
| Fluoride                |              |                              | 200 mL plastic                   | No Preservative required                                              | 28d            |                              |
| Fractiona               | ation        | Volatile                     | 3x40 mL glass                    | Sodium Bisulfate - Fill to top (no air bubble)                        | 14d            |                              |
| TPH                     |              | Extractable                  | 2x1 L amber glass                | Sodium Bisulfate - Fill to neck & cap                                 | 14d            |                              |
| Glycol (T               |              |                              | 3x40 mL vials                    | Sodium Bisulfate - Fill to top                                        | 14d            |                              |
|                         | ent Chromi   | ium                          | 125 mL plastic                   | 2.5 mL (NH4)2SO4/NH4OH                                                | 28d            |                              |
| Haloacet                | ic Acid      |                              | 3x40 mL glass                    | 4mg Ammonium Chloride – Fill to Top                                   | 14d            |                              |
| Mercury                 |              |                              | 100 mL glass                     | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> in 17% HNO <sub>3</sub> | 28d            |                              |
|                         |              | Seawater Note7)              | 120 mL plastic                   | 2ml 18% HNO <sub>3</sub> Note2                                        | Note3          |                              |
| RBCA                    |              | BTEX Note1                   | 3x40 mL glass                    | Sodium Bisulfate - Fill to top (no air bubble)                        | 14d            |                              |
| 0.10.0                  |              | ble Hydrocarbon              | 2x250 mL glass                   | Sodium Bisulfate - Fill to neck & cap                                 | 14d            |                              |
|                         | ase-Gravin   | netric (IR Note8)            | 2x1 L amber glass                | HCI, Fill to neck & cap                                               | 28d            |                              |
| PCB's                   |              |                              | 2x250 mL glass                   | Fill to neck & cap                                                    | 7d             |                              |
|                         | S &PUBS (U   | Carbamates Note6)            | 500 mL amber glass               | Fill to neck & cap<br>Fill to top and cap                             | 7d<br>Note9    |                              |
| pH<br>PAH's             |              |                              | 200 mL plastic<br>2x250 mL glass | Fill to neck & cap                                                    | 7d             |                              |
| Radon N                 | loto10       |                              | Sealed 250ml glass jar           | No Headspace                                                          | 7 d            |                              |
|                         |              | Chemistry)                   |                                  | 200ml no preservative (note3), 120ml                                  | Note3          |                              |
| 110/10/00               |              | ononnou y)                   | 200 mL,120mL&                    | HNO <sub>3</sub> preservative(note2)                                  | 110100         |                              |
|                         |              |                              | 1X100mL                          | 1*100ml bottle with 50% H2SO4 pH<2                                    |                |                              |
| RCAp M                  | S(General    | Chem&Metals)                 |                                  | 200ml no preservative (note3), 120ml                                  | Note3          |                              |
| -                       |              |                              | 200 mL,120mL&<br>1X100mL         | HNO <sub>3</sub> preservative(note2)                                  |                |                              |
|                         |              |                              |                                  | 1*100ml bottle with 50% H2SO4 pH<2                                    |                |                              |
| Sulfide (H              |              |                              | 250 mL plastic                   | zinc acetate/NaOH                                                     | 7d             |                              |
| Tannin &                | Lignin       |                              | 500 mL plastic                   | Fill to neck & cap                                                    | 7d             |                              |
| TSS                     |              |                              | 500 mL plastic                   | (except marine waters use 1 L plastic)                                | 7d             |                              |
|                         |              | nicsEPA625                   | 2x1 L amber glass                | Fill to neck & cap                                                    | 14d            |                              |
| Semi Vol<br>(Chlorinate |              | nicsEPA625                   | 2x1 L amber glass                | Sodium Thiosulfate Fill to neck & cap                                 | 14d            |                              |
| VOC (EP                 |              | //s)                         | 3x40 mL glass                    | Sodium bisulfate, Fill to top (no air bubble)                         | 14d            |                              |
|                         |              | ated source                  |                                  |                                                                       | 14d            |                              |

See Notes on page 2. All samples to be kept cold, and for organic samples minimize exposure to light.

| Other Tests     | Description                                      | #Required | Other Supplies                            | #Required |
|-----------------|--------------------------------------------------|-----------|-------------------------------------------|-----------|
| Lead on Swab    | Ghost Swab (4.75in X 4.75in)                     |           | Field ID labels                           |           |
| Metals in Air   | Matched Weight MCE (37mm) Filters (\$12.25 each) |           | 0.45um Filter (filtering metals,\$1.50ea) |           |
| Air Testing     | Matched Weight PVC (37mm) Filters (\$12.25 each) |           | Coolers/ Ice Packs                        |           |
| Asbestos in air | MCE (25mm)                                       |           | Sample submission forms                   |           |
| Hydrocarbons    | 400/200mg Charcoal tube (JUMBO)                  |           | Customized COC's                          |           |
| PCB's in Oil    | 20 mL glass vial                                 |           | Pre-printed Labels, Bottle Kits           |           |

200 Bluewater Road, Suite 105, Bedford, NS, Canada B4B 1G9 TEL.:(902) 420-0203 Fax: (902) 420-8612 ATL WI 00019/22 ATL FCD 00103 / 25 Pg 1/2

#### NOTES

1. Biodegradation of VOC's in chlorinated drinking water is expected to be low. Sodium Thiosulfate treatment is generally sufficient for chlorinated drinking waters. To prevent biodegradation of **non**drinking chlorinated water samples, further HCl preservation will give the best results. For additional HCl preservation, fill bottle, then after swirling sample to dissolve sodium thiosulfate and give time for reducing agent to react with free chlorine, add HCl to lower pH to 2.0.

2. If dissolved metals are desired, samples should be field filtered and acidified to pH < 2 with nitric acid. If field filtration is not feasible, the samples should be submitted to the laboratory unacidified with a request for lab filtration and acidification - **do** not acidify unfiltered samples for dissolved metals.

3. RCAp parameters and general water quality holding times vary considerably. Although a holding time of 28 days is considered acceptable for a "snapshop" of water quality, individual tests may have holding times ranging from 24 hours to 6 months. Fill sample containers to overflowing and cap tightly. Please contact the Customer Service Department with any questions regarding preservation and holding times for specific analytes.

4. Transport Canada has specific regulations regarding the shipment and handling of sewage samples. Samples must be taken in fully-closed sewage bottles sealed within a durable plastic bag containing absorbent material and placed in a rigid shipping container. Requisitions are to be attached to the outside of the plastic bag.

5. Coliform samples must normally be received within 24 hours of collection. Samples not delivered to lab within one hour of collection should be transported at a temperature below 10

C, samples older than one hour arriving at a temperature >15C are not normally tested. Samples should be received at the laboratory before 3 PM Monday to Friday to ensure processing. Samples arriving, weekends or a day before a holiday will be subjected to a surcharge. A completed coliform requisition form, including date and time sampled, must accompany each sample.

6. If Carbamate analysis is required, a 3mL vial of Chloroacetic Acid Buffer solution is added to bottle shipment. This Chloroacetic acid is added to sample bottle prior to taking sample.

7. For trace metals in Seawater, 2 \*500mL acid washed plastic bottles are used. Samples are preserved at the lab, once preserved hold time is 6 months.

8. If Oil & Grease by the Infrared Method is required then two 500mL bottles H<sub>2</sub>SO4 preserved are required.

9. For best results, pH should be tested in the field within 15 min. For non-legal samples and for information only pH samples can be brought to the lab for analysis.

10. Please contact the Customer Service Department to provide information on sampling for Radon in water.

11. Bottle order for BTEX or VOCs in soil also includes one TerraCore sampler per sample.

#### Data sheet DS/WM-EN Rev. U

## WaterMaster Electromagnetic flowmeter

## Measurement made easy

# The perfect fit for all water industry applications



#### One solution for all your needs

 designed for use in all water and waste water applications, from sewage plants to distribution networks

#### State-of-the-art technology

- revolutionary data storage enables transmitter interchange and commissioning without the need for re-configuration
- self-calibrating transmitter with ultra-low temperature coefficient for highest accuracy

#### Versatile and simple configuration

- 'Through-the-Glass' (TTG) configuration eliminating the need to remove the cover
- smart key based functionality
- 'Easy Setup' function

#### VeriMaster in situ verification software option

 enables the customer to perform in situ verification of the flowmeter system

#### Unparalleled service ability

- fault-finding Help texts on the display
- minimized downtime with replaceable electronics cartridges

#### MID and OIML R49 approved with R49 self-checking

- Type-approved to accuracy Class 1 and Class 2 for any pipe orientation and bidirectional flows
- Type P-approved continuous self-checking of the sensor and transmitter to ensure the highest accuracy and long term performance

#### Innovative sensors for all applications

- optimized full-bore series for optimum turndown / low pressure drop, irrigation applications
- full-bore series for general-purpose water metering applications
- reduced-bore series for high turn down applications, for example, leakage
- buriable sensors eliminating the need for costly chamber construction

#### HART, PROFIBUS DP and MODBUS

- Full system and PLC integration



#### The Company

ABB is an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a world leader in process automation technology our worldwide presence, comprehensive service and application-oriented know-how make ABB a leading supplier of flow measurement products.

#### Introduction

#### Setting the standard for the Water Industry

The WaterMaster range, available in sizes 10 to 2400 mm ( $^{3}/_{8}$  to 96 in.), is designed specifically for use on the many diverse applications encountered in the Water and Waste-water industry. The modular design concept offers flexibility, cost-saving operation and reliability while providing a long service life and exceptionally low maintenance.

Integration into ABB asset management systems and use of the self-monitoring and diagnostic functions increase the plant availability and reduce downtimes.

#### VeriMaster - the verification tool

An easy-to-use utility, available through the infra red service port, it uses the advanced self-calibration and diagnostic capability of WaterMaster, coupled with fingerprinting technology, to determine the accuracy status of the WaterMaster flowmeter to within  $\pm 1$  % of its original factory calibration. VeriMaster also supports printing of calibration verification records for regulatory compliance.



#### **Diagnostic functions**

Using its diagnostic functions, the flowmeter monitors both its own operability and the process. Limit values for the diagnostic parameters can be set locally. When these limits are exceeded, an alarm is tripped. In the event of an error, diagnostic-dependent help text appears on the display and this considerably simplifies and accelerates the troubleshooting procedure.

In accordance with NAMUR NE107, alarms and warnings are classified with the status of 'Maintenance Required', 'Check Function', 'Failure' and 'Out of Specification'.

#### Flow performance

Utilizing its advanced filtering methods, the WaterMaster improves accuracy even under difficult conditions. WaterMaster has an operating flow range with  $\pm 0.4$  % accuracy as standard ( $\pm 0.2$  % optional) in both forward and reverse flow directions.

#### Easy and quick commissioning

'Fit-and-Flow' data storage inside WaterMaster eliminates the need to match sensor and transmitter in the field. On initial installation, the self-configuration sequence automatically replicates into the transmitter all calibration factors, meter size and serial numbers, as well as customer site-specific settings, eliminating the potential for error.

#### Intuitive, convenient navigation

The 'Easy Setup' function reliably guides unpracticed users through the menu step by step. The smart key based functionality makes handling a breeze – it's just like using a cell phone. During configuration, the permissible range of each parameter is indicated on the display and invalid entries are rejected.

#### Universal transmitter - powerful and flexible

The backlit display can be rotated easily without the need for tools. The contrast is adjustable and the display fully-configurable. The character size, number of lines and display resolution (number of decimal points) can be set as required. In multiplex mode, several different display options can be pre-configured and invoked one after the other.

The smart modular design of the transmitter unit enables easy disassembly without the need to unscrew cables or unplug connectors. HART is used as the standard communications protocol. Optionally, the transmitter is available with PROFIBUS DP or MODBUS communication.

#### Assured quality

WaterMaster is designed and manufactured in accordance with international quality procedures (ISO 9001) and all flowmeters are calibrated on nationally-traceable calibration rigs to provide the end-user with complete assurance of both quality and performance of the flowmeter.



### WaterMaster - always the first choice

WaterMaster sets the standard for the water industry. The specification, features and user benefits offered by this range are based on ABB's worldwide experience in this industry and they are all targeted specifically to the industry's requirements.

### Submersible and buriable

WaterMaster sensors have a rugged, robust construction to ensure a long, maintenance-free life under the arduous conditions experienced in the Water and Waste Industry. The sensors are, as standard, inherently submersible (IP68, NEMA 6P), thus ensuring suitability for installation in chambers and metering pits that are susceptible to flooding.

A unique feature of the WaterMaster sensors is that sizes DN40 to DN2400 ( $1^{1}/_{2}$  to 96 in. NB) are buriable; installation simply involves excavating to the underground pipe, fitting the sensor, cabling back to the transmitter and then backfilling the hole.



The WaterMaster family

### Overview of the WaterMaster

A wide range of features and user benefits are built into WaterMaster as standard:

- bi-directional flow
- unique self-calibrating transmitter (patented) for the ultimate in stability and repeatability
- OIML-type continuous self-checking, with alarms, ensures both sensor and transmitter accuracy
- true electrode and coil impedance measurement
- comprehensive simulation mode
- universal switch-mode power supply (options are available for AC and DC supplies)
- comprehensive self-diagnostics compliant with NAMUR NE107
- programmable multiple-alarm capability
- bus options: HART (4 to 20 mA), PROFIBUS DP (RS485), MODBUS (RS485)
- 3 configurable pulse / frequency and alarm outputs
- advanced infrared service port supports remote HMI, HART, cyclic data out and parameter download
- VeriMaster in situ verification software available as option
- read-only switch and ultra-secure service password for total security



# **OIML / MID approved**

WaterMaster has been type tested and Internationally approved to the highest accuracy class 1 and 2 for cold and hot potable water meters – OIML R49-1 (Organisation Internationale de Métrologie Légale). For full details, OIML R49 is available to download from www.oiml.org. Its requirements are very similar to other International standards, such as EN14154 and ISO4064.

WaterMaster has been assessed by type approval at the National Measurement Office (NMO) to OIML R49 and passed to the very highest accuracy designations for sizes DN40 to DN200 ( $1^{1}/_{2}$  to 8 in. NB).

The approval is for:

- Class 1 and Class 2 accuracy (calibration option)
- Environmental class T50 for water temperatures of 0.1 to 50 °C (32.18 to 122 °F)
- Electromagnetic Environment E2 (10 V/m)
- Any pipe orientation
- 5 Diameters upstream pipe
- O Diameters downstream pipe
- Pressure Loss Class <0.25 bar (3.62 psi)</p>
- Integral or remote transmitter (<200 m [<656 ft.] cable)
- DN40 to DN200 (1<sup>1</sup>/<sub>2</sub> to 8 in. NB), bi-directional flow

A major advance in WaterMaster is the self-checking capabilities that meet and exceed the R49 requirements and is the first electromagnetic flowmeter to be approved to OIML Type P permanent self checking during normal operation (not just at startup) and alarm indication for:

- transmitter and sensor status, with an accuracy alarm
- program ROM and RAM status
- double, independent storage of totalizer values, in both the sensor and transmitter non-volatile memories
- display test

The OIML R49-1 certificate of conformity is available from:

http://www.abb.com/product/seitp330/b42ec2377d3293cd c12573de003db93b.aspx

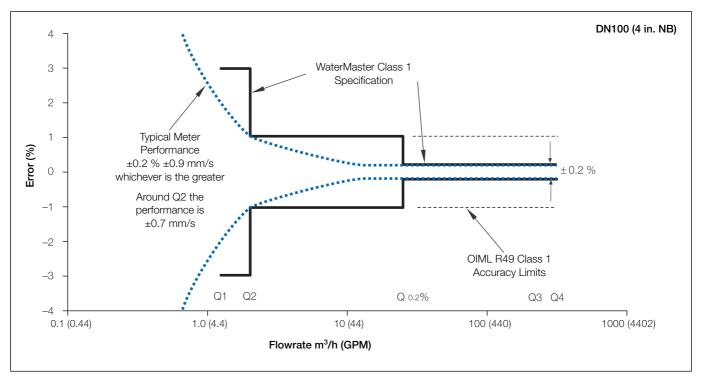
WaterMaster is also approved under the EU Measuring Instruments Directive (MID) 2004/22/EC, that covers putting into use water flowmeters for certain applications. MID WaterMaster is secured against tamping and is available as an option, along with fingerprinting for ABB VeriMaster in situ verification product, with certificate printout to  $\pm 1$  % accuracy.

WaterMaster certificates of EC type-examination of a measuring instrument are available from:

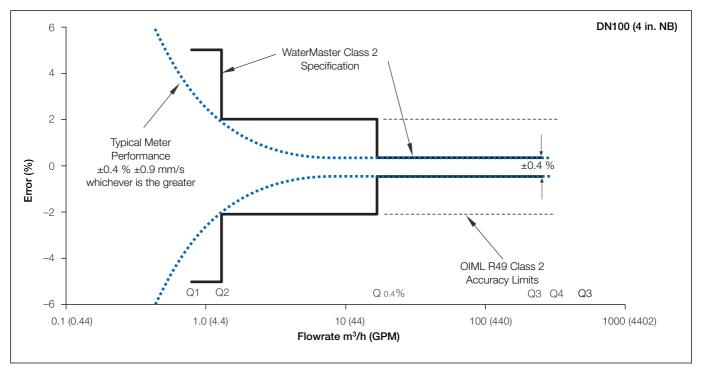
http://www.abb.com/product/seitp330/b42ec2377d3293cd c12573de003db93b.aspx

### Superior control through advanced sensor design

The innovative, patented octagonal sensor design improves flow profile and reduces up- and down-stream piping requirements for the most commonly used sizes of 40 to 200 mm ( $1^{1}/_{2}$  to 8 in.). This optimized full bore meter provides impressive results in the most difficult of installation requirements.




WaterMaster sensors are also available in reduced-bore geometries giving the ultimate in low-flow performance with a very high turn-down range.


The unique design of the reduced-bore sensor conditions the flow profile in the measuring section so that distortions in the flow profile, either upstream or downstream, are flattened. The result is excellent in situ flowmeter performance, even with very bad hydraulic installation conditions.

# Specification

# WaterMaster specification to OIML R49 Class 1



# WaterMaster specification to OIML R49 Class 2



Although OIML R49 does not define the flow accuracy below Q1, WaterMaster continues to measure flow at lower flow rates down to a cutoff velocity of  $\pm 5$  mm/s ( $\pm 0.2$  in./s). The accuracy between cutoff and Q1 is typically  $\pm 0.9$  mm/s ( $\pm 0.04$ . in./s).

# WaterMaster optimized full-bore meter (FEV) / full-bore meters (FEF, FEW) flow performance - m<sup>3</sup>/h

|              |         |         | Standa | rd Calibration - 0.4 % | Class 2 | High Accuracy Calibration – 0.2 % Class 1 |      |       |  |
|--------------|---------|---------|--------|------------------------|---------|-------------------------------------------|------|-------|--|
| DN           | Q4      | Q3      | Q0.4%  | Q2                     | Q1      | Q0.2%                                     | Q2   | Q1    |  |
| 10           | 3.1     | 2.5     | 0.167  | 0.013                  | 0.008   | 0.31                                      | 0.02 | 0.012 |  |
| 15           | 7.88    | 6.3     | 0.42   | 0.032                  | 0.02    | 0.79                                      | 0.05 | 0.03  |  |
| 20           | 12.5    | 10      | 0.67   | 0.05                   | 0.032   | 1.25                                      | 0.08 | 0.05  |  |
| 25           | 20      | 16      | 1.1    | 0.08                   | 0.05    | 2                                         | 0.13 | 0.08  |  |
| 32           | 31.25   | 25      | 1.67   | 0.13                   | 0.08    | 3                                         | 0.20 | 0.13  |  |
| 40*          | 50      | 40      | 4.2    | 0.2                    | 0.13    | 6                                         | 0.32 | 0.2   |  |
| 50*          | 79      | 63      | 4.2    | 0.32                   | 0.20    | 7.9                                       | 0.5  | 0.32  |  |
| 65*          | 125     | 100     | 6.7    | 0.5                    | 0.32    | 12.5                                      | 0.8  | 0.5   |  |
| 80*          | 200     | 160     | 10.7   | 0.81                   | 0.51    | 16                                        | 1.3  | 0.8   |  |
| 100*         | 313     | 250     | 16.7   | 1.3                    | 0.79    | 25                                        | 2    | 1.25  |  |
| 125*         | 313     | 250     | 16.7   | 1.3                    | 0.79    | 25                                        | 2    | 1.25  |  |
| 150*         | 788     | 630     | 42     | 3.2                    | 2.0     | 63                                        | 5    | 3.2   |  |
| 200*         | 1,250   | 1,000   | 67     | 5.1                    | 3.2     | 100                                       | 8    | 5     |  |
| 250          | 2,000   | 1,600   | 107    | 8.1                    | 5.1     | 160                                       | 13   | 8     |  |
| 300          | 3,125   | 2,500   | 167    | 12.7                   | 7.9     | 250                                       | 20   | 12.5  |  |
| 350          | 5,000   | 4,000   | 267    | 20.3                   | 12.7    | 400                                       | 32   | 20    |  |
| 400          | 5,000   | 4,000   | 267    | 20.3                   | 12.7    | 400                                       | 32   | 20    |  |
| 450          | 7,875   | 6,300   | 420    | 32                     | 20      | 630                                       | 50   | 32    |  |
| 500          | 7,875   | 6,300   | 420    | 32                     | 20      | 630                                       | 50   | 32    |  |
| 600          | 12,500  | 10,000  | 667    | 51                     | 32      | 1000                                      | 80   | 50    |  |
| 700          | 20,000  | 16,000  | 1600   | 102                    | 64      | 1600                                      | 160  | 100   |  |
| 750          | 20,000  | 16,000  | 1600   | 102                    | 64      | 1600                                      | 160  | 100   |  |
| 30 in (760)  | 20,000  | 16,000  | 1600   | 102                    | 64      | 1600                                      | 160  | 100   |  |
| 800          | 20,000  | 16,000  | 1600   | 102                    | 64      | 1600                                      | 160  | 100   |  |
| 900          | 31,250  | 25,000  | 2500   | 160                    | 100     | 2500                                      | 250  | 156   |  |
| 1000         | 31,250  | 25,000  | 2500   | 160                    | 100     | 2500                                      | 250  | 156   |  |
| 42 in        | 31,250  | 25,000  | 2500   | 160                    | 100     | 2500                                      | 250  | 156   |  |
| 1100         | 31,250  | 25,000  | 2500   | 160                    | 100     | 2500                                      | 250  | 156   |  |
| 1200         | 50,000  | 40,000  | 4000   | 256                    | 160     | 4000                                      | 400  | 250   |  |
| 1350         | 78,750  | 63,000  | 6300   | 403                    | 252     | 6300                                      | 630  | 394   |  |
| 1400         | 78,750  | 63,000  | 6300   | 403                    | 252     | 6300                                      | 630  | 394   |  |
| 1500         | 78,750  | 63,000  | 6300   | 403                    | 252     | 6300                                      | 630  | 394   |  |
| 60 in (1500) | 78,750  | 63,000  | 6300   | 403                    | 252     | 6300                                      | 630  | 394   |  |
| 1600         | 78,750  | 63,000  | 6300   | 403                    | 252     | 6300                                      | 630  | 394   |  |
| 1650         | 78,750  | 63,000  | 6300   | 403                    | 252     | 6300                                      | 630  | 394   |  |
| 1800         | 125,000 | 100,000 | 10000  | 640                    | 400     | 10000                                     | 1000 | 625   |  |
| 1950         | 125,000 | 100,000 | 10000  | 640                    | 400     | 10000                                     | 1000 | 625   |  |
| 2000         | 125,000 | 100,000 | 10000  | 640                    | 400     | 10000                                     | 1000 | 625   |  |
| 2200         | 200,000 | 160,000 | 16000  | 1024                   | 640     | 16000                                     | 1600 | 1000  |  |
| 2400         | 200,000 | 160,000 | 16000  | 1024                   | 640     | 16000                                     | 1600 | 1000  |  |

\* OIML R49 Certificate of Conformance to Class 1 and Class 2, with OIML R49 and MID versions available.

Note. OIML R49–1 allow Class 1 only for meters with  $Q_3 \ge 100 \text{ m}^3/\text{h}$ . Meters outside this range have been tested and conform to Class 1.

WaterMaster

Electromagnetic flowmeter

# WaterMaster optimized full-bore meter (FEV) / full-bore meters (FEF, FEW) flow performance - gal/min

|                                    |         |         | Standa        | Standard Calibration 0.4 % Class 2 |       |        | High Accuracy Calibration 0.2 % Class 1 |       |  |
|------------------------------------|---------|---------|---------------|------------------------------------|-------|--------|-----------------------------------------|-------|--|
| NPS/NB (DN)                        | Q4      | Q3      | <b>Q</b> 0.4% | Q2                                 | Q1    | Q0.2%  | Q2                                      | Q1    |  |
| <sup>3</sup> /8 (10)               | 13.8    | 11      | 0.73          | 0.06                               | 0.035 | 1.38   | 0.09                                    | 0.053 |  |
| <sup>1</sup> /2 (15)               | 34.7    | 27.7    | 1.85          | 0.14                               | 0.09  | 3.48   | 0.22                                    | 0.14  |  |
| 3/4 (20)                           | 55      | 44      | 2.94          | 0.22                               | 0.14  | 5.5    | 0.35                                    | 0.22  |  |
| 1 (25)                             | 88      | 70.4    | 4.7           | 0.35                               | 0.22  | 8.8    | 0.57                                    | 0.35  |  |
| 1 <sup>1</sup> / <sub>4</sub> (32) | 137.6   | 110     | 7.3           | 0.57                               | 0.35  | 13.2   | 0.88                                    | 0.57  |  |
| 1 <sup>1</sup> / <sub>2</sub> (40) | 220     | 176     | 18.5          | 0.89                               | 0.56  | 26.4   | 1.41                                    | 0.88  |  |
| 2 (50)                             | 347     | 277     | 18.5          | 1.41                               | 0.88  | 34.7   | 2.22                                    | 1.39  |  |
| 2 <sup>1</sup> / <sub>2</sub> (65) | 550     | 440     | 29.4          | 2.24                               | 1.40  | 55.0   | 3.52                                    | 2.20  |  |
| 3 (80)                             | 881     | 704     | 47.0          | 3.58                               | 2.24  | 70.4   | 5.64                                    | 3.52  |  |
| 4 (100)                            | 1,376   | 1,101   | 73.4          | 5.59                               | 3.49  | 110    | 8.81                                    | 5.50  |  |
| 5 (125)                            | 1,376   | 1,101   | 73.4          | 5.59                               | 3.49  | 110    | 8.81                                    | 5.50  |  |
| 6 (150)                            | 3,467   | 2,774   | 185           | 14.1                               | 8.81  | 277    | 22.2                                    | 13.9  |  |
| 8 (200)                            | 5,504   | 4,403   | 294           | 22.4                               | 14.0  | 440    | 35.2                                    | 22.0  |  |
| 10 (250)                           | 8,806   | 7,045   | 470           | 35.8                               | 22.4  | 704    | 56.4                                    | 35.2  |  |
| 12 (300)                           | 13,759  | 11,007  | 734           | 55.9                               | 34.9  | 1,101  | 88.1                                    | 55.0  |  |
| 14 (350)                           | 22,014  | 17,611  | 1,174         | 89.5                               | 55.9  | 1,761  | 141                                     | 88.1  |  |
| 16 (400)                           | 22,014  | 17,611  | 1,174         | 89.5                               | 55.9  | 1,761  | 141                                     | 88.1  |  |
| 18 (450)                           | 34,673  | 27,738  | 1,849         | 141                                | 88.1  | 2,774  | 222                                     | 139   |  |
| 20 (500)                           | 34,673  | 27,738  | 1,849         | 141                                | 88.1  | 2,774  | 222                                     | 139   |  |
| 24 (600)                           | 55,036  | 44,029  | 2,935         | 224                                | 140   | 4,403  | 352                                     | 220   |  |
| 27/28* (700)                       | 88,057  | 70,446  | 7,045         | 451                                | 282   | 7,045  | 704                                     | 440   |  |
| 29 (750)                           | 88,057  | 70,446  | 7,045         | 451                                | 282   | 7,045  | 704                                     | 440   |  |
| 30 (760)                           | 88,057  | 70,446  | 7,045         | 451                                | 282   | 7,045  | 704                                     | 440   |  |
| 32 (800)                           | 88,057  | 70,446  | 7,045         | 451                                | 282   | 7,045  | 704                                     | 440   |  |
| 36 (900)                           | 137,590 | 110,072 | 11,007        | 704                                | 440   | 11,007 | 1,100                                   | 688   |  |
| 39/40* (1000)                      | 137,590 | 110,072 | 11,007        | 704                                | 440   | 11,007 | 1,100                                   | 688   |  |
| 42 (1050)                          | 137,590 | 110,072 | 11,007        | 704                                | 440   | 11,007 | 1,100                                   | 688   |  |
| 44 (1100)                          | 137,590 | 110,072 | 11,007        | 704                                | 440   | 11,007 | 1,100                                   | 688   |  |
| 48 (1200)                          | 220,143 | 176,115 | 17,611        | 1,127                              | 704   | 17,611 | 1,761                                   | 1,101 |  |
| 52 (1350)                          | 346,726 | 277,381 | 27,738        | 1,775                              | 1,110 | 27,738 | 2,773                                   | 1,733 |  |
| 54 (1400)                          | 346,726 | 277,381 | 27,738        | 1,775                              | 1,110 | 27,738 | 2,773                                   | 1,733 |  |
| 60 (1500)                          | 346,726 | 277,381 | 27,738        | 1,775                              | 1,110 | 27,738 | 2,773                                   | 1,733 |  |
| 66 (1600)                          | 346,726 | 277,381 | 27,738        | 1,775                              | 1,110 | 27,738 | 2,773                                   | 1,733 |  |
| 68 (1650)                          | 346,726 | 277,381 | 27,738        | 1,775                              | 1,110 | 27,738 | 2,773                                   | 1,733 |  |
| 77 (1800)                          | 550,358 | 440,287 | 44,029        | 2,818                              | 1,761 | 44,029 | 4,403                                   | 2,752 |  |
| 77 (1950)                          | 550,358 | 440,287 | 44,029        | 2,818                              | 1,761 | 44,029 | 4,403                                   | 2,752 |  |
| 78 (2000)                          | 550,358 | 440,287 | 44,029        | 2,818                              | 1,761 | 44,029 | 4,403                                   | 2,752 |  |
| 78 (2000)                          | 550,358 | 440,287 | 44,029        | 2,818                              | 1,761 | 44,029 | 4,403                                   | 2,752 |  |
| 84 (2200)                          | 880,573 | 704,459 | 70,446        | 4,509                              | 2,818 | 70,446 | 7,045                                   | 4,403 |  |
| 96 (2400)                          | 880,573 | 704,459 | 70,446        | 4,509                              | 2,818 | 70,446 | 7,045                                   | 4,403 |  |
|                                    |         |         |               |                                    |       |        |                                         |       |  |

\*Size is dependent on flange specification

# WaterMaster reduced-bore meter (FER) flow performance - m<sup>3</sup>/h (gal/min)

|     |                   |                                 |                                 | Class 2 specification           |                                 |                                 |     | Class 1 specific                | ation                           |                                 |     |
|-----|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----|---------------------------------|---------------------------------|---------------------------------|-----|
| Si  | ze                | Q4                              | Q3                              | Q0.4 %                          | Q2                              | Q1                              | в   | Q0.2 %                          | Q2                              | Q1                              | R   |
| mm  | in.               | m <sup>3</sup> / h (Ugal / min) |     | m <sup>3</sup> / h (Ugal / min) | m <sup>3</sup> / h (Ugal / min) | m <sup>3</sup> / h (Ugal / min) | n   |
| 40  | 1 <sup>1</sup> /2 | 31 (138)                        | 25 (110)                        | 0.83 (1.05)                     | 0.063 (0.28)                    | 0.04 (0.18)                     | 630 | 1.7 (7.48)                      | 0.1 (0.44)                      | 0.063 (0.28)                    | 400 |
| 50  | 2                 | 50 (220)                        | 40 (176)                        | 1.0 (4.40)                      | 0.1 (0.44)                      | 0.063 (0.28)                    | 630 | 2.0 (8.8)                       | 0.16 (0.7)                      | 0.1 (0.44)                      | 400 |
| 65  | 21/2              | 79 (347)                        | 63 (277)                        | 1.6 (7.04)                      | 0.16 (0.7)                      | 0.1 (0.44)                      | 630 | 3.2 (10.56)                     | 0.25 (1.1)                      | 0.16 (0.7)                      | 400 |
| 80  | 3                 | 125 (550)                       | 100 (440)                       | 2.0 (8.80)                      | 0.25 (1.1)                      | 0.16 (0.7)                      | 630 | 4.0 (17.6)                      | 0.4 (1.76)                      | 0.25 (1.1)                      | 400 |
| 100 | 4                 | 200 (880)                       | 160 (704)                       | 3.2 (10.56)                     | 0.41 (1.8)                      | 0.25 (1.1)                      | 630 | 6.4 (28)                        | 0.64 (2.8)                      | 0.4 (1.76)                      | 400 |
| 125 | 5                 | 200 (880)                       | 160 (704)                       | 3.2 (10.56)                     | 0.41 (1.8)                      | 0.25 (1.1)                      | 630 | 6.4 (28)                        | 0.64 (2.8)                      | 0.4 (1.76)                      | 400 |
| 150 | 6                 | 500 (2200)                      | 400 (1760)                      | 8.0 (35.20)                     | 1.0 (4.4)                       | 0.63 (2.77)                     | 630 | 16 (70.4)                       | 1.6 (7)                         | 1.0 (4.4)                       | 400 |
| 200 | 8                 | 788 (3470)                      | 630 (2770)                      | 13.0 (57.2)                     | 1.6 (7.04)                      | 1.0 (4.4)                       | 630 | 25 (110)                        | 2.5 (11)                        | 1.6 (7)                         | 400 |
| 250 | 10                | 1250 (5500)                     | 1000 (4400)                     | 20 (88)                         | 2.5 (11.01)                     | 1.6 (7)                         | 630 | 40 (176)                        | 4.0 (17.6)                      | 2.5 (11)                        | 400 |
| 300 | 12                | 2000 (8810)                     | 1600 (7045)                     | 32 (140.8)                      | 4.1 (18.05)                     | 2.5 (11)                        | 630 | 64 (281.6)                      | 6.4 (28)                        | 4.0 (17.6)                      | 200 |
| 350 | 14                | 2000 (8810)                     | 1600 (7045)                     | 32 (140.8)                      | 6.4 (28.18)                     | 4.0 (17.6)                      | 400 | 64 (281.6)                      | 12.8 (56)                       | 8.0 (35.2)                      | 200 |
| 375 | 15                | 2000 (8810)                     | 1600 (7045)                     | 32 (140.8)                      | 6.4 (28.18)                     | 4.0 (17.6)                      | 400 | 64 (281.6)                      | 12.8 (56)                       | 8.0 (35.2)                      | 200 |
| 400 | 16                | 3125 (13760)                    | 2500 (11007)                    | 50 (220)                        | 10 (44)                         | 6.3 (27.7)                      | 400 | 100 (440)                       | 20 (88)                         | 12.5 (55)                       | 200 |
| 450 | 18                | 3125 (13760)                    | 2500 (11007)                    | 50 (220)                        | 10 (44)                         | 6.3 (27.7)                      | 400 | 100 (440)                       | 20 (88)                         | 12.5 (55)                       | 200 |
| 500 | 20                | 5000 (22014)                    | 4000 (17610)                    | 80 (352)                        | 16 (70.45)                      | 10 (44)                         | 400 | 160 (70.4)                      | 32 (141)                        | 20 (88)                         | 200 |
| 600 | 24                | 7875 (34670)                    | 6300 (27740)                    | 126 (554.4)                     | 25.2 (110.9)                    | 15.8 (70)                       | 400 | 252 (1108)                      | 50.4 (222)                      | 31.5 (138.7)                    | 200 |

# Specification - sensor

### **Functional specification**

### **Pressure limitations**

As per flange rating – non approved PN16 for OIML R49, MID Approved

#### Pressure equipment directive 97/23/EC

This product is applicable in networks for the supply, distribution and discharge of water and associated equipment and is therefore exempt.

### **Temperature limitations**

| Ambient temperature  |                             |
|----------------------|-----------------------------|
| Remote transmitter   | –20 to 70 °C (–4 to 158 °F) |
| Integral transmitter | –20 to 60 °C (–4 to 140 °F) |

Process temperature See table below.

0.1 to 50 °C (32.2 to 122 °F) – OIML R49 T50 Approved

|            |               |                            | Medium temp | erature °C (°F) |
|------------|---------------|----------------------------|-------------|-----------------|
| Code       | Lining        | Flange material            | Minimum     | Maximum         |
| FEF. FEW3  | Hard rubber   | Carbon steel               | -10 (14)    | 90 (194)        |
| FEF, FEVVO | Hard rubber   | Stainless steel            | -10 (14)    | 90 (194)        |
| FFW1       | PTFF          | Carbon steel               | -10 (14)    | 130 (266)       |
| FEVVI      | FIFE          | Stainless steel            | -25 (-13)   | 130 (266)       |
| FEW3       | PTFF          | Carbon steel               | -10 (14)    | 130 (266)       |
|            | FIFE          | Stainless steel            | -10 (14)    | 130 (266)       |
| FFW3       | Flastomer     | Carbon steel               | -5 (23)     | 80 (176)        |
| FEWS       | Eldstorner    | Stainless steel            | -5 (23)     | 80 (176)        |
| FEF, FER   | Elastomer     | Carbon stool               | -6 (21)     | 70 (158)        |
| FEV        | Polypropylene | Polypropylene Carbon steel |             | 70 (158)        |

### IP rating

IP68 (NEMA 6) to 7 m (20 ft.) depth **Note.** Not sizes DN10 to DN32 (<sup>3</sup>/<sub>8</sub> – 1<sup>1</sup>/<sub>4</sub> in. NB) IP67 (NEMA 4X) – DN10 to DN32 (<sup>3</sup>/<sub>8</sub> – 1<sup>1</sup>/<sub>4</sub> in. NB)

#### Buriable (sensor only)

FEV, FEF and FEW – DN450 to 2400 (18 to 96 in. NB) to 5 m (16 ft.) depth

### Conductivity

>5µS cm<sup>-1</sup>

### Transmitter mounting

Integral (not FEF) or remote

#### **Electrical connections**

20 mm glands

<sup>1</sup>/<sub>2</sub> in. NPT

20 mm armored glands

#### Sensor cable

ABB WaterMaster cable available in two forms – standard and armored Maximum length 200 m (660 ft.)

# Physical specification Wetted parts

### Electrode material

Stainless steel 316 L / 316 Ti

Super-austenitic steel

Hastelloy® C-22 and Hastelloy C4

(other electrode materials available on request)

### Potential equalizing rings

Minimum of 1 recommended

### Lining material / potable water approvals

|      |                                                            |                    |      | Po           | otable | Water A | pprovals                 |                    |
|------|------------------------------------------------------------|--------------------|------|--------------|--------|---------|--------------------------|--------------------|
| Code | Size Range                                                 | Liner              | WRAS | WRAS<br>60°C | ACS    | DVGW    | NSF                      | AZ/<br>NZS<br>4020 |
| FEW1 | DN10 – 32<br>( <sup>3</sup> /8 – 1 <sup>1</sup> /4 in. NB) | PTFE               | 4    |              |        |         |                          |                    |
| FEW3 | DN10 – 600<br>( <sup>3</sup> /8 – 24 in. NB)               | PTFE               |      |              |        |         |                          |                    |
| FEW3 | DN40 – 2400<br>(1 <sup>1</sup> / <sub>2</sub> – 96 in. NB) | Elastomer          | 4    |              |        |         |                          | 4                  |
| FEW3 | DN40 – 2400<br>(1 <sup>1</sup> / <sub>2</sub> – 96 in. NB) | Hard<br>rubber     | 4    | 4            |        | 4       | NSF approved<br>material |                    |
| FEV  | DN40 – 200<br>(1 <sup>1</sup> / <sub>2</sub> – 8 in. NB)   | Poly-<br>propylene | 4    |              | 4      | 4       | NSF-61                   | 4                  |
| FEF  | DN250 - 600<br>(10 - 24 in. NB)                            | Elastomer          | 4    |              | 4      | 4       | NSF-61                   | 4                  |
| FEF  | DN250 - 600<br>(10 - 24 in. NB)                            | Hard<br>rubber     | 4    | 4            |        | 4       | NSF approved<br>material |                    |
| FER  | DN40 - 600<br>(1 <sup>1</sup> / <sub>2</sub> - 24 in. NB)  | Elastomer          | 4    |              | 4      | 4       |                          | 4                  |

\*Size is dependent on flange specification

### Lining protection plates

Not required

### Installation conditions (recommended)

|           | Straight pipe requirements |            |  |
|-----------|----------------------------|------------|--|
|           | Upstream                   | Downstream |  |
| FEW / FEF | 5 x DN                     | 2 x DN     |  |
| FEV       | 5x DN                      | 0 x DN     |  |
| FER       | 0 x DN                     | 0 x DN     |  |

### Pressure loss

| Negligible at Q3            | All full bore meters                          |
|-----------------------------|-----------------------------------------------|
| <0.25 bar (<3.62 psi) at Q3 | FEV (DN40 to 200 [11/2 to 8 in. NB])          |
| <0.63 bar (<9.13 psi) at Q3 | FER (DN40 to 600 [1 $^{1}/_{2}$ to 24in. NB]) |

### Non-wetted parts Flange material

| Carbon steel    | DN20 to DN2400 ( <sup>3</sup> /4 to 96 in. NB)                                                      |
|-----------------|-----------------------------------------------------------------------------------------------------|
| Stainless steel | DN10 to DN2400 ( <sup>3</sup> /8 to 96 in. NB)                                                      |
| SG iron         | FEV – DN40 to DN150 [1 $^{1\!/_{2}}$ to 6 in. NB) FER – DN40 to DN150 [1 $^{1\!/_{2}}$ to 6 in. NB) |

### Housing material

Carbon steel

Plastic

Aluminium

FEV – DN40 to 200 (1<sup>1</sup>/<sub>2</sub> to 8 in. NB) FEW – DN450 to 2400 (18 to 96 in. NB) FEF – DN250 to 600 (10 to 24 in. NB) FEW – DN10 to 400 (<sup>3</sup>/<sub>8</sub> to 16 in. NB)

### Terminal box material

Polycarbonate

Cable gland material

Plastic, brass

# Paint specification

Paint coat  $\geq$ 70 µm thick RAL 9002 (light grey)

# Specification – transmitter

### Functional specification Power supply

 Mains
 85 to 265 V AC @ <7 VA</th>

 Low voltage
 24 V AC +10 % /-30 % @ <7 VA</td>

 DC
 24 V ±30 % @ <0.4 A</td>

Supply voltage fluctuations within the specified range have no effect on accuracy

### Digital Outputs (3)

Rating 30 V @ 220 mA, open collector, galvanically isolated \* Maximum output frequency 5250 Hz

1 off dedicated to Alarm / Logic, programmable function

2 off configurable to either Pulse / Frequency or Alarm/Logic function

### Current output - HART FEX100 variant

4 to 20 mA or 4 to 12/20 mA, galvanically isolated \*

Maximum loop resistance 750  $\Omega$ 

HART protocol Version 5.7 (HART registered)

Signal levels compliant with NAMUR NE 43 (3.8 to 20.5 mA) Low alarm 3.6 mA, High alarm 21.8 mA

### Additional accuracy

±0.1 % of reading Temperature coefficient: typically <±20 ppm/°C

### RS485 Communications - PROFIBUS FEX100-DP variant

Registered name: FEX100-DP RS485 (9.6kbps to 1.5Mbps), galvanically isolated DPV0, DPV1

PA Profile 3.01

Standard idents: 9700, 9740, 9741

FEX100-DP specific ident: 3431

3 Concurrent MS2 master connections

RS485 Communications - MODBUS FEX100-MB variant

MODBUS RTU protocol

RS485 (9.6kbps to 115.2kbps), galvanically isolated

### **Electrical connections**

20 mm glands 1/2 in. NPT, 20 mm armored glands

### **Temperature limitations**

| Ambient temperature | –20 to 60 °C (–4 to 140 °F)                |
|---------------------|--------------------------------------------|
| Temperature         | Typically <±10 ppm/°C @ Vel $\geq$ 0.5 mls |
| coefficient         |                                            |

#### **Environmental protection**

Humidity: 0 to 100 %

Rating: IP67 (NEMA 4X) to 1m (3.3 ft.) depth

#### Tamper-proof security

Write access prevented by internal switch combined with external security seals for MID applications

### Languages

English, French, German, Italian, Spanish, Polish

### Infrared service port

USB adapter (accessory), USB 1.1. and 2.0 compatible

Driver software for Windows 2000, XP, 7 (32-bit) and Vista

# Housing material

Powder-coated aluminium with glass window

### Paint specification

Paint coat ≥70 µm thick RAL 9002 (light grey)

# Transmitter vibration testing

Vibration level: 7 m/s<sup>2</sup>

Frequency range: 20 to 150 Hz

No. of sweeps in 3 orthogonal planes: 20

Undetectable shift in transmitter span or zero performance

### Hazardous approvals (HART variant only)

FM & FMc Class 1 Div 2

(FM listing NI / 1 / 2 / ABCD / T4, S / II, III / 2 / FG /T4, Ta=60C; Type 4X, IP67 – for transmitter and integral mounting Ta=70C, Type 6P, IP68 – for remote sensor type, IP67 on DN10 to 32 [<sup>3</sup>/<sub>8</sub> to 1<sup>1</sup>/<sub>4</sub> in.NB])

(FMc listing NI / 1 / 2 / ABCD / T4, DIP / II, III / 2 / FG /T4, Ta=60C; Type 4X, IP67 – for transmitter and integral mounting Ta=70C, Type 6P, IP68 – for remote sensor type, IP67 on DN10 to 32 [ $^{3}$ /s to 1 $^{1}$ /4 in.NB])

FET, FEV, FEW and FEF DN700 to 2200 (27/28\* to 84 in. NB) only \*Size is dependent on flange specification

### ATEX\* Zone 2, 21 & 22

II 3 G Ex nA IIC T5 Gc II 2 D Ex tb IIIC T100°C Db TA = -20°C to +60°C (integral transmitter) TA = -20°C to +70°C (remote sensor)

### IECEx\* Zone 2, 21 & 22

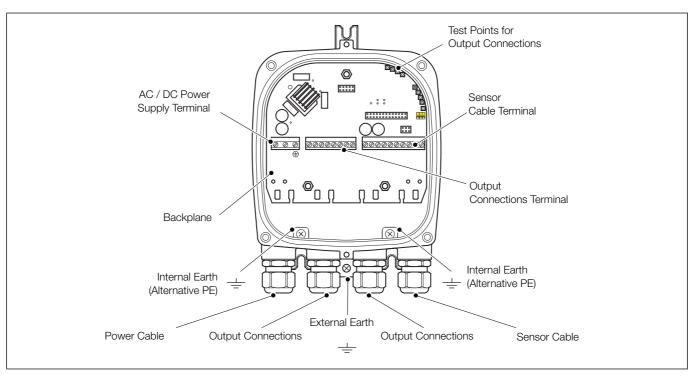
Ex tb IIIC T100°C Db Ex nA IIC T5 Gc TA = -20°C to +60°C (integral transmitter) TA = -20°C to +70°C (remote sensor)

### \*FEW, FEV, FET and FEF ≥700 (27/28 in. NB) only

### **Declaration of Conformance**

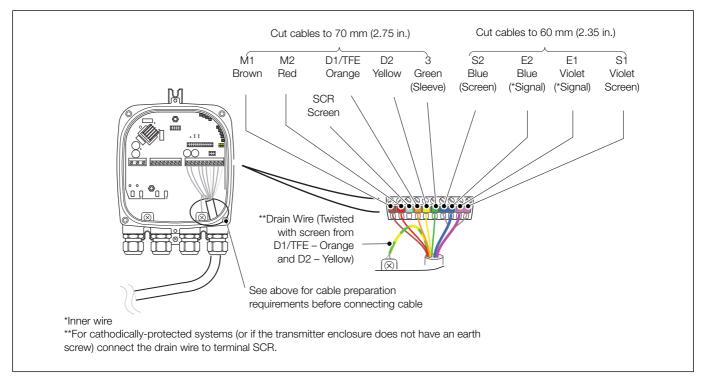
Copies of CE certification will be available on request.

WaterMaster has OIML R49 Certificate of Conformity to accuracy class 1 and 2 (FEV DN40 to 200 [1<sup>1</sup>/<sub>2</sub> to 8 in.NB]). Copies of accuracy certification are available on request.


WaterMaster (FEV DN40 to 200  $[1^{1/2}$  to 8 in.NB]) has been type examined under directive MID 2004/22/EC, Annex MI-001. Copies of this certificate are available on request.

\* When installed, do not leave galvanically isolated circuits (pulse and current) floating.

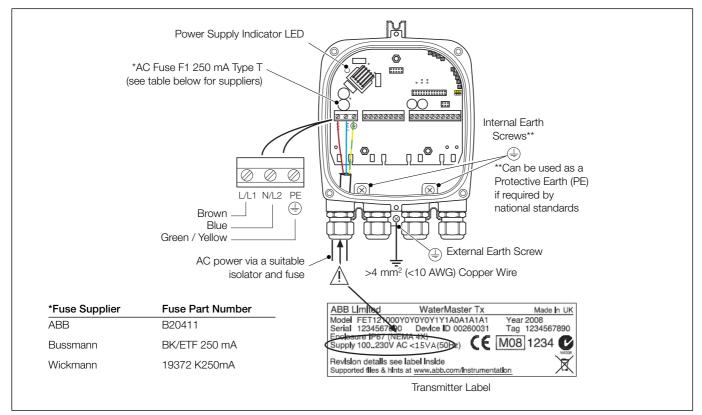
# **Transmitter connections**


# Transmitter terminal connections overview

This section is intended to give an overview of installation of a flowmeter. For Installation requirements, technical information and Health and safety precautions – refer to the User Guide OI/FET100–EN.

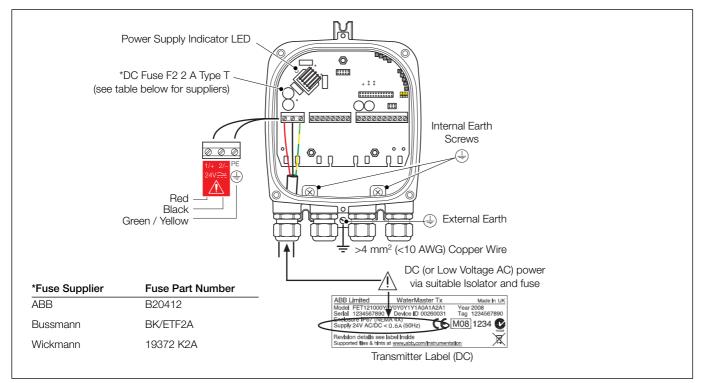


Cable gland / conduit entry (Remote transmitter shown)


# Sensor cable terminal connections and recommended cable lengths



Sensor cable connections at transmitter terminal block - remote transmitter


# Power supply connections

## AC power supply



AC power supply connections

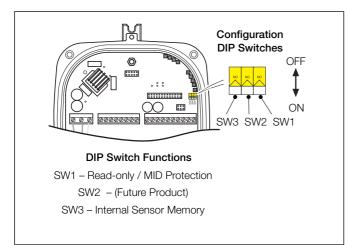
# DC (and low voltage AC) power supply



DC (and low voltage AC) power supply connections

### **Configuration DIP switches**

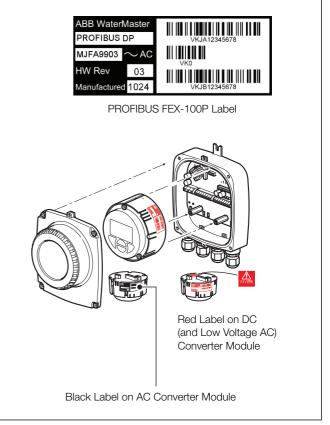
Three configuration DIP switches are mounted on the transmitter backplane board.


These are factory-set as follows:

- Remote transmitter all OFF
- Integral transmitter SW3 ON

For MID-compliant flowmeters the read-only / MID protection switch is set to 'ON' to ensure the meter is secure from tampering.

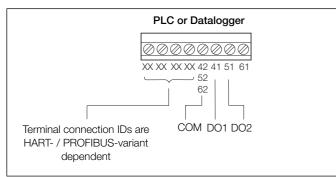
For HART software versions prior to 01.02.XX, this switch (set after commissioning) prevents login via the keypad or bus at any security level.


From HART software version 01.03.XX onwards and for all PROFIBUS software versions, on MID meters, all metrological-related parameters are locked and inaccessible at the Service level. Standard and Advanced user level parameters can still be modified via the HMI or bus.



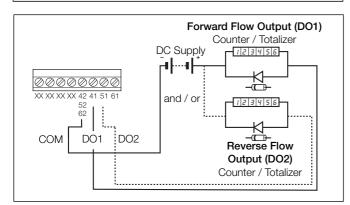
Configuration DIP switches

### Transmitter module identification

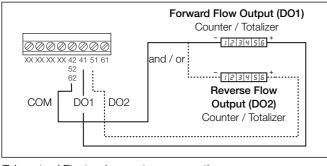

**Note.** The communications bus type is HART FEX100 if not specified on the transmitter module label. An example of the PROFIBUS FEX100-DP variant transmitter module label is shown below.



Transmitter module identification

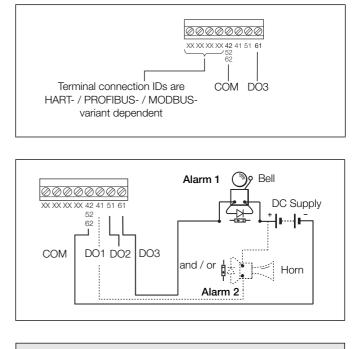

# **Output connections**

### **Frequency outputs**



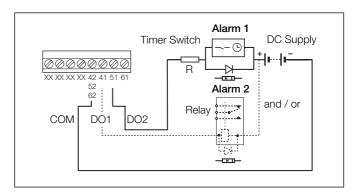

PLC / Datalogger connections

**Note.** Digital outputs DO1 and DO2 are polarity sensitive. The common (negative) connection for these outputs is designated 'COM'.



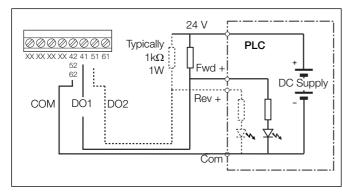


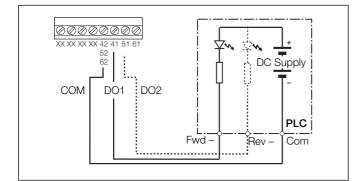




Telemetry / Electronic counters connections

### Alarm outputs



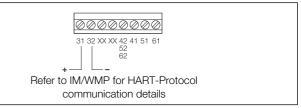

## Note.


- Normal alarm / logic output is from DO3 (terminal 61). DO1 (41) and DO2 (51) can also be configured as alarms if required but are then NOT available as frequency / pulse outputs as shown in *Electromechanical connections* and *Telemetry / Electronic counters connections*, opposite.
- Bell and horn shown for example only. Any suitable alarm device may be used (for example, lamp, siren, buzzer etc.).



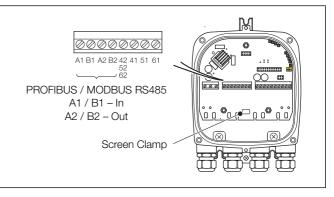
Note. Relay and timer switch shown for example only.

### **PLC** interface



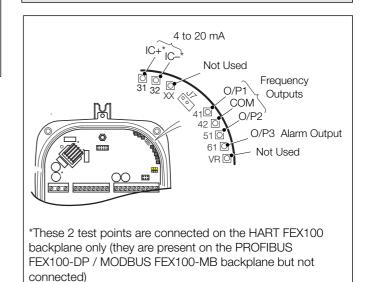



### Note.


- WaterMaster digital outputs are NPN optocoupled transistors used as switches.
- Maximum allowed voltage at collector is 30 V DC
- Maximum allowed current across transistor is 220 mA.

# Current output (4 to 20 ma) - HART (FEX100) variant



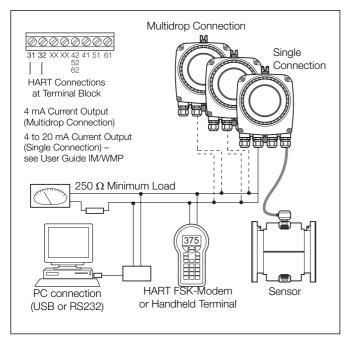

Current output (4 to 20 mA) – HART (FEX100) variant

# RS485 communications – PROFIBUS (FEX100-DP) and MODBUS (FEX100-MB) variants



## Test point access

Note. A typical DVM probe can access (fit) the PCB's test holes.




# **Digital communication**

The transmitter has the following options for digital communication.

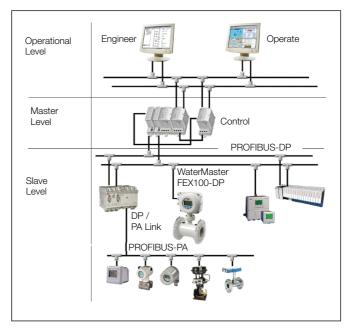
# HART protocol

The unit is registered with HART Communication Foundation.



| HART protocol            |                                                                                                                                                                                                                                                                                        |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Configuration            | Directly on the Device<br>Software Asset Vision Basic (+ HART -DTM)                                                                                                                                                                                                                    |  |  |  |
| Transmission             | Install a HART modem (FSK [Frequency Shift<br>Keyed]-Modem) for HART-Communication when<br>connecting to a PC. The HART-Modem converts the<br>analog 4 to 20 mA signal into a digital output signal<br>(Bell Standard 202) and connects to the PC using a<br>USB (or RS232C) connector |  |  |  |
| Max. signal<br>amplitude | 1.2 mA                                                                                                                                                                                                                                                                                 |  |  |  |
| Current output load      | Min. 250Ω, max. = 560Ω                                                                                                                                                                                                                                                                 |  |  |  |
| Cable                    | AWG 24 twisted                                                                                                                                                                                                                                                                         |  |  |  |
| Max. cable length        | 1500 m (4921 ft.)                                                                                                                                                                                                                                                                      |  |  |  |
| Baud rate                | 1.200 baud                                                                                                                                                                                                                                                                             |  |  |  |

# System integration


WaterMaster can be integrated into control systems and configuration devices using any Frame application, such as ABB AssetVision or similar third-party applications. ABB Device Type Managers (DTMs) for WaterMaster provide a unified structure for accessing device parameters, configuring and operating the devices and diagnosing problems. FDT (Field Device Tool) technology standardizes the communication and configuration interface between all field devices and host systems.

# **PROFIBUS DP protocol**

PROFIBUS is a manufacturer-independent, open Fieldbus standard for a wide range of applications in manufacturing, process and building automation. Manufacturer independence and openness are ensured by the international standard EN 50170.

| PROFIBUS DP ID no.          | 0x3431                                                                      |
|-----------------------------|-----------------------------------------------------------------------------|
| Alternative standard ID no. | 0x9701 or 0x9741                                                            |
| Configuration               | Directly on the device<br>Software Asset Vision Basic<br>(+PROFIBUS DP-DTM) |
| Transmission signal         | Accuracy to IEC 61158-2                                                     |
| Cable                       | Shielded, twisted cable (accurate to IEC 61158-2, types A or B)             |

All devices are connected in a bus structure ('line') as shown in below. Up to 32 stations (master or slaves) can be linked to create one 'segment', although it is recommended not to install more than 16 devices on a single segment. Each end of a segment must be terminated by an active bus terminating resistor. Both bus terminators must always be powered to ensure fault-free operation, therefore it is strongly recommended that they are connected to a back-up power supply. The use of bus amplifiers (repeaters) and segment couplers can be used to extend the network.



### System integration

The GSD file for WaterMasters specifies the device-specific ldent No. 3431. It conforms to the PROFIBUS standard, providing a clear and comprehensive description of each instrument in a precisely defined format.

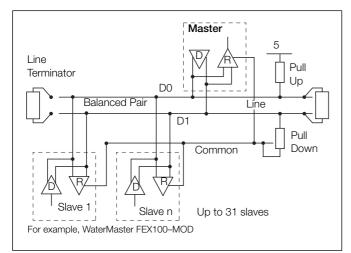
This enables the system configuration tool to use the information automatically when configuring a PROFIBUS bus system.

The ABB GSD file (Ident No. 3431) is divided into 2 sections:

General specifications

Identification of the device, together with hardware and software versions, baud rates supported and the possible time intervals for monitoring times.

DP slave-related specifications


Information about the user parameter block for device-specific configuration and modules containing details of the input and output data that can be exchanged cyclically with a PROFIBUS master.

The WaterMaster GSD file (ABB\_3431.gsd) is available for download from the ABB website at: www.abb.com/fieldbus (follow the link for PROFIBUS DP field devices).

### **MODBUS** protocol

MODBUS is an open standard that is owned and administered by an independent group of device manufacturers called the Modbus Organization (www.modbus.org).

Using the MODBUS protocol, devices from different manufacturers exchange information on the same communications bus without the need for special interface equipment. WaterMaster FEX100-MB follows the specification for Modbus Over Serial Line V1.02, using 2-wire TIA/EIA-485 (RS485) physical layer.



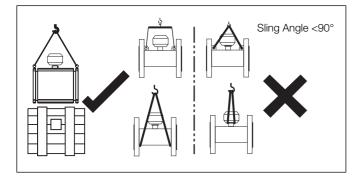
# **Cable Properties**

The end-to-end length of the trunk cable must be limited. The maximum length depends on the Baud rate, the cable (gauge, capacitance or characteristic impedance), the number of loads on the daisy chain and the network configuration (2-wire or 4-wire).

For 9600 Baud rate and AWG26 (or wider) gauge, the maximum length is 1000 m (3280 ft.). Where 4-wire cabling is used as a 2-wire cabling system the maximum length must be divided by 2. The tap cables must be short, never more than 20 m (65.6 ft.). If a multi-port tap is used with n derivations, each one must have a maximum length of 40 m (131 ft.) divided by n.

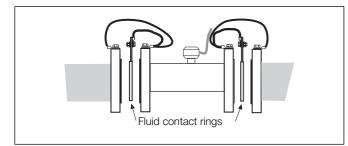
The maximum serial data transmission line length for RS485 systems is 1200 m (3937 ft.). The lengths of cable that can be used are determined by the cable type, typically:

- Up to 6 m (19.7 ft.) standard screened or twisted pair cable.
- Up to 300 m (984 ft.) twin twisted pair with overall foil screen and an integral drain wire – for example, Belden 9502 or equivalent.
- Up to 1200 m (3937 ft.) twin twisted pair with separate foil screens and integral drain wires – for example, Belden 9729 or equivalent.


Category 5 cables may be used for RS485-MODBUS to a maximum length of 600 m (1968 ft.). For the balanced pairs used in an RS485-system, a characteristic impedance with value higher than  $100\Omega$  is preferred especially for 19200 and higher Baud rates.

# Installation requirements

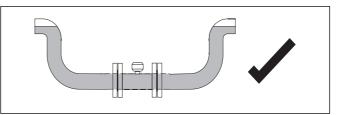
This section is intended to give an overview of installation of a flowmeter. For Installation requirements, technical information and Health and Safety precautions refer to User Guide OI/FEF/FEV/FEW–EN.


# Unpacking the flowmeter

Care must be taken when lifting the flowmeter to use the lifting hooks provided or sling under the body of the meter. Never lift using the terminal connection box of the sensor cable as this will cause damage and invalidate warranty.



# Grounding

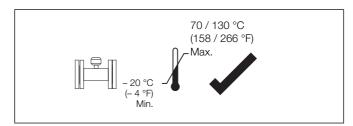

The flowmeter sensor must be cross-bonded to the upstream and downstream pipes and fluid. For technical reasons, this potential should be identical to the potential of the metering fluid. For plastic or insulated lined pipelines, the fluid is grounded by installing a minimum of 1 earthing rings. When there are stray potentials present in the pipeline, an earthing ring is recommended on both ends of the meter sensor.



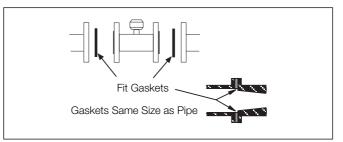
# Mounting

The installation conditions shown below must be observed to achieve the best operational results.

The sensor tube must always be completely full.

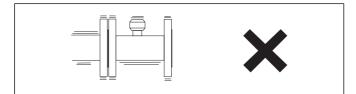



The flow direction must correspond to the identification plate. The device measures the flowrate in both directions. Forward flow is the factory setting.

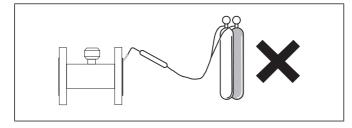

The devices must be installed without mechanical tension (torsion, bending). If required support the pipeline.



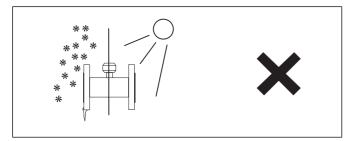
The flange seals must be made from a compatible material for the fluid and fluid temperatures if required.



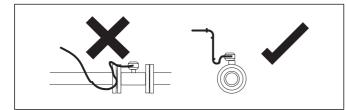

Seals must not extend into the flow area since possible turbulence could influence the device accuracy.




### WaterMaster Electromagnetic flowmeter


The pipeline may not exert any unallowable forces and torques on the device, such as vibration.




The flowmeter must not be submitted to any localized heat during installation; take care to remember this is a measuring instrument.



The flowmeter must not be exposed to direct sunlight or provide for appropriate sun protection where necessary.



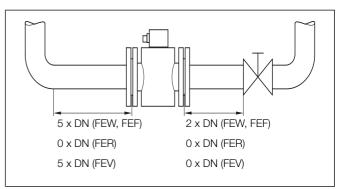
The cable to the flowmeter should be installed neatly or within a conduit, both loose or conduit should have a u shape below the terminal connection box height to allow any water run off to avoid any capillary action into the flowmeter sensor.



# **Electrode axis**

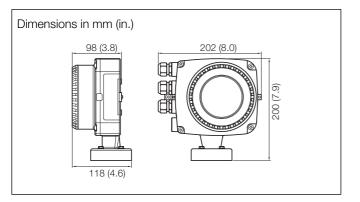
Electrode axis should be horizontal if at all possible or no more than  $45^\circ$  from horizontal.



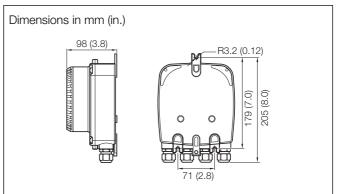

# Upstream and Downstream pipe sections

The metering principle is tolerant of the flow profile.

- Wherever possible do not install fittings (for example, manifolds, valves) directly in front of the flowmeter sensor.
- Butterfly valves should be installed so that the valve plate does not extend into the flowmeter sensor.
- Valves or other turn-off components should be installed in the Downstream pipe section.

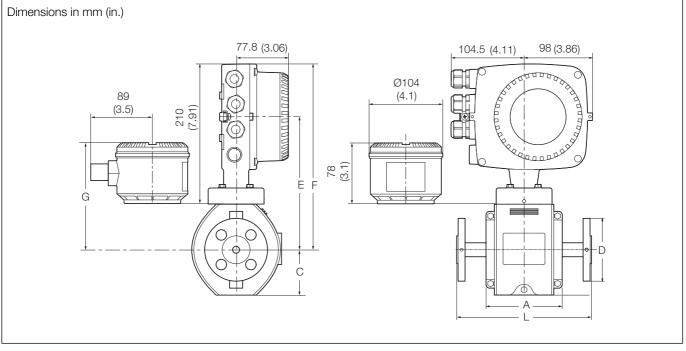

Experience has shown that, in most installations, straight upstream sections  $3 \times DN$  long and straight downstream sections  $2 \times DN$  long are normally sufficient. We would recommend conditions of  $5 \times DN$  straight upstream and  $2 \times DN$  straight downstream where possible.

For reduced-bore meters (FER), these straight pipe sections are often not necessary.




# **Transmitter dimensions**

# Integral transmitter

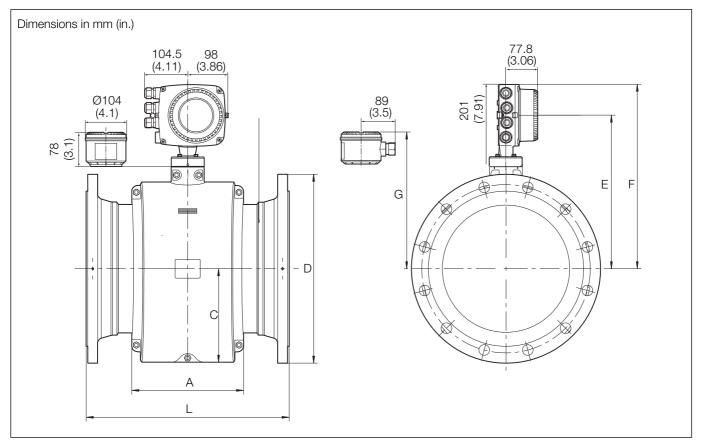



# Remote transmitter



# **Sensor dimensions**

# FEW – DN10 to 125 (3/8 to 5 in. NB)

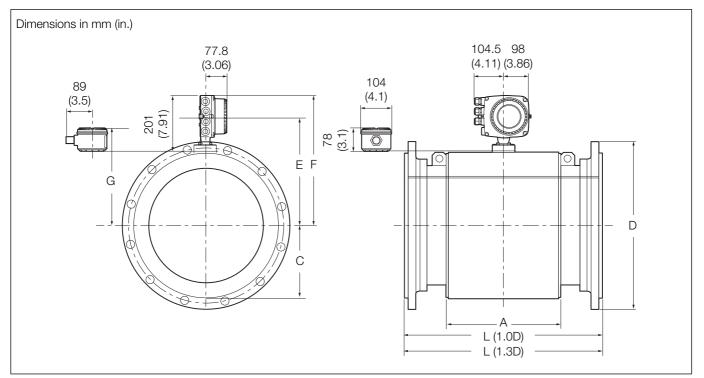



DN10 to 125 (3/8 to 5 in. NB) (FEW)

|                              |                         |                          |            |             | ensions in mm | . ,        |            |            |          | ight in kg (lb) |
|------------------------------|-------------------------|--------------------------|------------|-------------|---------------|------------|------------|------------|----------|-----------------|
| DN                           | Process connection type | D                        | L          | F           | С             | E          | G          | A          | Integral | Remote          |
| DN10                         | JIS10K                  | 90 (3.54)                | 200 (7.87) | 268 (10.55) | 82 (3.23)     | 193 (7.6)  | 148 (5.83) | 113 (4.45) | 6 (13)   | 4 (9)           |
| ( <sup>3</sup> /8 in.)       | PN10 to 40              | 90 (3.54)                |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 90 (3.54)                | 1          |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 96 (3.78)                |            |             |               |            |            |            |          |                 |
| DN15                         | PN10 to 40              | 95 (3.74)                |            |             |               |            |            |            |          |                 |
| ( <sup>1</sup> /2 in.)       | JIS5K                   | 80 (3.15)                |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 95 (3.74)                |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 95 (3.74)                |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 90 (3.54)                |            |             |               |            |            |            |          |                 |
| DN20                         | PN10 to 40              | 105 (4.13)               |            |             |               |            |            |            | 8 (18)   | 6 (13)          |
| <sup>3</sup> /4 in.)         | JIS5K                   | 85 (3.35)                |            |             |               |            |            |            | 0(10)    | 0(13)           |
| , í                          |                         |                          |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 100 (3.94)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 115 (4.53)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 98 (3.86)                |            |             |               |            |            |            |          |                 |
| DN25                         | PN10 to 40              | 115 (4.53)               | 200 (7.87) | 268 (10.55) | 82 (3.23)     | 193 (7.6)  | 148 (5.83) | 113 (4.45) | 9 (20)   | 7 (15)          |
| (1 in.)                      | JIS5K                   | 95 (3.74)                |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 125 (4.88)               |            |             |               |            |            |            |          |                 |
| İ                            | ASME B16.5 CL300        | 125 (4.88)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 108 (4.25)               |            |             |               |            |            |            |          |                 |
| DN32                         | PN10 to 40              | 140 (5.51)               |            | 275 (10.83) | 92 (3.62)     | 200 (7.87) | 155 (6.10) | 113 (4.45) | 10 (22)  | 8 (18)          |
| 1/4 in.)                     | JIS5K                   | 115 (4.53)               |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 135 (5.31)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 135 (5.31)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 117 (4.61)               |            |             |               |            |            |            |          |                 |
| 20140                        |                         |                          |            |             |               |            |            |            | 44 (04)  | 0.(00)          |
| DN40<br><sup>1</sup> /2 in.) | PN10 to 40              | 150 (5.91)               |            |             |               |            |            |            | 11 (24)  | 9 (20)          |
| , =,                         | JIS5K                   | 120 (4.72)               |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 140 (5.51)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 155 (6.10)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 127 (5.00)               |            |             |               |            |            |            |          |                 |
| DN50                         | PN10 to 40              | 165 (6.5)                | 1          | 281 (11.06) | 97 (3.82)     | 206 (8.11) | 161 (6.34) | 115 (4.53) | 12 (26)  | 10 (22)         |
| (2 in.)                      | JIS5K                   | 130 (5.12)               |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 155 (6.10)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN16             | 150 (5.91)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN35             | 165 (6.50)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 152 (5.98)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 165 (6.50)               |            |             |               |            |            |            |          |                 |
| DN65                         | PN10 to 40              | 185 (7.28)               |            | 292 (11.50) | 108 (4.25)    | 217 (8.54) | 172 (6.77) | 104 (4.09) | 13 (29)  | 11 (24)         |
| 1/2 in.)                     | JIS5K                   | 155 (6.10)               |            | 202 (11.00) | 100 (4.20)    | 217 (0.04) | 112 (0.11) | 104 (4.00) | 10 (20)  | 11(2-1)         |
|                              | JIS10K                  | 175 (6.89)               |            |             |               |            |            |            |          |                 |
|                              |                         |                          |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN16             | 165 (6.50)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN35             | 185 (7.28)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 178 (7.01)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 190 (7.48)               |            |             |               |            |            |            | 15 (33)  | 13 (29)         |
| DN80                         | PN10 to 40              | 200 (7.87)               |            | 292 (11.5)  | 108 (4.25)    | 217 (8.54) | 172 (6.77) | 104 (4.09) | 17 (37)  | 15 (33)         |
| 3 in.)                       | JIS5K                   | 180 (7.09)               |            |             |               |            |            |            |          |                 |
|                              | JIS10K                  | 185 (7.28)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN16             | 185 (7.28)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN35             | 205 (8.07)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL150        | 190 (7.48)               |            |             |               |            |            |            |          |                 |
|                              | ASME B16.5 CL300        | 210 (8.28)               |            |             |               |            |            |            | 19 (42)  | 17 (37)         |
| N100                         | PN10 to 16              | 220 (8.66)               | 250 (9.84) | 314 (12.36) | 122 (4.8)     | 239 (9.41) | 194 (7.64) | 125 (4.92) | 19 (42)  | 17 (37)         |
| 4 in.)                       |                         |                          | 200 (9.84) | 014 (12.30) | 122 (4.0)     | 209 (9.41) | 134 (7.04) | 120 (4.92) |          |                 |
| ĺ,                           | PN25 to 40              | 235 (9.25)               |            |             |               |            |            |            | 23 (51)  | 21 (46)         |
|                              | JIS5K                   | 200 (7.87)               |            |             |               |            |            |            | 19 (42)  | 17 (37)         |
|                              | JIS10K                  | 210 (8.27)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN16             | 215 (8.46)               |            |             |               |            |            |            |          |                 |
|                              | AS4087 PN35             | 230 (9.06)               |            |             |               |            |            |            | 23 (51)  | 21 (46)         |
|                              | ASME B16.5 CL300        | 255 (1.04)               |            |             |               |            |            |            | 30 (66)  | 28 (62)         |
|                              | ASME B16.5 CL150        | 229 (9.00)               |            |             |               |            |            |            | 21 (51)  | 19 (42)         |
| N125                         | PN10 to 16              | 250 (9.84)               |            | 324 (12.76) | 130 (5.12)    | 249 (9.8)  | 204 (8.03) | 125 (4.92) | 22 (48)  | 20 (44)         |
| 5 in.)                       | PN25 to 40              | 270 (10.63)              |            |             | ·- /          | · · · /    |            | ,          | 29 (64)  | 27 (59)         |
|                              | JIS5K                   | 235 (9.25)               |            |             |               |            |            |            | 22 (48)  | 20 (44)         |
|                              | JIS10K                  | 235 (9.25)<br>250 (9.84) |            |             |               |            |            |            | 22 (40)  | 20 (44)         |
|                              | ASME B16.5 CL150        | 250 (9.84)               |            |             |               |            |            |            |          |                 |
|                              |                         | 1 254 (10 00)            | 1          | 1           |               | 1          | 1          | 1          |          | 1               |

DN10 to 125 (3/8 to 5 in. NB) (FEW) dimensions / weights

# FEW – DN150 to 400 (6 to 16 in. NB)



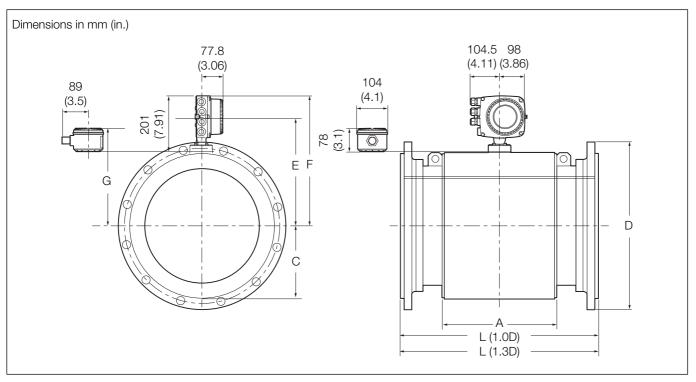

DN150 to 400 (6 to 16 in. NB) (FEW)

|          |                                 |                            |             | Dim         | nensions in mm | (in.)       |             |             | Approx. wei            | ght in kg (lb)         |
|----------|---------------------------------|----------------------------|-------------|-------------|----------------|-------------|-------------|-------------|------------------------|------------------------|
| DN       | Process connection type         | D                          | L           | F           | с              | E           | G           | A           | Integral               | Remote                 |
| DN150    | PN10 to 16                      | 285 (11.22)                | 300 (11.81) | 371 (14.61) | 146 (9.88)     | 296 (11.65) | 251 (9.88)  | 166 (6.54)  | 33 (73)                | 31 (68)                |
| (6 in.)  | PN25 to 40                      | 300 (11.81)                |             |             |                |             |             |             | 39 (86)                | 37 (81)                |
|          | JIS5K                           | 265 (10.43)                |             |             |                |             |             |             | 33 (73)                | 31 (68)                |
|          | JIS10K                          | 280 (11.02)                | 1           |             |                |             |             |             |                        |                        |
|          | AS4087 PN16                     | 280 (11.02)                | 1           |             |                |             |             |             |                        |                        |
|          | AS4087 PN35                     | 305 (11.81)                | 1           |             |                |             |             |             | 39 (86)                | 37 (81)                |
|          | ASME B16.5 CL300                | 320 (12.60)                |             |             |                |             |             |             | 47 (103)               | 45 (99)                |
|          | ASME B16.5 CL150                | 279 (10.98)                |             |             |                |             |             |             | 33 (73)                | 31 (68)                |
| DN200    | PN10                            | 340 (13.39)                | 350 (13.78) | 411 (16.18) | 170 (6.69)     | 336 (13.23) | 291 (11.46) | 200 (7.87)  | 41 (90)                | 39 (86)                |
| (8 in.)  | PN16                            | 340 (13.39)                |             |             |                |             |             |             |                        |                        |
|          | PN25                            | 360 (14.17)                |             |             |                |             |             |             | 55 (121)               | 53 (117)               |
|          | PN40                            | 375 (14.76)                |             |             |                |             |             |             | 65 (143)               | 63 (139)               |
|          | AS4087 PN16                     | 335 (13.19)                |             |             |                |             |             |             | 41 (90)                | 39 (86)                |
|          | AS4087 PN35                     | 370 (14.57)                |             |             |                |             |             |             | 65 (143)               | 63 (139)               |
|          | JIS5K                           | 320 (12.60)                |             |             |                |             |             |             | 41 (90)                | 39 (86)                |
|          | JIS10K                          | 330 (12.99)                |             |             |                |             |             |             |                        |                        |
|          | ASME B16.5 CL300                | 380 (14.96)                |             |             |                |             |             |             | 72 (158)               | 70 (154)               |
|          | ASME B16.5 CL150                | 345 (13.58)                |             |             |                |             |             |             | 50 (110)               | 48 (106)               |
| DN250    | PN10                            | 395 (15.55)                | 450 (17.72) | 426 (16.77) | 198 (7.80)     | 351 (13.82) | 306 (12.05) | 235 (9.62)  | 61 (134)               | 59 (130)               |
| (10 in.) | PN16                            | 405 (15.94)                |             |             |                |             |             |             | 65 (143)               | 63 (139)               |
|          | PN25                            | 425 (16.73)                |             |             |                |             |             |             | 84 (185)               | 82 (180)               |
|          | PN40                            | 450 (17.72)                |             |             |                |             |             |             | 95 (209)               | 93 (205)               |
|          | AS4087 PN16                     | 405 (15.94)                |             |             |                |             |             |             | 65 (143)               | 63 (139)               |
|          | AS4087 PN35                     | 430 (16.93)                |             |             |                |             |             |             | 95 (209)               | 93 (205)               |
|          | JIS5K                           | 385 (15.16)                |             |             |                |             |             |             | 65 (143)               | 63 (139)               |
|          | JIS10K                          | 400 (15.75)                |             |             |                |             |             |             |                        | ,                      |
|          | ASME B16.5 CL300                | 445 (17.52)                |             |             |                |             |             |             | 105 (231)              | 103 (227)              |
|          | ASME B16.5 CL150                | 405 (15.94)                |             |             |                |             |             |             | 70 (154)               | 68 (150)               |
| DN300    | PN10                            | 445 (17.52)                | 500 (19.69) | 449 (17.68) | 228 (8.98)     | 374 (14.72) | 329 (12.95) | 272 (10.71) | 74 (163)               | 72 (158)               |
| (12 in.) | PN16                            | 460 (18.11)                | ,           |             |                |             |             |             | 80 (176)               | 78 (172)               |
|          | PN25                            | 485 (19.09)                |             |             |                |             |             |             | 100 (220)              | 98 (216)               |
|          | JIS5K                           | 430 (16.93)                |             |             |                |             |             |             | 80 (176)               | 78 (172)               |
|          | JIS10K                          | 445 (17.52)                |             |             |                |             |             |             |                        |                        |
|          | AS4087 PN16                     | 455 (17.91)                |             |             |                |             |             |             |                        |                        |
|          | AS4087 PN35                     | 490 (19.29)                |             |             |                |             |             |             | 130 (286)              | 128 (282)              |
|          | ASME B16.5 CL300                | 520 (20.47)                |             |             |                |             |             |             | 150 (330)              | 148 (326)              |
|          | ASME B16.5 CL150                | 485 (19.09)                |             |             |                |             |             |             | 105 (231)              | 103 (227)              |
|          | PN40                            | 515 (20.28)                | 600 (23.62) | -           |                |             |             |             | 130 (286)              | 128 (282)              |
| DN350    | PN10                            | 505 (19.88)                | 550 (21.65) | 464 (18.27) | 265 (10.43)    | 389 (15.31) | 344 (13.54) | 322 (12.68) | 95 (209)               | 93 (205)               |
| (14 in.) | PN16                            | 520 (20.47)                | 000 (21.00) | 404 (10.27) | 200 (10.40)    | 000 (10.01) | 044 (10.04) | 022 (12.00) | 110 (242)              | 108 (238)              |
|          | PN25                            | 555 (21.85)                |             |             |                |             |             |             | 145 (319)              | 143 (315)              |
|          | JIS5K                           | 480 (18.90)                |             |             |                |             |             |             | 140 (010)              |                        |
|          | JIS10K                          | 490 (18.90)                |             |             |                |             |             |             | 95 (209)               | 93 (205)               |
|          | AS4087 PN16                     | 525 (20.67)                |             |             |                |             |             |             | 130 (286)              | 128 (282)              |
|          | AS4087 PN16<br>AS4087 PN35      | 525 (20.67)<br>550 (21.65) |             |             |                |             |             |             | 185 (407)              | 128 (282)              |
|          | AS4087 PN35<br>ASME B16.5 CL300 |                            |             |             |                |             |             |             |                        |                        |
|          | ASME B16.5 CL300                | 585 (23.03)<br>535 (21.06) |             |             |                |             |             |             | 140 (308)<br>105 (231) | 138 (304)<br>103 (227) |
|          | PN40                            | 580 (22.83)                | 650 (25.59) | 1           |                |             |             |             | 195 (429)              | 193 (425)              |
| DN400    | PN10                            | 565 (22.24)                | 600 (23.62) | 506 (19.92) | 265 (10.43)    | 431 (16.97) | 386 (15.20) | 322 (12.68) | 103 (227)              | 193 (423)              |
| (16 in.) | PN16                            | 580 (22.24)                | 000 (20.02) | 000 (19.92) | 200 (10.40)    | -01 (10.97) | 000 (10.20) | 022 (12.00) | 126 (277)              | 124 (273)              |
| . ,      | PN16<br>PN25                    | 620 (22.83)                |             |             |                |             |             |             | 126 (277)<br>170 (374) | 124 (273)              |
|          | JIS5K                           |                            |             |             |                |             |             |             |                        | 108 (370)              |
|          | JIS5K<br>JIS10K                 | 540 (21.26)<br>560 (22.05) |             |             |                |             |             |             | 103 (227)              |                        |
|          |                                 |                            |             |             |                |             |             |             | 116 (255)              | 114 (251)              |
|          | AS4087 PN16                     | 580 (22.83)                |             |             |                |             |             |             | 154 (339)              | 152 (335)              |
|          | AS4087 PN35                     | 610 (24.02)                |             |             |                |             |             |             | 302 (664)              | 300 (660)              |
|          | ASME B16.5 CL300                | 650 (25.59)                |             |             |                |             |             |             | 265 (583)              | 263 (578)              |
|          | ASME B16.5 CL150                | 600 (23.62)                | 650 (05 50) | 4           |                |             |             |             | 175 (385)              | 173 (381)              |
|          | PN40                            | 660 (25.98)                | 650 (25.59) |             |                |             |             |             | 258 (568)              | 256 (564)              |

DN150 to 400 (6 to 5 in. NB) (FEW) dimensions / weights

# FEW - DN450 to 2400 (18 to 96 in. NB)




# DN450 to 2400 (18 to 96 in. NB) (FEW)

|          |                         |             |          |          | Dimens      | ions in mm (in.) |             |             |             | Approx. wei | ight in kg (lb) |
|----------|-------------------------|-------------|----------|----------|-------------|------------------|-------------|-------------|-------------|-------------|-----------------|
| DN       | Process connection type | D           | L (1.0D) | L (1.3D) | F           | С                | E           | G           | A           | Integral    | Remote          |
| DN450    | PN10                    | 615 (24.21) | N/A      | 600      | 514 (20.24) | 310 (12.20)      | 439 (17.28) | 394 (15.51) | 328 (12.91) | 173 (381)   | 171 (377)       |
| (18 in.) | PN16                    | 640 (25.20) | 1        | (23.62)  |             |                  |             |             |             | 188 (414)   | 186 (410)       |
|          | JIS5K                   | 605 (23.82) | 1        |          |             |                  |             |             |             | 165 (364)   | 163 (359)       |
|          | JIS10K                  | 620 (24.41) |          |          |             |                  |             |             |             | 177 (390)   | 175 (386)       |
|          | AS4087 PN16             | 640 (25.20) |          |          |             |                  |             |             |             | 232 (511)   | 230 (507)       |
|          | AS4087 PN35             | 675 (26.57) |          |          |             |                  |             |             |             | 328 (723)   | 326 (718)       |
|          | ASME B16.5 CL300        | 710 (27.95) |          |          |             |                  |             |             |             | 368 (811)   | 366 (807)       |
|          | ASME B16.5 CL150        | 635 (25.00) |          |          |             |                  |             |             |             | 250 (551)   | 248 (547)       |
|          | PN25                    | 670 (26.38) | N/A      | 686      |             |                  |             |             |             | 245 (540)   | 243 (536)       |
|          | PN40                    | 685 (26.97) |          | (27.01)  |             |                  |             |             |             | 315 (694)   | 313 (690)       |
| DN500    | PN10                    | 670 (26.38) | N/A      | 600      | 514 (20.24) | 310 (12.20)      | 439 (17.28) | 394 (15.51) | 367 (14.45) | 190 (418)   | 188 (413)       |
| (20 in.) | PN16                    | 715 (28.15) |          | (23.62)  |             |                  |             |             |             | 240 (528)   | 238 (524)       |
|          | JIS5K                   | 655 (25.79) |          |          |             |                  |             |             |             | 190 (418)   | 188 (413)       |
|          | JIS10K                  | 675 (26.57) |          |          |             |                  |             |             |             |             |                 |
|          | AS4087 PN16             | 705 (27.76) |          |          |             |                  |             |             |             | 290 (638)   | 288 (634)       |
|          | AS4087 PN35             | 735 (28.94) |          |          |             |                  |             |             |             | 435 (957)   | 433 (953)       |
|          | ASME B16.5 CL150        | 700 (27.56) |          |          |             |                  |             |             |             | 300 (660)   | 298 (656)       |
|          | ASME B16.5 CL300        | 775 (30.51) | N/A      | 762      |             |                  |             |             |             | 490 (1080)  | 488 (1076)      |
|          | PN25                    | 730 (28.74) | N/A      | 700      |             |                  |             |             |             | 300 (661)   | 298 (657)       |
|          | PN40                    | 755 (29.72) | N/A      | 762      |             |                  |             |             |             | 392 (864)   | 390 (860)       |
| DN600    | PN10                    | 780 (30.71) | N/A      | 800      | 565 (22.24) | 361 (14.21)      | 490 (19.29) | 445 (17.52) | 469 (18.46) | 284 (626)   | 282 (622)       |
| (24 in.) | PN16                    | 840 (33.07) |          | (31.50)  |             |                  |             |             |             | 318 (700)   | 316 (695)       |
|          | PN25                    | 845 (33.27) |          |          |             |                  |             |             |             | 460 (1012)  | 458 (1008)      |
|          | JIS5K                   | 770 (30.31) |          |          |             |                  |             |             |             | 275 (605)   | 273 (600)       |
|          | JIS10K                  | 795 (31.30) |          |          |             |                  |             |             |             | 306 (673)   | 304 (668)       |
|          | AS4087 PN16             | 825 (32.48) |          |          |             |                  |             |             |             | 382 (840)   | 380 (835)       |
|          | AS4087 PN35             | 850 (33.46) |          |          |             |                  |             |             |             | 452 (994)   | 450 (990)       |
|          | ASME B16.5 CL300        | 915 (36.02) |          |          |             |                  |             |             |             | 550 (1210)  | 548 (1205)      |
|          | ASME B16.5 CL150        | 815 (32.09) |          |          |             |                  |             |             |             | 425 (935)   | 423 (930)       |
|          | PN40                    | 890 (35.04) | N/A      | 890      |             |                  |             |             |             | 600 (1320)  | 598 (1316)      |

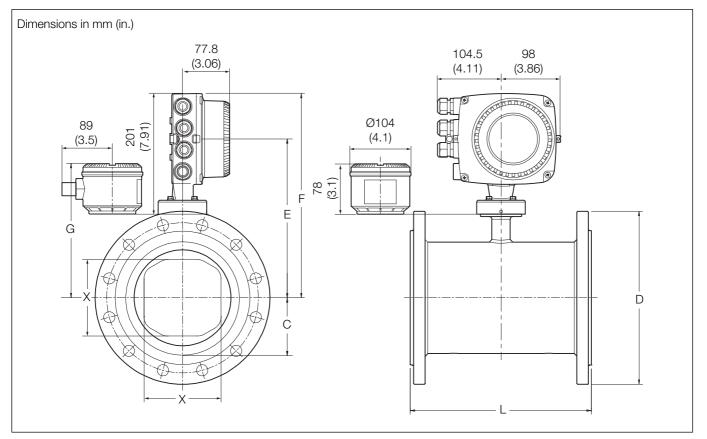
DN450 to 2400 (18 to 96 in. NB) (FEW) dimensions / weights

|          | _                       |                 |          |          |             | ions in mm (in.) |             | -           |             | Approx. wei                           | ·          |
|----------|-------------------------|-----------------|----------|----------|-------------|------------------|-------------|-------------|-------------|---------------------------------------|------------|
| DN       | Process connection type | D               | L (1.0D) | L (1.3D) | F           | С                | E           | G           | A           | Integral                              | Remote     |
| DN700    | JIS 5K                  | 875 (34.45)     | 700      | 910      | 604 (23.77) | 403 (15.87)      | 528 (20.79) | 488 (19.21) | 444 (17.48) | 216 (475)                             | 214 (471)  |
| (28 in.) | JIS 10K                 | 905 (35.63)     | (27.56)  | (35.83)  |             |                  |             |             |             | 282 (620)                             | 280 (616)  |
|          | PN6                     | 860 (33.86)     | 1        |          |             |                  |             |             |             | 225 (495)                             | 223 (491)  |
|          | PN10                    | 895 (35.24)     | 1        |          |             |                  |             |             |             | 303 (667)                             | 301 (662   |
|          | PN16                    | 910 (35.83)     |          |          |             |                  |             |             |             | 337 (741)                             | 335 (737   |
|          | AWWA C207 CLASS B       | 927 (36.50)     |          |          |             |                  |             |             |             | 249 (548)                             | 247 (543   |
|          |                         |                 | -        |          |             |                  |             |             |             |                                       |            |
|          | AWWA C207 CLASS D       | 927 (36.50)     | -        |          |             |                  |             |             |             | 280 (616)                             | 278 (612   |
|          | AS4087 PN16             | 910 (35.83)     | -        |          |             |                  |             |             |             | 359 (790)                             | 357 (785   |
|          | AS2129 TABLE-D          | 910 (35.83)     |          |          |             |                  |             |             |             | 263 (579)                             | 261 (574   |
|          | AS2129 TABLE-E          | 910 (35.83)     |          |          |             |                  |             |             |             | 337 (741)                             | 335 (737   |
|          | PN25                    | 960 (37.80)     |          |          |             |                  |             |             |             | 471 (10.36)                           | 469 (103   |
|          | PN40                    | 995 (39.17)     | 1        |          |             |                  |             |             |             | 586 (1289)                            | 584 (128   |
|          | AWWA C207 CLASS E       | 927 (36.50)     | 1        |          |             |                  |             |             |             | 472 (1038)                            | 470 (103   |
|          | AWWA C207 CLASS F       | 1035 (40.75)    |          |          |             |                  |             |             |             | 715 (1573)                            | 713 (156   |
|          | AS4087 PN35             | 935 (36.80)     |          |          |             |                  |             |             |             | 539 (1186)                            | 537 (118   |
|          |                         |                 | -        |          |             |                  |             |             |             |                                       |            |
|          | ASME CL150 SERIES A     | 925 (36.42)     | -        |          |             |                  |             |             |             | 503 (1107)                            | 501 (110   |
|          | ASME CL150 SERIES B     | 835 (32.87)     |          |          |             |                  |             |             |             | 323 (711)                             | 321 (706   |
|          | ASME CL300 SERIES B     | 920 (36.22)     |          |          |             |                  |             |             |             | 631 (1388)                            | 629 (138   |
| DN750    | JIS 5K                  | 945 (37.20)     | 750      | 990      | 630 (24.79) | 429 (16.89)      | 554 (21.81) | 514 (20.23) | 444 (17.48) | 251 (552)                             | 249 (548   |
| (30 in.) | JIS 10K                 | 970 (38.19)     | (29.52)  | (38.98)  |             |                  |             |             |             | 327 (719)                             | 325 (715   |
|          | AWWA C207 CLASS B       | 984 (38.74)     |          |          |             |                  |             |             |             | 273 (601)                             | 271 (596   |
|          | AWWA C207 CLASS D       | 984 (38.74)     | 1        |          |             |                  |             |             |             | 344 (757)                             | 342 (752   |
|          | AS4087 PN16             | 995 (39.17)     | 1        |          |             |                  |             |             |             | 467 (1027)                            | 465 (102   |
|          | AS2129 TABLE-D          | 995 (39.17)     | 1        |          |             |                  |             |             |             | 340 (748)                             | 338 (744   |
|          |                         |                 | 1        |          |             |                  |             |             |             |                                       |            |
|          | AS2129 TABLE-E          | 995 (39.17)     | -        |          |             |                  |             |             |             | 454 (999)                             | 452 (994   |
|          | AWWA C207 CLASS E       | 984 (38.74)     | -        |          |             |                  |             |             |             | 496 (1091)                            | 494 (108   |
|          | AWWA C207 CLASS F       | 1092 (43.99)    |          |          |             |                  |             |             |             | 790 (1738)                            | 788 (173   |
|          | AS4087 PN35             | 1015 (39.96)    |          |          |             |                  |             |             |             | 663 (1459)                            | 661 (145   |
|          | ASME CL150 SERIES A     | 985 (38.78)     | ]        |          |             |                  |             |             |             | 544 (1197)                            | 542 (119   |
|          | ASME CL150 SERIES B     | 885 (34.84)     | 1        |          |             |                  |             |             |             | 320 (704)                             | 318 (700   |
|          | ASME CL300 SERIES B     | 990 (38.98)     | 1        |          |             |                  |             |             |             | 748 (1646)                            | 746 (164   |
| DN800    | JIS 5K                  | 995 (39.17)     | 800      | 1040     | 654 (25.74) | 453 (17.83)      | 578 (22.76) | 538 (21.18) | 542 (21.34) | 280 (616)                             | 278 (612   |
| (32 in.) | JIS 10K                 | 1020 (40.16)    | (31.49)  | (40.04)  | 004 (20.74) | 400 (17.00)      | 010 (22.10) | 000 (21.10) | 042 (21.04) | 364 (801)                             |            |
| (- )     |                         |                 | (* ,     |          |             |                  |             |             |             |                                       | 362 (796   |
|          | PN6                     | 975 (38.39)     | -        |          |             |                  |             |             |             | 294 (647)                             | 292 (642   |
|          | PN10                    | 1015 (39.96)    |          |          |             |                  |             |             |             | 406 (893)                             | 404 (889   |
|          | PN16                    | 1025 (40.35)    |          |          |             |                  |             |             |             | 469 (1032)                            | 467 (102   |
|          | AWWA C207 CLASS B       | 1060 (41.73)    |          |          |             |                  |             |             |             | 328 (722)                             | 326 (717   |
|          | AWWA C207 CLASS D       | 1060 (41.73)    | 1        |          |             |                  |             |             |             | 408 (898)                             | 406 (893   |
|          | AS4087 PN16             | 1060 (41.73)    | 1        |          |             |                  |             |             |             | 530 (1166)                            | 528 (116   |
|          | AS2129 TABLE-D          | 1060 (41.73)    |          |          |             |                  |             |             |             | 386 (849)                             | 384 (845   |
|          | AS2129 TABLE-E          | 1060 (41.73)    | 1        |          |             |                  |             |             |             | 519 (1142)                            | 517 (113   |
|          |                         |                 | -        |          |             |                  |             |             |             | · · · · · · · · · · · · · · · · · · · |            |
|          | PN25                    | 1085 (42.72)    | -        |          |             |                  |             |             |             | 615 (1353)                            | 613 (134   |
|          | PN40                    | 1140 (44.88)    | -        |          |             |                  |             |             |             | 866 (1905)                            | 864 (190   |
|          | AWWA C207 CLASS E       | 1060 (41.73)    | 1        |          |             |                  |             |             |             | 634 (1395)                            | 632 (139   |
|          | AWWA C207 CLASS F       | 1150 (45.28)    |          |          |             |                  |             |             |             | 897 (1973)                            | 895 (196   |
|          | AS4087 PN35             | 1060 (41.73)    |          |          |             |                  |             |             |             | 751 (1652)                            | 749 (164   |
|          | ASME CL150 SERIES A     | 1060 (41.73)    | 1        |          |             |                  |             |             |             | 700 (1540)                            | 698 (153   |
|          | ASME CL150 SERIES B     | 940 (37.01)     | 1        |          |             |                  |             |             |             | 406 (893)                             | 404 (889   |
|          | ASME CL300 SERIES B     | 1055 (41.54)    | 1        |          |             |                  |             |             |             | 933 (2053)                            | 931 (204   |
| DN900    | JIS 5K                  | 1095 (43.11)    | 900      | 1170     | 705 (27.7() | 504 (19.84)      | 629 (24.76) | 589 (23.19) | 570 (22.44) | 369 812)                              | 367 (80)   |
| (36 in.) |                         |                 | (35.43)  | (46.06)  | 103 (21.10  | 304 (19.04)      | 023 (24.70) | 008 (20.18) | 510 (22.44) |                                       |            |
|          | JIS 10K                 | 1120 (44.09)    | (3070)   |          |             |                  |             |             |             | 445 (979)                             | 443 (975   |
|          | PN6                     | 1075 (42.32)    | -        |          |             |                  |             |             |             | 390 (858)                             | 388 (854   |
|          | PN10                    | 1115 (43.90)    |          |          |             |                  |             |             |             | 502 (1104)                            | 500 (110   |
|          | PN16                    | 1125 (44.29)    |          |          |             |                  |             |             |             | 589 (1296)                            | 587 (129   |
|          | AWWA C207 CLASS B       | 1168 (45.98)    |          |          |             |                  |             |             |             | 417 (917)                             | 415 (91)   |
|          | AWWA C207 CLASS D       | 1168 (45.98)    | 1        |          |             |                  |             |             |             | 493 (1085)                            | 491 (108   |
|          | AWWA C207 CLASS E       | 1168 (45.98)    | 1        |          |             |                  |             |             |             | 827 (1819)                            | 825 (181   |
|          | AWWA C207 CLASS F       | 1270 (50.00)    | 1        |          |             |                  |             |             |             | 1150 (2530)                           | 1148 (252  |
|          |                         |                 | 1        |          |             |                  |             |             |             |                                       |            |
|          | AS4087 PN16             | 1175 (46.26)    | -        |          |             |                  |             |             |             | 706 (1553)                            | 704 (154   |
|          | AS2129 TABLE-D          | 1175 (46.26)    | -        |          |             |                  |             |             |             | 514 (1131)                            | 512 (112   |
|          | AS2129 TABLE-E          | 1175 (46.26)    |          |          |             |                  |             |             |             | 694 (1527)                            | 692 (152   |
|          | PN25                    | 1185 (46.65)    |          |          |             |                  |             |             |             | 819 (1802)                            | 817 (179   |
|          | PN40                    | 1250 (49.21)    | 1        |          |             |                  |             |             |             | 1158 (2548)                           | 1156 (254  |
|          | AS4087 PN35             | 1185 (46.65)    | 1        |          |             |                  |             |             |             | 1044 (2297)                           | 1042 (22   |
|          | ASME CL150 SERIES A     | 1170 (46.06)    | 1        |          |             |                  |             |             |             | 961 (2114)                            | 959 (211   |
|          |                         | 1 1 1 0 (40.00) | 1        | 1        |             | 1                | 1           | 1           |             | 001(4117)                             | 1 000 (211 |
|          | ASME CL150 SERIES B     | 1055 (41.54)    | 1        |          |             |                  |             |             |             | 595 (1309)                            | 593 (130   |

DN450 to 2400 (18 to 96 in. NB) (FEW) dimensions / weights (Continued)



...DN450 to 2400 (18 to 96 in. NB) (FEW)


|          |                         |              |          |          | Dimens      | ions in mm (in.) |             |             |             | Approx. wei | ght in kg (lb) |
|----------|-------------------------|--------------|----------|----------|-------------|------------------|-------------|-------------|-------------|-------------|----------------|
| DN       | Process connection type | D            | L (1.0D) | L (1.3D) | F           | С                | E           | G           | А           | Integral    | Remote         |
| DN1000   | JIS 5K                  | 1195 (47.05) | 1000     | 1300     | 755 (29.71) | 554 (21.81)      | 679 (26.73) | 639 (25.16) | 624 (24.57) | 441 (970)   | 439 (966)      |
| (40 in.) | JIS 10K                 | 1235 (48.62) | (39.37)  | (51.18)  |             |                  |             |             |             | 572 (1258)  | 570 (1254)     |
|          | PN6                     | 1175 (46.26) |          |          |             |                  |             |             |             | 466 (1025)  | 464 (1021)     |
|          | PN10                    | 1230 (48.43) |          |          |             |                  |             |             |             | 674 (1483)  | 672 (1478)     |
|          | PN16                    | 1255 (49.41) |          |          |             |                  |             |             |             | 879 (1934)  | 877 (1929)     |
|          | AWWA C207 CLASS B       | 1289 (50.75) |          |          |             |                  |             |             |             | 503 (1107)  | 501 (1102)     |
|          | AWWA C207 CLASS D       | 1289 (50.75) |          |          |             |                  |             |             |             | 659 (1450)  | 657 (1445)     |
|          | AWWA C207 CLASS E       | 1289 (50.75) |          |          |             |                  |             |             |             | 1028 (2262) | 1026 (2257)    |
|          | AWWA C207 CLASS F       | 1378 (54.25) |          |          |             |                  |             |             |             | 1367 (3007) | 1365 (3003)    |
|          | AS4087 PN16             | 1255 (49.41) |          |          |             |                  |             |             |             | 831 (1828)  | 829 (1824)     |
| [        | AS2129 TABLE-D          | 1255 (49.41) |          |          |             |                  |             |             |             | 610 (1342)  | 608 (1338)     |
|          | AS2129 TABLE-E          | 1255 (49.41) |          |          |             |                  |             |             |             | 833 (1833)  | 831 (1028)     |
|          | PN25                    | 1320 (51.97) |          |          |             |                  |             |             |             | 1207 (2655) | 1205 (2651)    |
| [        | PN40                    | 1360 (53.54) |          |          |             |                  |             |             |             | 1413 (3109) | 1411 (3104)    |
| [        | AS4087 PN35             | 1275 (50.20) |          |          |             |                  |             |             |             | 1244 (2737) | 1242 (2732)    |
|          | ASME CL150 SERIES A     | 1290 (50.79) |          |          |             |                  |             |             |             | 1149 (2528) | 1147 (2523)    |
|          | ASME CL300 SERIES A     | 1240 (48.82) |          |          |             |                  |             |             |             | 1349 (2968) | 1347 (2963)    |
|          | ASME CL150 SERIES B     | 1175 (46.26) |          |          |             |                  |             |             |             | 738 (1624)  | 736 (1619)     |
|          | ASME CL300 SERIES B     | 1275 (50.20) |          |          |             |                  |             |             |             | 1487 (3271) | 1485 (3267)    |
| DN1050   | AWWA C207 CLASS B       | 1346 (5299)  | 1050     | 1365     | 808 (31.82) | 608 (23.92)      | 733 (28.84) | 693 (27.28) | 624 (24.57) | 564 (1241)  | 562 (1236)     |
| (42 in.) | AWWA C207 CLASS D       | 1346 (5299)  | (41.33)  | (53.74)  |             |                  |             |             |             | 669 (1472)  | 667 (1467)     |
|          | AWWA C207 CLASS E       | 1346 (5299)  |          |          |             |                  |             |             |             | 1143 (2515) | 1141 (2510)    |
|          | AWWA C207 CLASS F       | 1448 (57.01) |          |          |             |                  |             |             |             | 1568 (3450) | 1566 (3445)    |
|          | ASME CL150 SERIES B     | 1225 (48.23) |          |          |             |                  |             |             |             | 809 (1780)  | 807 (1775)     |
|          | ASME CL150 SERIES A     | 1345 (52.95) |          |          |             |                  |             |             |             | 1289 (2836) | 1287 (2831)    |
|          | ASME CL300 SERIES A     | 1290 (50.79) |          |          |             |                  |             |             |             | 1527 (3359) | 1525 (3355)    |
|          | ASME CL300 SERIES B     | 1335 (52.56) |          |          |             |                  |             |             |             | 1704 (3749) | 1702 (3744)    |
| DN1100   | JIS 5K                  | 1305 (51.38) | 1100     | 1430     |             |                  |             |             |             | 510 (1122)  | 508 (1118)     |
| (44 in.) | JIS 10K                 | 1345 (52.95) | (43.30)  | (56.30)  |             |                  |             |             |             | 689 (1516)  | 687 (1511)     |
|          | AWWA C207 CLASS B       | 1403 (55.24) |          |          |             |                  |             |             |             | 615 (1353)  | 613 (1349)     |
| [        | AWWA C207 CLASS D       | 1403 (55.24) |          |          |             |                  |             |             |             | 807 (1775)  | 805 (1771)     |
|          | AWWA C207 CLASS E       | 1404 (55.26) |          |          |             |                  |             |             |             | 1205 (2651) | 1203 (2647)    |
|          | AWWA C207 CLASS F       | 1505 (59.25) |          |          |             |                  |             |             |             | 1719 (3782) | 1717 (3777)    |

...DN450 to 2400 (18 to 96 in. NB) (FEW) dimensions / weights

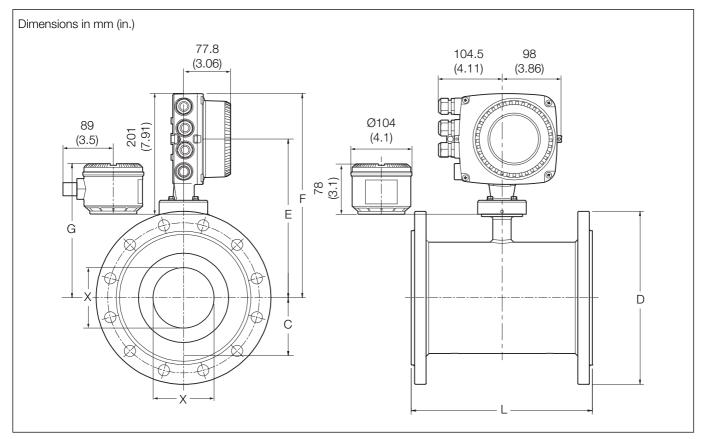
| DN                 |                                        |                                               |                 |                          | Dimens       | ions in mm (in.) |              |              |              | Approx. wei                        | ght in kg (lb)                     |
|--------------------|----------------------------------------|-----------------------------------------------|-----------------|--------------------------|--------------|------------------|--------------|--------------|--------------|------------------------------------|------------------------------------|
| DN                 | Process connection type                | D                                             | L (1.0D)        | L (1.3D)                 | F            | С                | E            | G            | А            | Integral                           | Remote                             |
| DN1200             | JIS 5K                                 | 1420 (55.91)                                  | 1200            | 1560                     | 860 (33.85)  | 659 (25.94)      | 784 (30.87)  | 744 (29.29)  | 802 (31.57)  | 651 (1432)                         | 649 (1428)                         |
| (48 in.)           | JIS 10K                                | 1465 (57.68)                                  | (47.24)         | (61.42)                  |              |                  |              |              |              | 967 (2127)                         | 965 (2123)                         |
|                    | PN6                                    | 1405 (55.31)                                  |                 |                          |              |                  |              |              |              | 710 (1562)                         | 708 (1558)                         |
|                    | PN10                                   | 1455 (57.28)                                  |                 |                          |              |                  |              |              |              | 1107 (2435)                        | 1105 (2431)                        |
|                    | PN16                                   | 1485 (58.46)                                  |                 |                          |              |                  |              |              |              | 1363 (2999)                        | 1361 (2994)                        |
|                    | AWWA C207 CLASS B                      | 1511 (59.49)                                  |                 |                          |              |                  |              |              |              | 772 (1698)                         | 770 (1694)                         |
| Ļ                  | AWWA C207 CLASS D                      | 1511 (59.49)                                  |                 |                          |              |                  |              |              |              | 999 (2198)                         | 997 (2193)                         |
| Ļ                  | AWWA C207 CLASS E                      | 1511 (59.49)                                  |                 |                          |              |                  |              |              |              | 1458 (3208)                        | 1456 (3203)                        |
| Ļ                  | AWWA C207 CLASS F                      | 1651 (65.00)                                  |                 |                          |              |                  |              |              |              | 2400 (5280)                        | 2398 (5276)                        |
| Ļ                  | AS4087 PN16                            | 1490 (58.66)                                  |                 |                          |              |                  |              |              |              | 1253 (2757)                        | 1251 (2752)                        |
| -                  | AS2129 TABLE-D                         | 1490 (58.66)                                  |                 |                          |              |                  |              |              |              | 1023 (2251)                        | 1021 (2246)                        |
| -                  | AS2129 TABLE-E                         | 1490 (58.66)                                  |                 |                          |              |                  |              |              |              | 1272 (2798)                        | 1270 (2794)                        |
| -                  | PN25                                   | 1530 (60.24)                                  |                 |                          |              |                  |              |              |              | 1559 (3430)                        | 1557 (3425)                        |
| -                  | PN40                                   | 1575 (62.01)                                  |                 |                          |              |                  |              |              |              | 2133 (4693)                        | 2131 (4688)                        |
| Ļ                  | AS4087 PN35                            | 1530 (60.24)                                  |                 |                          |              |                  |              |              |              | 2115 (4653)                        | 2113 (4649)                        |
| -                  | ASME CL150 SERIES A                    | 1510 (59.45)                                  |                 |                          |              |                  |              |              |              | 1707 (3755)                        | 1705 (3751)                        |
| Ļ                  | ASME CL300 SERIES A                    | 1465 (57.68)                                  |                 |                          |              |                  |              |              |              | 2163 (4759)                        | 2161 (4754)                        |
| Ļ                  | ASME CL150 SERIES B                    | 1390 (54.72)                                  |                 |                          |              |                  |              |              |              | 1085 (2387)                        | 1083 (2383)                        |
|                    | ASME CL300 SERIES B                    | 1510 (59.45)                                  |                 |                          |              |                  |              |              |              | 2352 (5174)                        | 2350 (5170)                        |
| DN1350             | AWWA C207 CLASS B                      | 1683 (66.26)                                  | 1350            | 1755                     | 955 (37.59)  | 754 (29.69)      | 879 (34.61)  | 839 (33.03)  | 902 (35.51   | 981 (2158)                         | 979 (2154)                         |
| (54 in.)           | AWWA C207 CLASS D                      | 1683 (66.26)                                  | (53.15)         | (69.09)                  |              |                  |              |              |              | 1213 (2669)                        | 1211 (2664)                        |
|                    | AWWA C207 CLASS E                      | 1683 (66.26)                                  |                 |                          |              |                  |              |              |              | 1942 (4272)                        | 1940 (4268)                        |
| DN1400<br>(56 in.) | PN6                                    | 1630 (64.17)                                  | 1400<br>(55.11) | 1820<br>(71.65)          |              |                  |              |              |              | 1085 (2387)                        | 1083 (2383)                        |
| (30 III.)          | PN10                                   | 1675 (65.94)                                  | (55.11)         | (71.00)                  |              |                  |              |              |              | 1731 (3808)                        | 1729 (3804)                        |
| -                  | PN16                                   | 1685 (66.34)                                  |                 |                          |              |                  |              |              |              | 1770 (3894)                        | 1768 (3890)                        |
| -                  | ASME CL150 SERIES B                    | 1600 (62.99)                                  |                 |                          |              |                  |              |              |              | 1593 (3505)                        | 1591 (3500)                        |
| -                  | PN25                                   | 1755 (69.09)                                  |                 |                          |              |                  |              |              |              | 2368 (5210)                        | 2366 (5205)                        |
| -                  | PN40                                   | 1795 (70.67)                                  |                 |                          |              |                  |              |              |              | 3086 (6789)                        | 3084 (6785)                        |
| -                  | ASME CL150 SERIES A                    | 1745 (68.70)                                  |                 |                          |              |                  |              |              |              | 2556 (5623)                        | 2554 (5619)                        |
| -                  | ASME CL300 SERIES A                    | 1710 (67.32)                                  |                 |                          |              |                  |              |              |              | 3376 (7427)                        | 3374 (7423)                        |
|                    | ASME CL300 SERIES B                    | 1765 (69.49)                                  |                 |                          |              |                  |              |              |              | 3758 (8268)                        | 3756 (8263)                        |
| DN1500<br>(60 in.) | JIS 5K                                 | 1730 (68.11)                                  | 1500<br>(59.05) | 1950<br>(76.77)          | 1065 (41.92) | 864 (34.02)      | 989 (38.94)  | 949 (37.36)  | 910 (35.83)  | 1029 (2264)                        | 1027 (2259)                        |
| (00 11.)           | JIS 10K                                | 1795 (70.67)                                  | (00.00)         | (10.11)                  |              |                  |              |              |              | 1504 (3309)                        | 1502 (3304)                        |
| +                  | ASME CL150 SERIES B                    | 1725 (67.91)                                  |                 |                          |              |                  |              |              |              | 2031 (4468)                        | 2029 (4464)                        |
| +                  | AWWA C207 CLASS B                      | 1854 (72.99)                                  |                 |                          |              |                  |              |              |              | 1229 (2704)                        | 1227 (2699)                        |
| ŀ                  | AWWA C207 CLASS D                      | 1854 (72.99)                                  |                 |                          |              |                  |              |              |              | 1514 (3331)                        | 1512 (3326)                        |
| -                  | AWWA C207 CLASS E                      | 1854 (72.99)                                  |                 |                          |              |                  |              |              |              | 2544 (5597)                        | 2542 (5592)                        |
| -                  | ASME CL150 SERIES A                    | 1855 (73.03)                                  |                 |                          |              |                  |              |              |              | 3084 (6785)                        | 3082 (6780)                        |
| -                  | ASME CL300 SERIES A                    | 1810 (71.26)                                  |                 |                          |              |                  |              |              |              | 3875 (8525)                        | 3873 (8521)                        |
| DNH000             | ASME CL300 SERIES B                    | 1880 (74.02                                   | 1000            | 0000                     | 4000 (44.00) | 0.05 (0.4.00)    | 000 (00 00)  | 050 (07.4)   | 4000 (00.07) | 4181 (9198)                        | 4179 (9194)                        |
| DN1600<br>(64 in.) | PN6                                    | 1830 (72.05)                                  | 1600<br>(62.99) | 2080<br>(81.89)          | 1066 (41.96) | 865 (34.06)      | 990 (38.98)  | 950 (37.4)   | 1000 (39.37) | 1434 (3155)                        | 1432 (3150)                        |
| (= ,               | PN10                                   | 1915 (75.39)                                  | (====)          | (=                       |              |                  |              |              |              | 2525 (5555)                        | 2523 (5551)                        |
| ŀ                  | PN25                                   | 1975 (77.76)                                  |                 |                          |              |                  |              |              |              | 3201 (7042)                        | 3199 (7038)                        |
| ŀ                  | PN16                                   | 1930 (75.98)                                  |                 |                          |              |                  |              |              |              | 2768 (6090)                        | 2766 (6085)                        |
| DNI1650            | PN40                                   | 2025 (79.72)                                  | NI/A            | 0145                     | 1116 (42 04) | 015 (26.00)      | 1040 (40.04) | 1000 (20.27) | 1000 /20 27  | 4375 (9625)                        | 4373 (9621)                        |
| DN1650<br>(66 in.) | AWWA C207 CLASS B                      | 2032 (80.00)                                  | N/A             | 2145<br>(84.45)          | 1116 (43.94) | 915 (36.02)      | 1040 (40.94) | 1000 (39.37) | 1000 (39.37) | 1504 (3309)                        | 1502 (3304)                        |
| DN1800             | AWWA C207 CLASS D<br>PN6               | 2032 (80.00)                                  | N/A             | 2340                     | 1191 (46 50) | 080 (30 50)      | 1105 (42 50) | 1065 (41.93) | 1100 (43.31) | 2025 (4455)<br>1853 (4077)         | 2023 (4451)                        |
| (72 in.)           | PN6<br>PN10                            | 2045 (80.51)<br>2115 (83.27)                  | iN/A            | (92.13)                  | 1181 (46.50) | 980 (38.58)      | 1105 (43.50) | 1003 (41.93) | 1100 (43.31) | 3180 (6996)                        | 1851 (4072)<br>3178 (6992)         |
| · "                | PN10<br>PN16                           | 2115 (83.27)<br>2130 (83.86)                  |                 | , <u></u>                |              |                  |              |              |              | 3657 (8045)                        | 3655 (8041)                        |
| ŀ                  | PN16<br>PN25                           | 2130 (83.86)<br>2195 (86.42)                  |                 |                          |              |                  |              |              |              |                                    | 4420 (9724)                        |
| ŀ                  | AWWA C207 CLASS B                      | 2195 (86.42)<br>2197 (86.50)                  |                 |                          |              |                  |              |              |              | 4422 (9728)<br>1773 (3901)         | 1771 (3896)                        |
| ŀ                  |                                        | . ,                                           |                 |                          |              |                  |              |              |              |                                    |                                    |
| DN1950             | AWWA C207 CLASS D<br>AWWA C207 CLASS B | 2197 (86.50)<br>2362 (92.99)                  | N/A             | 2535                     | 1291 (50.81) | 1090 (42.91)     | 1215 (47.83) | 1175 (46.26) | 1180 (46.46) | 2387 (5251)<br>2309 (5080)         | 2385 (5247)<br>2307 (5075)         |
| (78 in.)           | AWWA C207 CLASS B<br>AWWA C207 CLASS D | 2362 (92.99)                                  | IN/PA           | (99.80)                  | 1231 (00.01) | 1000 (42.91)     | 1213 (47.03) | (175 (40.20) | 1100 (40.40) | 3037 (6681)                        | 3035 (6677)                        |
| DN2000             | PN6                                    | 2362 (92.99)<br>2265 (89.17)                  | N/A             | 2600                     |              |                  |              |              |              | 2581 (5678)                        | 2579 (5674)                        |
| (80 in.)           | PN6<br>PN10                            | 2325 (89.17)                                  | 1 N/ /*         | (102.36)                 |              |                  |              |              |              | 4254 (9359)                        | 4252 (9354)                        |
| ·                  | PN10<br>PN16                           | 2325 (91.54)<br>2345 (92.32)                  |                 |                          |              |                  |              |              |              | 4254 (9359)                        | 4252 (9354)<br>4554                |
| ŀ                  | PN16<br>PN25                           | 2345 (92.32)<br>2425 (95.47)                  |                 |                          |              |                  |              |              |              | 5896                               | 4554<br>5894                       |
| DN2100             | AWWA C207 CLASS B                      | 2534 (99.76)                                  | N/A             | 2730                     | 1395 (54.91) | 1194 (47.01)     | 1319 (51.93) | 1279 (50.35) | 1180 (46.46) |                                    | 2639 (5806)                        |
|                    | AWWA C207 CLASS B<br>AWWA C207 CLASS D |                                               | IN/A            | (107.48)                 | 1393 (54.91) | 1194 (47.01)     | 1319 (31.93) | 1219 (00.30) | 1100 (40.40) | 2641 (5810)                        |                                    |
| (84 in.)           | AVVVA UZUI ULASS D                     | 2534 (99.76)                                  |                 |                          | -            |                  |              |              |              | 3487 (7671)                        | 3485 (7667)                        |
| (84 in.)           |                                        | 0475 107 44                                   | NI/A            | 0000                     |              |                  |              |              |              | 10000 (7000)                       |                                    |
| (84 in.)<br>DN2200 | PN6                                    | 2475 (97.44)                                  | N/A             | 2860<br>(112.60)         |              |                  |              |              | 1330 (52.36) | 3363 (7399)                        | 3361 (7394)<br>5702                |
| (84 in.)           |                                        | 2475 (97.44)<br>2550 (100.39)<br>2685 (105.71 | N/A<br>         | 2860<br>(112.60)<br>3120 | 1495 (58.85) | 1294 (50.94)     | 1419 (55.87) | 1379 (54.29) | 1330 (52.36) | 3363 (7399)<br>5795<br>4100 (9020) | 3361 (7394)<br>5793<br>4098 (9016) |

...DN450 to 2400 (18 to 96 in. NB) (FEW) dimensions / weights (Continued)

# FEV – DN40 to 200 (1<sup>1</sup>/<sub>2</sub> to 8 in. NB)



DN40 to 200 (1<sup>1</sup>/<sub>2</sub> to 8 in. NB) (FEV)


|                                     |                           |             |             | Dimensions    | s in mm (in.) |              |            | Approx. wei   | ght in kg (lb) |
|-------------------------------------|---------------------------|-------------|-------------|---------------|---------------|--------------|------------|---------------|----------------|
| DN                                  | Process connection type   | D           | L           | F             | E             | G            | X          | Integral      | Remote         |
| DN40                                | EN1092-1 PN10, 16, 25, 40 | 150 (5.91)  | 200 (7.87)  | 260 (10.24)   | 185 (7.28)    | 137 (5.39)   | 30 (1.18)  | 12.8 (28.16)  | 11.8 (25.96)   |
| (1 <sup>1</sup> / <sub>2</sub> in.) | ASME B16.5 CLASS 150      |             |             |               |               |              |            |               |                |
|                                     | AS2129 TABLE D, E, F      |             |             |               |               |              |            |               |                |
| DN50                                | EN1092-1 PN10, 16, 25, 40 | 165 (6.50)  | 200 (7.87)  | 261 (10.28)   | 186 (7.32)    | 138 (5.43)   | 38 (1.5)   | 13.75 (30.25) | 12.75 (28.05)  |
| (2 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |            |               |                |
| DN80                                | EN1092-1 PN10, 16, 25, 40 | 200 (7.87)  | 200 (7.87)  | 280 (11.04)   | 205.5 (8.09)  | 157.5 (6.2)  | 61 (2.4)   | 17.2 (37.84)  | 16.2 (35.64)   |
| (3 in.)                             | ASME B16.5 CLASS 150      | 1           |             |               |               |              |            |               |                |
|                                     | AS4087 PN16, 21           |             |             |               |               |              |            |               |                |
|                                     | AS2129 TABLE D, E, F      |             |             |               |               |              |            |               |                |
| DN100                               | EN1092-1 PN10, 16, 25, 40 | 225 (8.86)  | 250 (9.84)  | 300.5 (11.83) | 225.5 (8.88)  | 177.5 (6.98) | 70 (2.76)  | 19.3 (42.5)   | 18.3 (40.3)    |
| (4 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |            |               |                |
|                                     | AS4087 PN16               |             |             |               |               |              |            |               |                |
| DN150                               | EN1092-1 PN10, 16, 25, 40 | 300 (11.81) | 300 (11.81) | 333.5 (13.13) | 258.5 (10.18) | 210.5 (8.29) | 103 (4.06) | 35.1 (77.2)   | 34.1 (75)      |
| (6 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |            |               |                |
|                                     | AS4087 PN16               |             |             |               |               |              |            |               |                |
| DN200                               | EN1092-1 PN10, 16         | 375 (11.76) | 350 (13.78) | 358.7 (14.12) | 283.7 (11.17) | 235.7 (9.28) | 150 (5.91) | 67 (147.4)    | 66 (145.2)     |
| (8 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |            |               |                |
|                                     | AS2129 TABLE C, D, E, F   |             |             |               |               |              |            |               |                |
|                                     | AS4087 PN14, 16, 21       |             |             |               |               |              |            |               |                |

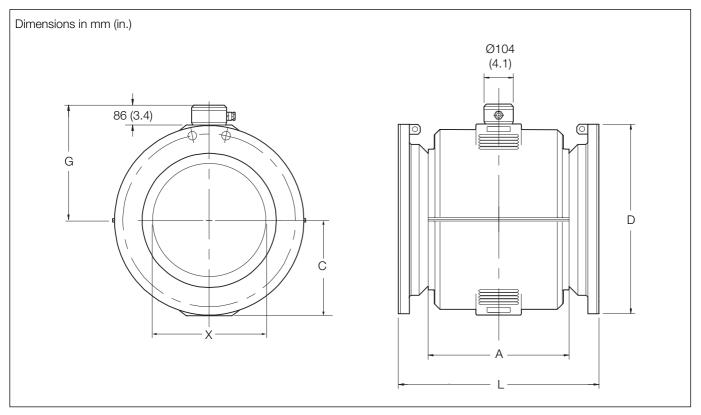
WaterMaster integral / remote FEV – DN40 to 200 (11/2 to 8 in.) cast iron sensor dimensions / weights

|                                     |                         |              |             |              | nensions in mm |             |              |            |          | ght in kg (lb) |
|-------------------------------------|-------------------------|--------------|-------------|--------------|----------------|-------------|--------------|------------|----------|----------------|
| DN                                  | Process connection type | D            | L           | F            | С              | E           | G            | х          | Integral | Remote         |
| DN40<br>(1 <sup>1</sup> /2 in.)     | EN1092-1 PN10, PN40     | 150 (5.91)   | 200 (7.87)  | 260 (10.24)  | 30.4 (1.20)    | 185 (7.28)  | 138 (5.43)   | 30 (1.18)  | 12 (27)  | 11 (24)        |
| (1 /2 111.)                         | ASME B16.5 CLASS 150    | 127 (5.00)   |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 140 (5.51)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 140 (5.51)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D E      | 135 (5.31)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN14             | 135 (5.31)   |             |              |                |             |              |            |          |                |
| DN50                                | EN1092-1 PN10, PN16     | 165 (6.50)   | 200 (7.87)  | 270 (10.63)  | 38.3 (1.51)    | 195 (7.68)  | 146 (5.75)   | 38 (1.50)  | 13 (29)  | 12 (27)        |
| (2 in.)                             | ASME B16.5 CLASS 150    | 152.4 (6.00) |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 155 (6.10)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN21             | 165 (6.50)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 165 (6.50)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D E      | 150 (5.91)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN14, PN16       | 150 (5.91)   |             |              |                |             |              |            |          |                |
| DN65                                | AS4087 PN14, PN16       | 165 (6.50)   | 200 (7.87)  | 275 (10.83)  | 45.2 (1.78)    | 200 (7.87)  | 152 (5.98)   | 48 (1.89)  | 15 (33)  | 14 (31)        |
| (2 <sup>1</sup> / <sub>2</sub> in.) | AS2129 TABLE C D E      | 165 (6.50)   | 200 (1.07)  | 210 (10.00)  | 1012 (111 0)   | 200 (1.01)  | 102 (0.00)   | 10 (1100)  | 10 (00)  | (01)           |
|                                     | EN1092-1 PN10           | 185 (7.28)   |             |              |                |             |              |            |          |                |
|                                     | EN1092-1 PN16           | 185 (7.28)   |             |              |                |             |              |            |          |                |
| DN80                                |                         |              | 000 (7.07)  | 0.00 (11.00) | E1 E (0.00)    | 005 (0.07)  | 150 (0.14)   | 61 (0.40)  | 10 (00)  | 15 (00)        |
| (3 in.)                             | EN1092-1 PN10, PN16     | 200 (7.87)   | 200 (7.87)  | 280 (11.02)  | 51.5 (2.03)    | 205 (8.07)  | 156 (6.14)   | 61 (2.40)  | 16 (36)  | 15 (33)        |
|                                     | ASME B16.5 CLASS 150    | 190 (7.48)   |             |              |                |             |              |            |          |                |
|                                     | JIS 7.5K                | 211 (8.31)   |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 185 (7.28)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D E      | 185 (7.28)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN14, PN16       | 185 (7.28)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 205 (8.07)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN21             | 205 (8.07)   |             |              |                |             |              |            |          |                |
| DN100                               | EN1092-1 PN10, PN16     | 220 (8.66)   | 250 (9.84)  | 320 (12.60)  | 63.75 (2.51)   | 245 (9.65)  | 196.8 (7.75) | 70 (2.76)  | 19 (42)  | 18 (40)        |
| (4 in.)                             | ASME B16.5 CLASS 150    | 228.6 (9.00) |             |              |                |             |              |            |          |                |
|                                     | JIS 7.5K                | 238 (9.37)   |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 210 (8.27)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D        | 215 (8.46)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN14, PN16       | 215 (8.46)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE E          | 215 (8.46)   |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN21             | 230 (9.06)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 230 (9.06)   |             |              |                |             |              |            |          |                |
| DN125                               | EN1092-1 PN10, PN16     | 250 (9.84)   | 250 (9.84)  | 320 (12.60)  | 63.75 (2.51)   | 245 (9.65)  | 197 (7.76)   | 70 (2.76)  | 20 (44)  | 19 (42)        |
| (5 in.)                             | ASME B16.5 CLASS 150    | 254 (10.00)  |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 250 (9.84)   |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D E      | 255 (10.04)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 280 (11.02)  |             |              |                |             |              |            |          |                |
| DN150                               | EN1092 PN10, PN16       | 285 (11.22)  | 300 (11.81) | 340 (13.39)  | 84.4 (3.32)    | 265 (10.43) | 217 (8.54)   | 103 (4.06) | 32 (70)  | 31 (68)        |
| (6 in.)                             | ASME B16.5 CLASS 150    | 279 (10.98)  | 000 (11.01) | 040 (10.00)  | 04.4 (0.02)    | 200 (10.40) | 217 (0.04)   | 100 (4.00) | 02 (10)  | 01(00)         |
|                                     | JIS 7.5k                | 290 (11.42)  |             |              |                |             |              |            |          |                |
|                                     |                         |              |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 280 (11.02)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D        | 280 (11.02)  |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN14, PN16       | 280 (11.02)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE E          | 280 (11.02)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 305 (12.01)  |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN21             | 305 (12.01)  |             |              |                |             |              |            |          |                |
| DN200<br>(8 in.)                    | EN1092-1 PN10           | 340 (13.39)  | 350 (13.78) | 365 (14.37)  | 109.8 (4.32)   | 290 (11.42) | 243 (9.57)   | 150 (5.91) | 49 (108) | 48 (105)       |
| (0 111.)                            | EN1092-1 PN16           | 340 (13.39)  |             |              |                |             |              |            |          |                |
|                                     | ASME B16.5 CLASS 150    | 345 (13.58)  |             |              |                |             |              |            |          |                |
|                                     | JIS 7.5K                | 342 (13.46)  |             |              |                |             |              |            |          |                |
|                                     | JIS 10K                 | 330 (12.99)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE C D        | 335 (13.19)  |             |              |                |             |              |            |          |                |
|                                     | AS4087 PN14, PN 16      | 335 (13.19)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE E          | 335 (13.19)  |             |              |                |             |              |            |          |                |
|                                     | AS2129 TABLE F          | 370 (14.57)  |             |              |                |             |              |            |          |                |
|                                     |                         | · · · · · /  | 1           | 1            | 1              |             | 1            | 1          |          | 1              |

DN40 to 200 (11/2 to 8 in. NB) (FEV) dimensions / weights

# FER - DN40 to 300 (1<sup>1</sup>/<sub>2</sub> to 12 in. NB)



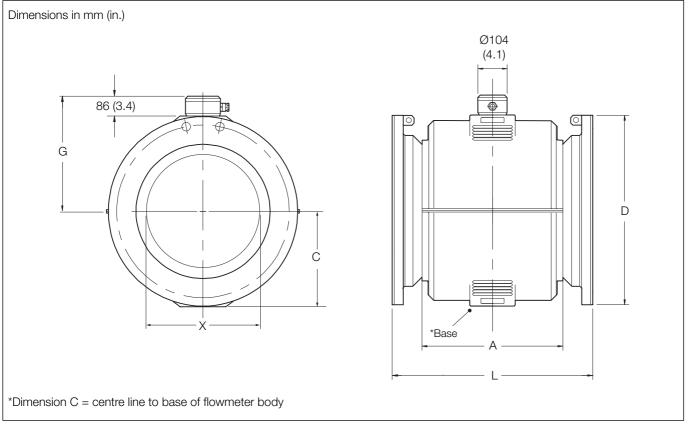

DN40 to 300 (1<sup>1</sup>/<sub>2</sub> to 12 in. NB) (FER)

|                                     |                           |             |             | Dimensions    | s in mm (in.) |              |              | Approx. wei   | ght in kg (lb) |
|-------------------------------------|---------------------------|-------------|-------------|---------------|---------------|--------------|--------------|---------------|----------------|
| DN                                  | Process connection type   | D           | L           | F             | E             | G            | X            | Integral      | Remote         |
| DN40                                | EN1092-1 PN10, 16, 25, 40 | 150 (5.91)  | 200 (7.87)  | 260 (10.24)   | 185 (7.28)    | 137 (5.39)   | 23.5 (0.93)  | 13.4 (29.5)   | 12.4 (27.3)    |
| (1 <sup>1</sup> / <sub>2</sub> in.) | ASME B16.5 CLASS 150      |             |             |               |               |              |              |               |                |
|                                     | AS2129 TABLE D, E, F      |             |             |               |               |              |              |               |                |
| DN50                                | EN1092-1 PN10, 16, 25, 40 | 165 (6.50)  | 200 (7.87)  | 261 (10.28)   | 186 (7.32)    | 138 (5.43)   | 29 (1.14)    | 14.75 (32.45) | 13.75 (30.25)  |
| (2 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |              |               |                |
| DN80                                | EN1092-1 PN10, 16, 25, 40 | 200 (7.87)  | 200 (7.87)  | 280 (11.04)   | 205.5 (8.09)  | 157.5 (6.2)  | 47 (1.85)    | 21.2 (46.64)  | 20.2 (44.4)    |
| (3 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |              |               |                |
|                                     | AS4087 PN16, 21           |             |             |               |               |              |              |               |                |
|                                     | AS2129 TABLE D, E, F      |             |             |               |               |              |              |               |                |
| DN100                               | EN1092-1 PN10, 16, 25, 40 | 225 (8.86)  | 250 (9.84)  | 300.5 (11.83) | 225.5 (8.88)  | 177.5 (6.98) | 64 (2.52)    | 27.3 (60)     | 26.3 (58)      |
| (4 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |              |               |                |
|                                     | AS4087 PN16               |             |             |               |               |              |              |               |                |
| DN150                               | EN1092-1 PN10, 16, 25, 40 | 300 (11.81) | 300 (11.81) | 333.5 (13.13) | 258.5 (10.18) | 210.5 (8.29) | 100.2 (3.94) | 27.3 (60)     | 26.3 (58)      |
| (6 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |              |               |                |
|                                     | AS4087 PN16               |             |             |               |               |              |              |               |                |
| DN200                               | EN1092-1 PN10, 16         | 375 (11.76) | 350 (13.78) | 358.7 (14.12) | 283.7 (11.17) | 235.7 (9.28) | 126.7 (5.00) | 68 (150)      | 67 (147.4)     |
| (8 in.)                             | ASME B16.5 CLASS 150      |             |             |               |               |              |              |               |                |
|                                     | AS2129 TABLE C, D, E, F   |             |             |               |               |              |              |               |                |
|                                     | AS4087 PN14, 16, 21       |             |             |               |               |              |              |               |                |

|                         | 1                                              |                                           |             |             | nensions in mm |               |              |              |           | ght in kg (lb) |
|-------------------------|------------------------------------------------|-------------------------------------------|-------------|-------------|----------------|---------------|--------------|--------------|-----------|----------------|
| DN                      | Process connection type                        | D                                         | L           | F           | С              | E             | G            | X            | Integral  | Remote         |
| DN40                    | EN1092-1 PN10, 16, 25, 40                      | 150 (5.91)                                | 200 (7.87)  | 260 (10.24) | 30.4 (1.20)    | 185 (7.28)    | 138 (5.43)   | 23.5 (0.93)  | 13 (29)   | 11 (24)        |
| (1 <sup>1</sup> /2 in.) | ASME B16.5 CLASS 150                           | 127 (5.00)                                |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 140 (5.51)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D E                             | 135 (5.31)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE F                                 | 140 (5.51)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN14                                    | 135 (5.31)                                |             |             |                |               |              |              |           |                |
| DN50                    | EN1092-1 PN10, 16, 25, 40                      | 165 (6.50)                                | 200 (7.87)  | 270 (10.63) | 38.3 (1.51)    | 195 (7.68)    | 146 (5.75)   | 29 (1.14)    | 14 (31)   | 12 (27)        |
| (2 in.)                 | ASME B16.5 CLASS 150                           | 152.4 (6.00)                              |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 155 (6.10)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 165 (6.50)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE F                                 | 165 (6.50)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D E                             | 150 (5.91)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN14, PN16                              | 150 (5.91)                                |             |             |                |               |              |              |           |                |
| DN65                    | EN1092-1 PN10, 16, 25, 40                      | 185 (7.28)                                | 200 (7.87)  | 275 (10.83) | 45.2 (1.78)    | 200 (7.87)    | 152 (5.98)   | 37 (1.46)    | 15 (33)   | 13 (29)        |
| (2 <sup>1</sup> /2 in.) | ASME B16.5 CLASS 150                           | 178 (7.00)                                |             |             |                |               |              |              |           |                |
|                         | JIS10K                                         | 175 (6.89)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D E                             | 165 (6.50)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE F                                 | 185 (7.28)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN14, 16                                | 165 (6.50)                                | 1           |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 185 (7.28)                                |             |             |                |               |              |              |           |                |
| DN80                    | EN1092-1 PN10, 16, 25, 40                      | 200 (7.87)                                | 200 (7.87)  | 280 (11.02) | 51.5 (2.03)    | 205 (8.07)    | 156 (6.14)   | 47 (1.85)    | 20 (44)   | 18 (40)        |
| (3 in.)                 | ASME B16.5 CLASS 150                           | 190 (7.48)                                | 1           |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 185 (7.28)                                | 1           |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D E                             | 185 (7.28)                                | 1           |             |                |               |              |              |           |                |
|                         | AS4087 PN14, 16                                | 185 (7.28)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE F                                 | 205 (8.07)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 205 (8.07)                                |             |             |                |               |              |              |           |                |
| DN100                   | EN1092-1 PN10, 16                              | 220 (8.66)                                | 250 (9.84)  | 320 (12.60) | 63.75 (2.51)   | 245 (9.65)    | 196.8 (7.75) | 64 (2.52)    | 27 (59)   | 25 (55)        |
| (4 in.)                 | EN1092-1 PN25, 40                              | 235 (9.25)                                |             |             |                | ()            |              |              | _: (==)   | ()             |
|                         | ASME B16.5 CLASS 150                           | 228.6 (9.00)                              |             |             |                |               |              |              |           |                |
|                         | JIS 7.5K                                       | 238 (9.37)                                |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 210 (8.27)                                |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D                               | 215 (8.46)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN14, 16                                | 215 (8.46)                                |             |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 230 (9.06)                                |             |             |                |               |              |              |           |                |
| DN125                   | EN1092-1 PN10, 16                              | 250 (9.84)                                | 250 (9.84)  | 320 (12.60) | 63.75 (2.51)   | 245 (9.65)    | 197 (7.76)   | 64 (2.52)    | 27 (59)   | 25 (55)        |
| (5 in.)                 | EN1092-1 PN10, 10<br>EN1092-1 PN25, 40         |                                           | 200 (9.64)  | 320 (12.00) | 03.75 (2.51)   | 245 (9.05)    | 197 (7.70)   | 04 (2.52)    | 27 (59)   | 25 (55)        |
| (0 111.)                | ASME B16.5 CLASS 150                           | 270 (10.63)<br>254 (10.00)                |             |             |                |               |              |              |           |                |
|                         |                                                |                                           |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 250 (9.84)                                |             |             |                |               |              |              |           |                |
| DN150                   | AS2129 TABLE C D                               | 255 (10.04)                               | 000 (11 01) | 340 (13.39) | 044(0.00)      | 005 (10.40)   | 017 (0.5.4)  | 100.0 (0.04) | 00 (70)   | 01 (00)        |
| (6 in.)                 | EN1092 PN10, 16                                | 285 (11.22)                               | 300 (11.81) | 340 (13.39) | 84.4 (3.32)    | 265 (10.43)   | 217 (8.54)   | 100.2 (3.94) | 33 (72)   | 31 (68)        |
| (0 111.)                | EN1092 PN25, 40                                | 300 (11.81)                               |             |             |                |               |              |              |           |                |
|                         | ASME B16.5 CLASS 150                           | 279 (10.98)                               |             |             |                |               |              |              |           |                |
|                         | JIS 7.5k                                       | 290 (11.42)                               |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 280 (11.02)                               |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D                               | 280 (11.02)                               |             |             |                |               |              |              |           |                |
|                         | AS4087 PN14, 16                                | 280 (11.02)                               |             |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 305 (12.01)                               |             |             |                |               |              |              |           |                |
| DN200                   | EN1092-1 PN10, 16                              | 340 (13.39)                               | 350 (13.78) | 365 (14.37) | 109.8 (4.32)   | 290 (11.42)   | 243 (9.57)   | 126.7 (4.99) | 50 (110)  | 48 (106)       |
| (8 in.)                 | EN1092-1 PN25, 40                              | 360 (14.17)                               |             |             |                |               |              |              |           |                |
|                         | ASME B16.5 CLASS 150                           | 345 (13.58)                               |             |             |                |               |              |              |           |                |
|                         | JIS 7.5K                                       | 342 (13.46)                               |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 330 (12.99)                               |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D                               | 335 (13.19)                               |             |             |                |               |              |              |           |                |
|                         | AS4087 PN14, 16                                | 335 (13.19)                               |             |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 370 (14.57)                               |             |             |                |               |              |              |           |                |
| DN250                   | EN1092-1 PN10                                  | 395 (15.55)                               | 450 (17.72) | 389 (15.31) | 136.8 (5.39)   | 313 (12.33)   | 268 (10.55)  | 153.5 (6.04) | 77 (169)  | 75 (165)       |
| (10 in.)                | EN1092-1 PN16                                  | 405 (15.94)                               |             |             |                |               |              |              |           |                |
|                         | EN1092-1 PN25                                  | 425 (16.73)                               |             |             |                |               |              |              |           |                |
|                         | ASME B16.5 CLASS 150                           | 405 (15.94)                               |             |             |                |               |              |              |           |                |
|                         | JIS 7.5K                                       | 400 (15.75)                               |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 400 (15.75)                               |             |             |                |               |              |              |           |                |
|                         | AS2129 TABLE C D                               | 405 (15.94)                               | 1           |             |                |               |              |              |           |                |
|                         | AS4087 PN14, 16                                | 405 (15.94)                               | 1           |             |                |               |              |              |           |                |
|                         | AS4087 PN21                                    | 430 (16.93)                               | 1           |             |                |               |              |              |           |                |
| DN300                   | EN1092-1 PN10                                  | 445 (17.52)                               | 500 (19.69) | 414 (16.30) | 162.2 (6.39)   | 338.6 (13.33) | 294 (1157)   | 203.5 (8.01) | 114 (251) | 112 (247       |
| (12 in.)                | EN1092-1 PN16                                  | 460 (18.11)                               | /           |             |                | (             | /            |              | /         | ,              |
|                         | EN1092-1 PN25                                  | 485 (19.09)                               |             |             |                |               |              |              |           |                |
|                         | ASME B16.5 CLASS 150                           | 485 (19.09)                               |             |             |                |               |              |              |           |                |
|                         |                                                |                                           |             |             |                |               |              |              |           |                |
|                         | IIS 10K                                        | 445 (17 52)                               |             |             |                |               |              |              |           |                |
|                         | JIS 10K                                        | 445 (17.52)<br>455 (17.91)                |             |             |                |               |              |              |           |                |
|                         | JIS 10K<br>AS2129 TABLE C D<br>AS4087 PN14, 16 | 445 (17.52)<br>455 (17.91)<br>455 (17.91) |             |             |                |               |              |              |           |                |

DN40 to 300 (11/2 to 12 in. NB) (FER) dimensions / weights

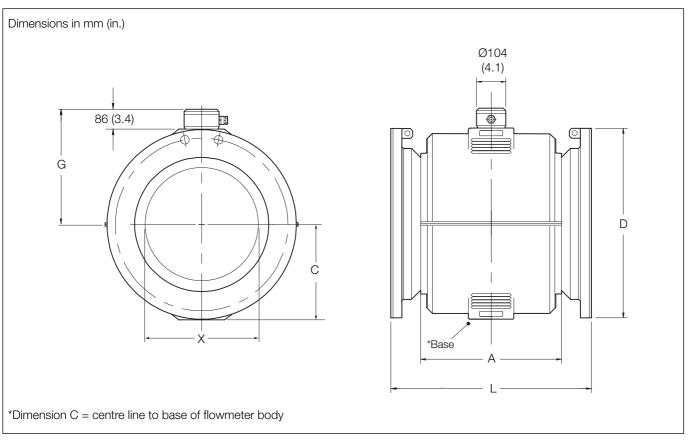
# FER - DN350 to 600 (14 to 24 in. NB) remote sensor




DN350 to 600 (14 to 24 in. NB) (FER) remote sensor

|                |                         |                            |             |             | Dimensions    | in mm (in.)  |             |             |             | Approx. weight in kg (lb) |
|----------------|-------------------------|----------------------------|-------------|-------------|---------------|--------------|-------------|-------------|-------------|---------------------------|
| DN             | Process connection type | D                          | L           | F           | С             | E            | G           | Α           | X           | Remote                    |
| DN350 (14 in.) | EN1092-1 PN10           | 505 (19.88)                | 550 (21.65) | 472 (18.58) | 231 (9.09)    | 402 (15.83)  | 325 (12.80) | 376 (14.80) | 340 (13.39) | 100 (220)                 |
|                | EN1092-1 PN16           | 520 (20.47)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN25           | 555 (21.85)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN40           | 580 (22.83)                |             |             |               |              |             |             |             |                           |
|                | JIS 5K                  | 480 (18.90)                |             |             |               |              |             |             |             |                           |
|                | JIS 10K                 | 490 (19.29)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE C D E      | 525 (20.67)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE F          | 550 (21.65)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN14, PN16       | 525 (20.67)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN21             | 550 (21.65)                |             |             |               |              |             |             |             |                           |
| DN400 (16 in.) | EN1092-1 PN10           | 565 (22.24)                | 600 (23.62) | 502 (19.76) | 257.5 (10.14) | 432 (17.01)  | 355 (13.98) | 420 (16.54) | 390 (15.35) | 115 (253)                 |
|                | EN1092-1 PN16           | 580 (22.83)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN25           | 620 (24.41)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN40           | 660 (25.98)                |             |             |               |              |             |             |             |                           |
|                | JIS 5K                  | 540 (21.26)                |             |             |               |              |             |             |             |                           |
|                | JIS 10K                 | 560 (22.05)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE C D E      | 580 (22.83)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE F          | 610 (24.02)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN14, PN16       | 580 (22.83)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN21             | 610 (24.02)                |             |             |               |              |             |             |             |                           |
| DN450 (18 in.) | EN1092-1 PN10           | 615 (24.21)                | 700 (27.56) | 537 (21.14) | 285 (11.22)   | 467 (18.39)  | 390 (15.35) | 480 (18.90) | 440 (17.32) | 160 (352)                 |
|                | EN1092-1 PN16           | 640 (25.20)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN25           | 670 (26.38)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN40           | 685 (26.97)                |             |             |               |              |             |             |             |                           |
|                | JIS 5K                  | 605 (23.82)                |             |             |               |              |             |             |             |                           |
|                | JIS 10K                 | 620 (24.41)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE C D E      | 640 (25.20)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE F          | 675 (26.57)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN14, PN16       | 640 (25.20)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN21             | 675 (26.57)                |             |             |               |              |             |             |             |                           |
| DN500 (20 in.) | EN1092-1 PN10           | 670 (26.38)                | 770 (30.31) | 557 (21.93) | 317.5 (12.50) | 487 (19.17)  | 410 (16.14) | 520 (20.47) | 490 (19.29) | 217 (477)                 |
| . ,            | EN1092-1 PN16           | 715 (28.15)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN25           | 730 (28.74)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN40           | 755 (29.72)                |             |             |               |              |             |             |             |                           |
|                | JIS 5K                  | 655 (25.79)                |             |             |               |              |             |             |             |                           |
|                | JIS 10K                 | 675 (26.57)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE C D E      | 705 (27.76)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE F          | 735 (28.94)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN14, PN16       | 705 (27.76)                |             |             |               |              |             |             |             |                           |
|                | AS4087 PN21             | 735 (28.94)                |             |             |               |              |             |             |             |                           |
| DN600 (24 in.) | EN1092-1 PN10           | 780 (30.71)                | 920 (36.22) | 602 (23.70) | 345 (13.58)   | 532 (20.94)  | 455 (17.91) | 610 (24.02) | 591 (23.27) | 315 (693)                 |
|                | EN1092-1 PN16           | 840 (33.07)                | 320 (30.22) |             | 0.0 (10.00)   | 302 (20.0-4) |             | 5.0 (27.02) |             | 0.000                     |
|                | EN1092-1 PN25           | 845 (33.27)                |             |             |               |              |             |             |             |                           |
|                | EN1092-1 PN40           | 890 (35.04)                |             |             |               |              |             |             |             |                           |
|                | JIS 5K                  | 770 (30.31)                |             |             |               |              |             |             |             |                           |
|                | JIS 10K                 | 795 (31.30)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE C D E      | 825 (32.48)                |             |             |               |              |             |             |             |                           |
|                | AS2129 TABLE C D E      |                            |             |             |               |              |             |             |             |                           |
|                |                         | 850 (33.46)<br>825 (32.48) |             |             |               |              |             |             |             |                           |
|                | AS4087 PN14, PN16       |                            |             |             |               |              |             |             |             |                           |
|                | AS4087 PN21             | 850 (33.46)                |             |             |               |              |             |             |             |                           |

DN350 to 600 (14 to 24 in. NB) (FER) remote sensor dimensions / weights


# FEF - DN250 to 600 (10 to 24 in. NB)



DN250 to 600 (10 to 24 in. NB) (FEF)

|                   |                                             |             | 1           |                |              |             |             |                           |
|-------------------|---------------------------------------------|-------------|-------------|----------------|--------------|-------------|-------------|---------------------------|
| DN                | Process connection type                     | D           | L           | с              | G            | А           | X           | Approx. weight in kg (lb) |
| DN250             | ASME B16.5 CLASS 150                        | 405 (15.94) | 450 (17.72) | 215 (8.46)     | 301 (11.85)  | 300 (11.81) | 250 (9.84)  | 88 (194)                  |
| (10 in.)          | ASME B16.5 CLASS 300                        | 445 (17.52) | 490 (19.29) |                |              |             |             |                           |
| Ī                 | EN1092 -1 PN10                              | 395 (15.55) | 450 (17.72) |                |              |             |             |                           |
| Ī                 | EN1092 – 1 PN16                             | 405 (15.94) |             |                |              |             |             |                           |
| Ī                 | EN1092 – 1 PN25                             | 425 (16.73) | 490 (19.29) |                |              |             |             |                           |
|                   | EN1092 – 1 PN40                             | 450 (17.72) |             |                |              |             |             |                           |
|                   | JIS 5K                                      | 385 (15.16) | 450 (17.72) | -              |              |             |             |                           |
| t                 | JIS 10K                                     | 400 (15.75) | -           |                |              |             |             |                           |
| ł                 | AS4087 PN14, PN16                           | 405 (15.94) | -           |                |              |             |             |                           |
| t                 | AS2129 TABLE C D                            | 1           |             |                |              |             |             |                           |
| ŀ                 | AS2129 TABLE E                              | 1           |             |                |              |             |             |                           |
| ł                 | AS4087 PN21                                 | 430 (16.93) | -           |                |              |             |             |                           |
| ł                 | AS2129 TABLE F                              |             |             |                |              |             |             |                           |
| DN300             | ASME B16.5 CLASS 150                        | 485 (19.09) | 500 (19.69) | 231 (9.09)     | 317 (12.48)  | 352 (13.86) | 300 (11.81) | 128 (282)                 |
| (12 in.)          | ASME B16.5 CLASS 300                        | 520 (20.47) | 540 (21.26) |                | - ( - /      |             |             |                           |
| ŀ                 | EN1092 - 1 PN10                             | 445 (17.52) | 500 (19.69) | -              |              |             |             |                           |
| ł                 | EN1092 - 1 PN16                             | 460 (18.11) | 500 (19.69) | -              |              |             |             |                           |
| ŀ                 | EN1092 – 1 PN25                             | 485 (19.09) | 540 (21.26) | -              |              |             |             |                           |
| ŀ                 | EN1092 - 1 PN40                             | 515 (20.28) | 540 (21.26) | -              |              |             |             |                           |
| ŀ                 | JIS 5K                                      | 430 (16.93) | 500 (19.69) | -              |              |             |             |                           |
| ŀ                 | JIS 10K                                     | 445 (17.52) | 500 (19.69) | -              |              |             |             |                           |
| ŀ                 |                                             |             | . ,         | -              |              |             |             |                           |
| -                 | AS4087 PN14, PN16<br>AS2129 TABLE TABLE C D | 455 (17.91) | 500 (19.69) | -              |              |             |             |                           |
| -                 |                                             | 455 (17.91) | 500 (19.69) | -              |              |             |             |                           |
| -                 | AS2129 TABLE E                              | 455 (17.91) | 500 (19.69) | -              |              |             |             |                           |
| -                 | AS4087 PN21<br>AS2129 TABLE F               | 490 (19.29) | 500 (19.69) | -              |              |             |             |                           |
| DUIDED            |                                             | 490 (19.29) | 500 (19.69) | 057.5 (10.1.1) | 0.40 (10.00) | 070 (11.00) | 050 (10 70) | 100 (000)                 |
| DN350<br>(14 in.) | ASME B16.5 CLASS 150                        | 535 (21.06) | 550 (21.65) | 257.5 (10.14)  | 346 (13.62)  | 376 (14.80) | 350 (13.78) | 100 (220)                 |
| ()                | ASME B16.5 CLASS 300                        | 585 (23.03) | 570 (22.44) | -              |              |             |             |                           |
|                   | EN1092 - 1 PN10                             | 505 (19.88) | 550 (21.65) | -              |              |             |             |                           |
|                   | EN1092 – 1 PN16                             | 520 (20.47) | 550 (21.65) | -              |              |             |             |                           |
|                   | EN1092 – 1 PN25                             | 555 (21.85) | 570 (22.44) | -              |              |             |             |                           |
|                   | EN1092 – 1 PN40                             | 580 (22.83) | 570 (22.44) | _              |              |             |             |                           |
|                   | JIS 5K                                      | 480 (18.90) | 550 (21.65) |                |              |             |             |                           |
|                   | JIS 7.5K                                    | 530 (20.87) | 550 (21.65) |                |              |             |             |                           |
|                   | JIS 10K                                     | 490 (19.29) | 550 (21.65) |                |              |             |             |                           |
|                   | AS4087 PN14, PN16                           | 525 (20.67) | 550 (21.65) |                |              |             |             |                           |
|                   | AS2129 TABLE C D E                          | 525 (20.67) | 550 (21.65) |                |              |             |             |                           |
|                   | AS4087 PN21                                 | 550 (21.65) | 550 (21.65) |                |              |             |             |                           |
| [                 | AS2129 TABLE F                              | 550 (21.65) | 550 (21.65) |                |              |             |             |                           |
| [                 | AS4087 PN35                                 | 550 (21.65) | 570 (22.44) |                |              |             |             |                           |
|                   | AS2129 TABLE H                              | 550 (21.65) | 570 (22.44) |                |              |             |             |                           |
| DN375             | AS4087 PN14, PN16                           | 550 (21.65) | 550 (21.65) | 257.5 (10.14)  | 346 (13.62)  | 376 (14.80) | 350 (13.78) | 115 (253)                 |
| (15 in.)          | AS2129 TABLE C                              | 550 (21.65) | 550 (21.65) | ]              |              |             |             |                           |
| ŀ                 | AS4087 PN35                                 | 580 (22.83) | 570 (22.44) | 1              |              |             |             |                           |
| DN400             | ASME B16.5 CLASS 150                        | 600 (23.62) | 600 (23.62) | 285 (11.22)    | 371 (14.61)  | 420 (16.54) | 400 (15.75) | 115 (253)                 |
| (16 in.)          | ASME B16.5 CLASS 300                        | 650 (25.59) | 620 (24.41) |                |              |             |             |                           |
| t                 | EN1092 – 1 PN10                             | 565 (22.24) | 600 (23.62) | -              |              |             |             |                           |
| t                 | EN1092 – 1 PN16                             | 580 (22.83) | 600 (23.62) | -              |              |             |             |                           |
| ŀ                 | EN1092 - 1 PN25                             | 620 (24.41) | 620 (24.41) | 1              |              |             |             |                           |
| -                 | EN1092 - 1 PN40                             | 660 (25.98) | 620 (24.41) | 1              |              |             |             |                           |
|                   | JIS 5K                                      | 540 (21.26) | 600 (23.62) | 1              |              |             |             |                           |
| ł                 | JIS 7.5K                                    | 582 (22.91) | 600 (23.62) | 1              |              |             |             |                           |
| ŀ                 | JIS 10K                                     | 560 (22.05) | 600 (23.62) | 1              |              |             |             |                           |
| ŀ                 | AS4087 PN14, PN16                           | 580 (22.83) | 600 (23.62) | 1              |              |             |             |                           |
| ŀ                 | AS2129 TABLE C D E                          | 580 (22.83) | 600 (23.62) | -              |              |             |             |                           |
| ł                 | AS4087 PN21                                 | 610 (24.02) | 600 (23.62) | -              |              |             |             |                           |
| ŀ                 | AS2129 TABLE F                              | 610 (24.02) | 600 (23.62) | -              |              |             |             |                           |
| ŀ                 | AS2129 TABLE F<br>AS4087 PN35               | 610 (24.02) | 620 (23.62) | -              |              |             |             |                           |
| ŀ                 | AS2129 TABLE H                              |             |             | -              |              |             |             |                           |
|                   | AUZ 129 IADLE TI                            | 610 (24.02) | 620 (24.41) |                |              |             |             |                           |

DN250 to 600 (10 to 24 in. NB) (FEF) dimensions / weights



<sup>...</sup>DN250 to 600 (10 to 24 in. NB) (FEF)

|          |                         |             | Dim         | ensions in mm (in | .)          |             |             |                           |
|----------|-------------------------|-------------|-------------|-------------------|-------------|-------------|-------------|---------------------------|
| DN       | Process connection type | D           | L           | С                 | G           | Α           | x           | Approx. weight in kg (lb) |
| DN450    | ASME B16.5 CLASS 150    | 635 (25.00) | 700 (27.56) | 317.5 (12.50)     | 402 (15.83) | 480 (18.90) | 450 (17.72) | 160 (352)                 |
| (18 in.) | ASME B16.5 CLASS 300    | 710 (27.95) | 1           |                   |             |             |             |                           |
|          | EN1092 – 1 PN10         | 615 (24.21) | 1           |                   |             |             |             |                           |
|          | EN1092 – 1 PN16         | 640 (25.20) | 1           |                   |             |             |             |                           |
|          | EN1092 – 1 PN25         | 670 (26.38) | 1           |                   |             |             |             |                           |
|          | EN1092 – 1 PN40         | 685 (26.97) |             |                   |             |             |             |                           |
|          | JIS 5K                  | 605 (23.82) | 1           |                   |             |             |             |                           |
|          | JIS 7.5K                | 652 (25.67) | 1           |                   |             |             |             |                           |
|          | JIS 10K                 | 620 (24.41) | 1           |                   |             |             |             |                           |
|          | AS4087 PN14, PN16       | 640 (25.20) | 1           |                   |             |             |             |                           |
|          | AS2129 TABLE C D        | 640 (25.20) | 1           |                   |             |             |             |                           |
|          | AS2129 TABLE E          | 640 (25.20) |             |                   |             |             |             |                           |
|          | AS4087 PN21             | 675 (26.57) | 1           |                   |             |             |             |                           |
| ļ        | AS2129 TABLE F          | 675 (26.57) | 1           |                   |             |             |             |                           |
| 1        | AS4087 PN35             | 675 (26.57) | 1           |                   |             |             |             |                           |
|          | AS2129 TABLE H          | 675 (26.57) | 1           |                   |             |             |             |                           |
| DN500    | ASME B16.5 CLASS 150    | 700 (27.56) | 770 (30.31) | 345 (13.58)       | 429 (16.89) | 520 (20.47) | 500 (19.69) | 217 (455)                 |
| (20 in.) | ASME B16.5 CLASS 300    | 775 (30.51) |             |                   |             |             |             |                           |
|          | EN1092 - 1 PN10         | 670 (26.38) | 1           |                   |             |             |             |                           |
|          | EN1092 - 1 PN16         | 715 (28.15) | 1           |                   |             |             |             |                           |
|          | EN1092 - 1 PN25         | 730 (28.74) | 1           |                   |             |             |             |                           |
|          | EN1092 - 1 PN40         | 755 (29.72) | 1           |                   |             |             |             |                           |
|          | JIS 5K                  | 655 (25.79) | 1           |                   |             |             |             |                           |
|          | JIS 7.5K                | 706 (27.80) | 1           |                   |             |             |             |                           |
|          | JIS 10K                 | 675 (26.57) | 1           |                   |             |             |             |                           |
|          | AS4087 PN 14, PN16      | 705 (27.76) | 1           |                   |             |             |             |                           |
|          | AS2129 TABLE C D E      | 705 (27.76) | 1           |                   |             |             |             |                           |
|          | AS4087 PN21             | 735 (28.94) | 1           |                   |             |             |             |                           |
|          | AS2129 TABLE F          | 735 (28.94) | 1           |                   |             |             |             |                           |
|          | AS4087 PN35             | 735 (28.94) | 1           |                   |             |             |             |                           |
| ľ        | AS2129 TABLE H          | 735 (28.94) | 1           |                   |             |             |             |                           |
| DN600    | ASME B16.5 CLASS 150    | 815 (32.09) | 920 (36.22) | 387.5 (15.25)     | 472 (18.58) | 610 (24.02) | 600 (23.62) | 315 (693)                 |
| (24 in.) | ASME B16.5 CLASS 300    | 915 (36.02) | 1           |                   |             |             |             |                           |
|          | EN1092 – 1 PN10         | 780 (30.71) | 1           |                   |             |             |             |                           |
|          | EN1092 - 1 PN16         | 840 (33.07) | 1           |                   |             |             |             |                           |
|          | EN1092 - 1 PN25         | 845 (33.27) | 1           |                   |             |             |             |                           |
|          | EN1092 - 1 PN40         | 890 (35.04) | 1           |                   |             |             |             |                           |
|          | JIS 5K                  | 770 (30.31) | 1           |                   |             |             |             |                           |
|          | JIS 7.5K                | 810 (31.89) | 1           |                   |             |             |             |                           |
| ŀ        | JIS 10K                 | 795 (31.30) | 1           |                   |             |             |             |                           |
| ŀ        | AS4087 PN14, PN16       | 825 (32.48) | 1           |                   |             |             |             |                           |
|          | AS2129 TABLE C D        | 825 (32.48) | 1           |                   |             |             |             |                           |
| ł        | AS2129 TABLE E          | 825 (32.48) | 1           |                   |             |             |             |                           |
| -        | AS4087 PN21             | 850 (33.46) | 1           |                   |             |             |             |                           |
| -        | AS2129 TABLE F          | 850 (33.46) | 1           |                   |             |             |             |                           |
| ŀ        | AS4087 PN35             | 850 (33.46) | 1           |                   |             |             |             |                           |
| -        | AS2129 TABLE H          | 850 (33.46) | 1           |                   |             |             |             |                           |

...DN250 to 600 (10 to 24 in. NB) (FEF) dimensions / weights

# Ordering information

# Electromagnetic flowmeter WaterMaster – FEW11, FEW12 and FEW18

| Filowmeter system – full bore,<br>htegral mount (DN10 to DN32 only)<br>Filowmeter system – full bore, remote mount<br>full bore sensor only – for use with WaterMaster<br>ransmitter / remote<br>Design<br>Non-hazardous areas<br>Hazardous areas<br>Hazardous areas<br>Bore diameter<br>DN10 ( <sup>4</sup> / <sub>8</sub> in.)<br>DN15 ( <sup>1</sup> / <sub>2</sub> in.) | FEW11<br>FEW12<br>FEW18 | <b>X</b><br>1<br>5 | xxx                             | x | x      | x | x                | xx                         | x           | x      | x                | x   |   | x                                              | x                | x | x | x   | x        |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|---------------------------------|---|--------|---|------------------|----------------------------|-------------|--------|------------------|-----|---|------------------------------------------------|------------------|---|---|-----|----------|---|
| ull bore sensor only – for use with WaterMaster<br>ransmitter / remote<br>Design<br>Non-hazardous areas<br>Hazardous areas<br>Bore diameter<br>DN10 ( <sup>2</sup> /a in.)<br>DN15 ( <sup>1</sup> / <sub>2</sub> in.)                                                                                                                                                       |                         | 1                  | XXX                             | x | x      | x | x                | хх                         | x           | x      | x                | v   |   |                                                | ¥                | x | x | v   |          |   |
| ransmitter / remote<br>Design<br>Non-hazardous areas<br>Hazardous areas<br>Bore diameter<br>DN10 ( <sup>2</sup> /s in.)<br>DN15 ( <sup>1</sup> /z in.)                                                                                                                                                                                                                      | FEW18                   |                    |                                 |   |        |   |                  |                            |             |        |                  | · ^ | X |                                                | ~                | ~ | 1 | · ∧ | <b>^</b> | X |
| Non-hazardous areas<br>Hazardous areas<br>Bore diameter<br>DN10 ( <sup>2</sup> /s in.)<br>DN15 ( <sup>1</sup> / <sub>2</sub> in.)                                                                                                                                                                                                                                           |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Hazardous areas<br>Bore diameter<br>DN10 ( <sup>2</sup> /e in.)<br>DN15 ( <sup>1</sup> /2 in.)                                                                                                                                                                                                                                                                              |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| <b>3ore diameter</b><br>DN10 ( <sup>2</sup> /s in.)<br>DN15 ( <sup>1</sup> / <sub>2</sub> in.)                                                                                                                                                                                                                                                                              |                         | 5                  |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| DN10 ( <sup>6</sup> /s in.)<br>DN15 ( <sup>1</sup> / <sub>2</sub> in.)                                                                                                                                                                                                                                                                                                      |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| DN15 (1/2 in.)                                                                                                                                                                                                                                                                                                                                                              |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| DN20 ( <sup>2</sup> /4 in.)<br>DN25 (1 in.)<br>DN32 (1 <sup>1</sup> /4 in.)                                                                                                                                                                                                                                                                                                 |                         |                    | 010<br>015<br>020<br>025<br>032 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| iner material                                                                                                                                                                                                                                                                                                                                                               |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| PTFE – DN10 to 32 ( <sup>3</sup> /8 to 1 <sup>1</sup> /4 in. NB)                                                                                                                                                                                                                                                                                                            |                         |                    |                                 | А |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Electrode design                                                                                                                                                                                                                                                                                                                                                            |                         |                    |                                 | ~ |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Standard<br>Other                                                                                                                                                                                                                                                                                                                                                           |                         |                    |                                 |   | 1<br>9 |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Aeasuring electrodes material                                                                                                                                                                                                                                                                                                                                               |                         |                    |                                 |   | Ŭ      |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Hastelloy® C-4 (2.4610)                                                                                                                                                                                                                                                                                                                                                     |                         |                    |                                 |   |        | D |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Grounding accessories                                                                                                                                                                                                                                                                                                                                                       |                         |                    |                                 |   |        |   | 1                |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Not required<br>One potential equalizing ring (stainless steel)<br>Two potential equalizing rings (stainless steel)<br>Other                                                                                                                                                                                                                                                |                         |                    |                                 |   |        |   | 0<br>3<br>4<br>9 |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Process connection type (refer to pages 21 and 20)                                                                                                                                                                                                                                                                                                                          |                         |                    |                                 |   |        |   |                  | J                          |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| ASME B16.5 B class 150<br>ASME B16.5 B class 300<br>ISO / EN PN40<br>DIN PN40<br>Other                                                                                                                                                                                                                                                                                      |                         |                    |                                 |   |        |   |                  | A1<br>A3<br>S4<br>D4<br>Z9 |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Process connection material                                                                                                                                                                                                                                                                                                                                                 |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Carbon steel flanges – DN20 to 32 $(^3/_4$ to $1^1/_4$ in. NB) Stainless steel flange 1.4571 (316 Ti) – DN10 to 15 $(^3/_6$ to $^1/_2$ in. NB) Other                                                                                                                                                                                                                        |                         |                    |                                 |   |        |   |                  |                            | B<br>D<br>Z |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Jsage certifications                                                                                                                                                                                                                                                                                                                                                        |                         |                    |                                 |   |        |   |                  |                            |             | J      |                  |     |   |                                                |                  |   |   |     |          |   |
| Standard (without PED)<br>Other                                                                                                                                                                                                                                                                                                                                             |                         |                    |                                 |   |        |   |                  |                            |             | 1<br>9 |                  |     |   |                                                |                  |   |   |     |          |   |
| Calibration type                                                                                                                                                                                                                                                                                                                                                            |                         |                    |                                 |   |        |   |                  |                            |             |        | 1                |     |   |                                                |                  |   |   |     |          |   |
| Class 2 calibration – standard accuracy 0.4 %<br>Class 1 calibration – high accuracy 0.2 %<br>Extended range, class 1 calibration – high accuracy 0.2 %<br>Extended range, class 2 calibration – standard accuracy 0.4 %                                                                                                                                                    |                         |                    |                                 |   |        |   |                  |                            |             |        | A<br>B<br>N<br>P |     |   |                                                |                  |   |   |     |          |   |
| emperature range installation / ambient temperature range                                                                                                                                                                                                                                                                                                                   |                         |                    |                                 |   |        |   |                  |                            |             |        |                  | J   |   |                                                |                  |   |   |     |          |   |
| Standard design / -20 60 °C (-4 140 °F)                                                                                                                                                                                                                                                                                                                                     |                         |                    |                                 |   |        |   |                  |                            |             |        |                  | 1   |   |                                                |                  |   |   |     |          |   |
| lameplate                                                                                                                                                                                                                                                                                                                                                                   |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     | - |                                                |                  |   |   |     |          |   |
| Adhesive                                                                                                                                                                                                                                                                                                                                                                    |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     | А |                                                |                  |   |   |     |          |   |
| ignal cable length and type                                                                                                                                                                                                                                                                                                                                                 |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| Without signal cable<br>5 m (15 ft.) cable<br>10 m (30 ft.) cable<br>20 m (60 ft.) cable<br>30 m (100 ft.) cable<br>50 m (165 ft.) cable<br>80 m (260 ft.) cable<br>100 m (325 ft.) cable<br>150 m (490 ft.) cable<br>Special length or cable type                                                                                                                          |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                  |   |   |     |          |   |
| Explosion protection certification                                                                                                                                                                                                                                                                                                                                          |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                |                  |   |   |     |          |   |
| General purpose (non-Ex design)<br>FM Class 1 Div. 2<br>usFMc Class 1 Div. 2<br>ATEX / IECEx Zone 2, 21 & 22                                                                                                                                                                                                                                                                |                         |                    |                                 |   |        |   |                  |                            |             |        |                  |     |   |                                                | A<br>G<br>P<br>M |   |   |     |          |   |

|                                                                                             |                                                                                       | t coding field numb                                                | per 1 5                          | 6              | 7 9                      | 10 | 11 | 12 | 13 | 14, 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23     | 24                    | 25                    | 26               | 27     | • |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------|--------------------------|----|----|----|----|--------|----|----|----|----|----|----|----|--------|-----------------------|-----------------------|------------------|--------|---|
| Flowmeter system – f<br>ntegral mount (DN10                                                 |                                                                                       |                                                                    | FEW11                            |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Flowmeter system – f                                                                        | full bore, remote mount                                                               |                                                                    | FEW12                            | х              | XXX                      | х  | X  | х  | х  | ХХ     | x  | х  | x  | x  | x  | х  | x  | x      | x                     | х                     | х                | х      |   |
| Full bore sensor only<br>transmitter / remote                                               | - for use with WaterMas                                                               | ter                                                                | FEW18                            |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Protection class trans                                                                      | smitter / protection class                                                            | sensor                                                             |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
|                                                                                             | P67 (NEMA 4X) – cable not<br>P67 (NEMA 4X) – cable fitte                              |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    | 1<br>7 |                       |                       |                  |        |   |
| Cable conduits*                                                                             |                                                                                       |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        | ,                     |                       |                  |        |   |
| M20 SWA (armored                                                                            | l when cable not fitted)<br>d)<br>M20 x 1.5 (plastic) power /                         | output                                                             |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        | A<br>B<br>D<br>F<br>Y |                       |                  |        |   |
| Power supply                                                                                |                                                                                       |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Without<br>100 230 V AC, 50<br>24 V AC or 24 V DO<br>100 230 V AC, 60<br>24 V AC or 24 V DO | C, 50 Hz<br>) Hz                                                                      |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       | 0<br>1<br>2<br>3<br>4 |                  |        |   |
| Input and output sigr                                                                       | al type                                                                               |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       | ,                |        |   |
| PROFIBUS DP RS4                                                                             | ulse + contact output<br>185 physical layer + pulse +<br>185 physical layer + pulse - | - contact output (gen<br>- contact output (gen                     | ieral-purpos<br>ieral-purpos     | e de:<br>e de: | sign only)<br>sign only; | )  |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       | A<br>G<br>M<br>Y |        |   |
| Configuration type / o                                                                      | diagnostics type                                                                      |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  | J      |   |
| Not required<br>Factory default/ sta                                                        |                                                                                       |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  | 0<br>1 |   |
| Options**                                                                                   |                                                                                       |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Accessories                                                                                 |                                                                                       |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Configuration lead                                                                          |                                                                                       |                                                                    | AC                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Documentation la                                                                            | nguago                                                                                |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Documentation la                                                                            |                                                                                       | Chinese                                                            | MC                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Italian<br>Spanish<br>French                                                                | M1<br>M2<br>M3<br>M4<br>M5 (default)                                                  | Chinese<br>Swedish<br>Finnish<br>Portuguese<br>Danish<br>Norwegian | M6<br>M7<br>M8<br>MA<br>MF<br>MN |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Verification type                                                                           |                                                                                       |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| Without fingerprint                                                                         |                                                                                       |                                                                    | V0                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| VeriMaster<br>Potable water app                                                             | proval                                                                                |                                                                    | V3                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| WRAS cold water a Without                                                                   | pproval                                                                               |                                                                    | CWA<br>CWY                       |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
|                                                                                             | uency (FEW 18 only)                                                                   |                                                                    |                                  |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| 50 Hz<br>60 Hz                                                                              |                                                                                       |                                                                    | F5<br>F6                         |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
|                                                                                             | nts (FEW 10 to 32 only)                                                               |                                                                    | ΓU                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
|                                                                                             |                                                                                       |                                                                    | T1                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |
| 1 Point<br>3 Points                                                                         |                                                                                       |                                                                    | T3                               |                |                          |    |    |    |    |        |    |    |    |    |    |    |    |        |                       |                       |                  |        |   |

\*\* Add codes for options.

# Electromagnetic flowmeter WaterMaster FEV11, FEV12 and FEV18

| Product coding field num                                                                                                                                                                                                                                                                                                                                                                                                                                                          | per 1 5 | 6      | 7 9                                                  | 10 | 11 | 12          | 13          | 14, 15                                                                     | 16 | 17 | 18               | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|------------------------------------------------------|----|----|-------------|-------------|----------------------------------------------------------------------------|----|----|------------------|----|----|----|----|----|----|----|----|----|
| Flowmeter system, optimized full bore, integral mount                                                                                                                                                                                                                                                                                                                                                                                                                             | FEV11   |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Flowmeter system, optimized full bore, remote mount                                                                                                                                                                                                                                                                                                                                                                                                                               | FEV12   | х      | xxx                                                  | x  | x  | x           | x           | xx                                                                         | x  | x  | x                | x  | x  | x  | x  | x  | x  | x  | x  | x  |
| Optimized full bore sensor only, for use with WaterMaster transmitter / remote                                                                                                                                                                                                                                                                                                                                                                                                    | FEV18   |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Non-hazardous areas<br>Hazardous areas                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1<br>5 |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Bore diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| DN40 (1 <sup>1</sup> / <sub>2</sub> in.)<br>DN50 (2 in.)<br>DN65 (2 <sup>1</sup> / <sub>2</sub> in.)<br>DN80 (3 in.)<br>DN100 (4 in.)<br>DN150 (5 in.)<br>DN150 (6 in.)<br>DN150 (6 in.)                                                                                                                                                                                                                                                                                          |         |        | 040<br>050<br>065<br>080<br>100<br>125<br>150<br>200 |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Liner material                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Polypropylene - DN40 to 200 (11/2 to 8 in. NB)                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |                                                      | V  |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Electrode design                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |                                                      |    | -  |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |                                                      |    | 1  |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Measuring electrodes material                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Stainless steel 316<br>Hastelloy <sup>®</sup> C-22<br>Super-austenitic steel                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |                                                      |    |    | S<br>C<br>U |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Grounding accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |        |                                                      |    |    |             | ]           |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Standard<br>One potential equalizing ring (stainless steel)<br>Two potential equalizing rings (stainless steel)                                                                                                                                                                                                                                                                                                                                                                   |         |        |                                                      |    |    |             | 1<br>3<br>4 |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Process connection type (refer to pages 29 and 28)                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Flanges ASME B16.5 class 150<br>Flanges AS 4087 PN21 (≥ DN50 [2 in. NB])<br>Flanges AS 4087 PN16 (≥ DN50 [2 in. NB])<br>Flanges AS 4087 PN14<br>Flanges AS 2129 Table F<br>Flanges AS 2129 Table E<br>Flanges AS 2129 Table D<br>Flanges AS 2129 Table C<br>Flanges JIS G5527 7.5K ( <sup>3</sup> DN100 [4 in. NB])<br>Flanges JIS B2220 10K<br>ISO/EN PN10<br>ISO / EN PN16 (≥ DN50 [2 in. NB])<br>ISO / EN PN40 (DN40 [1 <sup>1</sup> / <sub>2</sub> in. NB] only) 16 bar rated |         |        |                                                      |    |    |             |             | A1<br>E0<br>E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>J0<br>J1<br>S1<br>S2<br>S4 |    |    |                  |    |    |    |    |    |    |    |    |    |
| Process connection material                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Carbon steel flanges                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |                                                      |    |    |             |             |                                                                            | В  |    |                  |    |    |    |    |    |    |    |    |    |
| Usage certifications                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |        |                                                      |    |    |             |             |                                                                            |    |    |                  |    |    |    |    |    |    |    |    |    |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |        |                                                      |    |    |             |             |                                                                            |    | 1  |                  |    |    |    |    |    |    |    |    |    |
| Calibration type                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |        |                                                      |    |    |             |             |                                                                            |    |    | _                |    |    |    |    |    |    |    |    |    |
| Class 2 Calibration – standard accuracy 0.4 %<br>Class 1 Calibration – high accuracy 0.2 %<br>Extended range, class 1 calibration – high accuracy 0.2 %<br>Extended range, class 2 calibration – standard accuracy 0.4 %                                                                                                                                                                                                                                                          |         |        |                                                      |    |    |             |             |                                                                            |    |    | A<br>B<br>N<br>P |    |    |    |    |    |    |    |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |                                                      |    |    |             |             | ntinued                                                                    |    |    |                  | 1  | 1  |    |    |    | 1  |    |    |    |

| Product cod                                                                                                                                                                                                                                              | ing field number 1 5 | 6 | 7 9 | 10 | 11 | 12 | 13 | 14, 15 | 16 | 17 | 18 | 19 | 20 | 21                                             | 22               | 23          | 24                    | 25                         | 26               | 27     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|-----|----|----|----|----|--------|----|----|----|----|----|------------------------------------------------|------------------|-------------|-----------------------|----------------------------|------------------|--------|
| Flowmeter system, optimized full bore, integral mou                                                                                                                                                                                                      | nt FEV11             |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            |                  |        |
| Flowmeter system, optimized full bore, remote mou                                                                                                                                                                                                        | nt FEV12             | х | xxx | x  | x  | х  | x  | xx     | x  | x  | x  | x  | x  | x                                              | x                | х           | x                     | x                          | х                | х      |
| Optimized full bore sensor only, for use with WaterN transmitter / remote                                                                                                                                                                                | laster FEV18         |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            |                  |        |
| Temperature range installation / ambient temperatu                                                                                                                                                                                                       | re range             |   |     |    |    |    |    |        |    |    |    | •  |    |                                                |                  |             |                       |                            |                  |        |
| Standard design / -20 60 °C (-4 140 °F)                                                                                                                                                                                                                  |                      |   |     |    |    |    |    |        |    |    |    | 1  |    |                                                |                  |             |                       |                            |                  |        |
| Nameplate                                                                                                                                                                                                                                                |                      |   |     |    |    |    |    |        |    |    |    |    | -  |                                                |                  |             |                       |                            |                  |        |
| Adhesive                                                                                                                                                                                                                                                 |                      |   |     |    |    |    |    |        |    |    |    |    | А  |                                                |                  |             |                       |                            |                  |        |
| Signal cable length and type*                                                                                                                                                                                                                            |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            |                  |        |
| Without signal cable<br>5 m (15 ft.) cable<br>20 m (60 ft.) cable<br>20 m (60 ft.) cable<br>30 m (100 ft.) cable<br>50 m (165 ft.) cable<br>80 m (260 ft.) cable<br>100 m (325 ft.) cable<br>150 m (490 ft.) cable<br>Special length > 150 m (> 490 ft.) |                      |   |     |    |    |    |    |        |    |    |    |    |    | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                  |             |                       |                            |                  |        |
| Explosion protection certification                                                                                                                                                                                                                       |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                | J                |             |                       |                            |                  |        |
| General purpose (non-Ex design)<br>FM Class 1 Div. 2<br>usFMc Class 1 Div. 2<br>ATEX / IECEx Zone 2, 21 & 22                                                                                                                                             |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                | A<br>G<br>P<br>M |             |                       |                            |                  |        |
| Protection class transmitter / protection class sense                                                                                                                                                                                                    | or                   |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  | ,           |                       |                            |                  |        |
| IP67 (NEMA 4X) / IP67 (NEMA 4X) – integral<br>IP67 (NEMA 4X) / IP68 (NEMA 6P) – cable not fitted<br>IP67 (NEMA 4X) / IP68 (NEMA 6P) – cable fitted and                                                                                                   |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  | 1<br>2<br>3 |                       |                            |                  |        |
| Cable conduits *                                                                                                                                                                                                                                         |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             | ,                     |                            |                  |        |
| M20 x 1.5 (plastic)<br>NPT <sup>1</sup> / <sub>2</sub> in. (blanked when cable not fitted)<br>M20 SWA (armored)<br>M20 SWA sensor, M20 x 1.5 (plastic) power / outpu<br>Without                                                                          | t                    |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             | A<br>B<br>D<br>F<br>Y |                            |                  |        |
| Power supply                                                                                                                                                                                                                                             |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       | J                          |                  |        |
| Without<br>100 230 V AC, 50 Hz<br>24 V AC or 24 V DC, 50 Hz<br>100 230 V AC, 60 Hz<br>24 V AC or 24 V DC, 60 Hz<br>Others                                                                                                                                |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       | 0<br>1<br>2<br>3<br>4<br>9 |                  |        |
| Input and output signal type                                                                                                                                                                                                                             |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            |                  |        |
| HART + 20 mA + pulse + contact output<br>PROFIBUS DP RS485 physical layer + pulse + cont<br>MODBUS RTU RS485 physical layer + pulse + cont<br>Without                                                                                                    |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            | A<br>G<br>M<br>Y |        |
| Configuration type / diagnostics type                                                                                                                                                                                                                    |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            |                  |        |
| Without<br>Factory defaults / standard diagnostics                                                                                                                                                                                                       |                      |   |     |    |    |    |    |        |    |    |    |    |    |                                                |                  |             |                       |                            |                  | 0<br>1 |

\* The type of signal cable supplied (standard or armored) depends on the type of cable conduit (variant digit number 24) ordered. For FM or FMC Approved versions, NPT only permitted.

|                                                          | Produ                                | uct coding field numb                                              | er 1 5                           | 6 | 7 9 | 10 | 11 | 12 | 13 | 14, 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
|----------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|----------------------------------|---|-----|----|----|----|----|--------|----|----|----|----|----|----|----|----|----|----|----|----|
| lowmeter syster                                          | m, optimized full bore, integ        | ral mount                                                          | FEV11                            |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| lowmeter syster                                          | m, optimized full bore, remo         | te mount                                                           | FEV12                            | x | xxx | x  | x  | x  | x  | xx     | x  | x  | x  | x  | x  | x  | х  | x  | x  | x  | x  | х  |
| Optimized full bo<br>ransmitter / remo                   | re sensor only, for use with ote     | WaterMaster                                                        | FEV18                            | ^ |     | Â  |    | Â  | ^  | ~~     | Ŷ  | ^  | ^  | ^  | ^  | Â  | ^  |    | ^  | Â  | Ŷ  | ^  |
| Options**                                                |                                      |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Accessories                                              |                                      |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Configuration le                                         | ead                                  |                                                                    | AC                               |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Documentatio                                             | on language                          |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| German<br>Italian<br>Spanish<br>French<br>English        | M1<br>M2<br>M3<br>M4<br>M5 (default) | Chinese<br>Swedish<br>Finnish<br>Portuguese<br>Danish<br>Norwegian | M6<br>M7<br>M8<br>MA<br>MF<br>MN |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Other usage c                                            | ertifications                        |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Measuring Inst<br>OIML R49 Calil                         | ruments Directive (MID)<br>bration   |                                                                    | CM1<br>CM2                       |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Verification type                                        | ре                                   |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Without fingerp<br>VeriMaster                            | print                                |                                                                    | V0<br>V3                         |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Potable water                                            | approval                             |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| WRAS cold wa<br>NSF 61 meter a<br>DVGW<br>ACS<br>Without |                                      |                                                                    | CWA<br>CWC<br>CWD<br>CWF<br>CWY  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Power supply                                             | frequency (sensor FEV18 of           | nly)                                                               |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| 50 Hz<br>60 Hz                                           |                                      |                                                                    | F5<br>F6                         |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| Number of tes                                            | stpoints                             |                                                                    |                                  |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |
| 1 Point<br>3 Points                                      |                                      |                                                                    | T1<br>T3                         |   |     |    |    |    |    |        |    |    |    |    |    |    |    |    |    |    |    |    |

# Electromagnetic flowmeter WaterMaster FEF12 and FEF18

| Product coding field number 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6      | 7 9                                                         | 10          | 11 | 12               | 13               | 14, 15                                                                                             | 16 | 17 | 18               | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------|-------------|----|------------------|------------------|----------------------------------------------------------------------------------------------------|----|----|------------------|----|----|----|----|----|----|----|----|----|--|
| Flowmeter system, full bore, remote mount FEF12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | х      | xxx                                                         | x           | x  | х                | х                | хх                                                                                                 | х  | х  | x                | x  | x  | х  | х  | х  | х  | x  | х  | х  |  |
| Full bore sensor only, for use with WaterMaster transmitter / remote FEF18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Non-hazardous areas<br>Hazardous areas (DN≥700 [27 in. NB])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>5 |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Bore diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| DN250 (10 in.)<br>DN300 (12 in.)<br>DN350 (14 in.)<br>DN375 (15 in.)<br>DN400 (16 in.)<br>DN400 (18 in.)<br>DN500 (20 in.)<br>DN500 (24 in.)<br>Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 250<br>300<br>350<br>375<br>400<br>450<br>500<br>600<br>999 |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Liner material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Elastomer – DN250 to 600 (10 to 24 in. NB)<br>Hard rubber – DN250 to 600 (10 to 24 in. NB)<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                             | K<br>H<br>Z |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Electrode design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                             |             | 1  |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                             |             | 1  |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                             |             | 9  | ]                |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Veasuring electrodes material<br>Stainless steel 316<br>Hastelloy <sup>®</sup> C-22<br>Super-austenitic steel (DN250 to 600 [10 to 24 in. NB])<br>Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                             |             |    | S<br>C<br>U<br>Z |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Grounding accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Standard<br>One potential equalizing ring (stainless steel)<br>Two potential equalizing rings (stainless steel)<br>Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                                             |             |    |                  | 1<br>3<br>4<br>9 |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Process connection type (refer to pages 35 to 33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Flanges ASME B16.5 class 150<br>Flanges ASME B16.5 class 300<br>Flanges AWWA C207 class D<br>Flanges AWWA C207 class D<br>Flanges AS 4087 PN16<br>Flanges AS 4087 PN16<br>Flanges AS 2129 Table F<br>Flanges AS 2129 Table E<br>Flanges AS 2129 Table D<br>Flanges AS 2129 Table D<br>Flanges AS 2129 Table H<br>Flanges AS 4087 PN35<br>Flanges JIS 65227 7.5K<br>Flanges JIS 65227 0K<br>Flanges JIS 65220 0K<br>Flanges JIS 62220 10K<br>Flanges JIS 62220 10K<br>Flanges JIS 62220 5K<br>Flanges JIS 0/ EN PN10<br>Flanges ISO / EN PN16<br>Flanges ISO / EN |        |                                                             |             |    |                  |                  | A1<br>A3<br>C2<br>E0<br>E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>E7<br>E8<br>J1<br>J2<br>S3<br>S4<br>Z9 |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Carbon steel flanges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                             |             |    |                  |                  |                                                                                                    | в  |    |                  |    |    |    |    |    |    |    |    |    |  |
| Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                                                             |             |    |                  |                  |                                                                                                    | Z  |    |                  |    |    |    |    |    |    |    |    |    |  |
| Jsage certifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                             |             |    |                  |                  |                                                                                                    |    |    |                  |    |    |    |    |    |    |    |    |    |  |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                                                             |             |    |                  |                  |                                                                                                    |    | 1  |                  |    |    |    |    |    |    |    |    |    |  |
| Calibration type<br>Class 2 calibration – standard accuracy 0.4 %<br>Class 1 calibration – high accuracy 0.2 %<br>Extended range, class 1 calibration – high accuracy 0.2 %<br>Extended range, class 2 calibration – standard accuracy 0.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                             |             |    |                  |                  | Contin                                                                                             |    |    | A<br>B<br>N<br>P |    |    |    |    |    |    |    |    |    |  |

|                                                                                                                                                                                                                      | Product                                                                             | coding field number             | r 1 5                                  | 6 | 7 9 | 10           | 11 | 12 | 13 | 14, 15 | 16 | 17 | 18 | 19       | 20 | 21                                   | 22 | 23 | 24                    | 25                    | 26               | 27     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|---|-----|--------------|----|----|----|--------|----|----|----|----------|----|--------------------------------------|----|----|-----------------------|-----------------------|------------------|--------|
| Flowmeter system, full                                                                                                                                                                                               | bore, remote mount                                                                  |                                 | FEF12                                  | х | xxx | x            | x  | x  | x  | xx     | x  | x  | x  | x        | х  | x                                    | x  | x  | x                     | x                     | x                | х      |
| Full bore sensor only, fo                                                                                                                                                                                            | or use with WaterMaster                                                             | transmitter / remote            | FEF18                                  | ~ |     | <sup>^</sup> |    |    |    | ~~~    |    |    |    | <u>^</u> | ~  |                                      |    |    |                       |                       |                  | ~      |
| Cemperature range insta                                                                                                                                                                                              | allation / ambient temper                                                           | rature range                    |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Standard design / -20                                                                                                                                                                                                | 0 60 °C (–4 140 °F)                                                                 |                                 |                                        |   |     |              |    |    |    |        |    |    |    | 1        |    |                                      |    |    |                       |                       |                  |        |
| lameplate                                                                                                                                                                                                            |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Adhesive                                                                                                                                                                                                             |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          | А  |                                      |    |    |                       |                       |                  |        |
| Signal cable length and<br>Without signal cable<br>5 m (15 ft.) cable<br>10 m (30 ft.) cable<br>20 m (60 ft.) cable<br>30 m (100 ft.) cable<br>50 m (165 ft.) cable<br>80 m (260 ft.) cable<br>100 m (325 ft.) cable | туре                                                                                |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7 |    |    |                       |                       |                  |        |
| 150 m (490 ft.) cable                                                                                                                                                                                                |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    | 8                                    |    |    |                       |                       |                  |        |
|                                                                                                                                                                                                                      | m (> 490 ft.) (and / or arm                                                         | ored cable)                     |                                        |   |     |              |    |    |    |        |    |    |    |          |    | 9                                    | J  |    |                       |                       |                  |        |
| Explosion protection ce                                                                                                                                                                                              |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| General purpose (non                                                                                                                                                                                                 |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      | A  | J  |                       |                       |                  |        |
| IP67 (NEMA 4X) / IP68                                                                                                                                                                                                | hitter / protection class se<br>8 (NEMA 6P) – cable not fit                         | tted and not potted             |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    | 2  |                       |                       |                  |        |
| Cable conduits**                                                                                                                                                                                                     | 8 (NEMA 6P) – cable fitted                                                          | and polled                      |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    | 3  | J                     |                       |                  |        |
| M20 x 1.5 (plastic)<br>NPT <sup>1</sup> /2 in. (blanked w<br>M20 SWA (armored)                                                                                                                                       | vhen cable not fitted)<br>10 x 1.5 (plastic) power / ou                             | utput                           |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    | A<br>B<br>D<br>F<br>Y |                       |                  |        |
| Power supply                                                                                                                                                                                                         |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       | ,                     |                  |        |
| Without<br>100 230 V AC (50 H<br>24 V AC or 24 V DC (<br>100 230 V AC (60 H<br>24 V AC or 24 V DC (6                                                                                                                 | 50 Hz)<br>Hz)                                                                       |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       | 0<br>1<br>2<br>3<br>4 |                  |        |
| Input and output signal                                                                                                                                                                                              |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       | J                |        |
|                                                                                                                                                                                                                      | se + contact output<br>5 physical layer + pulse + c<br>5 physical layer + pulse + c |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       | A<br>G<br>M<br>Y |        |
| Configuration type / dia                                                                                                                                                                                             | gnostics type                                                                       |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Without<br>Factory defaults / star                                                                                                                                                                                   | ndard diagnostics                                                                   |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  | 0<br>1 |
| Options***                                                                                                                                                                                                           |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Accessories                                                                                                                                                                                                          |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Configuration lead                                                                                                                                                                                                   |                                                                                     |                                 | AC                                     |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Documentation lang                                                                                                                                                                                                   | uage                                                                                |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| German M<br>Italian M<br>Spanish M<br>French M<br>English M                                                                                                                                                          | 2<br>3                                                                              | Finnish<br>Portuguese<br>Danish | M6<br>M7<br>M8<br>MA<br>MF<br>MN       |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Verification type                                                                                                                                                                                                    |                                                                                     |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Without fingerprint<br>VeriMaster                                                                                                                                                                                    |                                                                                     |                                 | V0<br>V3                               |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| Potable water appro                                                                                                                                                                                                  | vals                                                                                |                                 |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| WRAS cold water app<br>NSF 61 meter approv<br>DVGW<br>ACS<br>WRAS 60 °C (140 °F)<br>Without                                                                                                                          | al                                                                                  |                                 | CWA<br>CWC<br>CWD<br>CWF<br>CWK<br>CWY |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
|                                                                                                                                                                                                                      | ency (sensor FEF 18 only)                                                           | )                               |                                        |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
| 50 Hz<br>60 Hz                                                                                                                                                                                                       | noy (sensor FEF to ONIY)                                                            |                                 | F5<br>F6                               |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |
|                                                                                                                                                                                                                      |                                                                                     |                                 | -                                      |   |     |              |    |    |    |        |    |    |    |          |    |                                      |    |    |                       |                       |                  |        |

Number of testpoints

1 Point 3 Points

\*Size is dependent on flange specification \*\*The type of signal cable supplied (standard or armored) depends on the type of cable conduit (variant digit number 24) ordered – for FM or FMC Approved versions, NPT only permitted. \*\*\*Add codes for options.

T1 T3

# Electromagnetic flowmeter WaterMaster – FEW31, FEW32 and FEW38

| Product coding fiel<br>Flowmeter system – full bore, integral mount                                                                              | FEW31  | 6      |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   | 26 |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------------|--------|---|--------|--------|----|---|---|---|---|-----|---|---|---|---|---|----|---|
| Flowmeter system – full bore, remote mount                                                                                                       | FEW32  |        |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Full bore sensor only – for use with WaterMaster                                                                                                 | FEW38  | х      | XXX        | х      | × | X      | X      | XX | X | x | X | x | х   | X | × | X | х | х | X  | X |
| transmitter / remote                                                                                                                             | T EW30 |        |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Design                                                                                                                                           |        |        |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Non-hazardous areas<br>Hazardous areas                                                                                                           |        | 1<br>5 |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Bore diameter                                                                                                                                    |        | 0      |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
|                                                                                                                                                  |        |        |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN10 (³/s in.)<br>DN15 (¹/₂ in.)                                                                                                                 |        |        | 010        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN15 (72 in.)<br>DN20 ( <sup>3</sup> /4 in.)                                                                                                     |        |        | 015<br>020 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN25 (1 in.)                                                                                                                                     |        |        | 025        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN32 (1 <sup>1</sup> /4 in.)                                                                                                                     |        |        | 032        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN40 (1 <sup>1</sup> / <sub>2</sub> in.)                                                                                                         |        |        | 040        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN50 (2 in.)<br>DN65 (2 <sup>1</sup> /2 in.)                                                                                                     |        |        | 050<br>065 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN80 (3 in.)                                                                                                                                     |        |        | 080        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN100 (4 in.)                                                                                                                                    |        |        | 100        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN125 (5 in.)                                                                                                                                    |        |        | 125        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN150 (6 in.)                                                                                                                                    |        |        | 150        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN200 (8 in.)<br>DN250 (10 in.)                                                                                                                  |        |        | 200<br>250 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN300 (12 in.)                                                                                                                                   |        |        | 300        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN350 (14 in.)                                                                                                                                   |        |        | 350        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN400 (16 in.)                                                                                                                                   |        |        | 400        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN450 (18 in.)<br>DN500 (20 in.)                                                                                                                 |        |        | 450<br>500 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN600 (24 in.)                                                                                                                                   |        |        | 600        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN700 (28 in.)                                                                                                                                   |        |        | 700        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN750 (29 in.)                                                                                                                                   |        |        | 750        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN760 (30 in.)<br>DN800 (32 in.)                                                                                                                 |        |        | 760<br>800 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN900 (36 in.)                                                                                                                                   |        |        | 900        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1000 (40 in.)                                                                                                                                  |        |        | 001        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1050 (42 in.)                                                                                                                                  |        |        | 051        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1100 (44 in.)                                                                                                                                  |        |        | 101        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1200 (48 in.)<br>DN1350 (54 in.)                                                                                                               |        |        | 201<br>351 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1400 (56 in.)                                                                                                                                  |        |        | 401        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1500 (60 in.)                                                                                                                                  |        |        | 501        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1600 (64 in.)                                                                                                                                  |        |        | 601        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1650 (66 in.)<br>DN1800 (72 in.)                                                                                                               |        |        | 651<br>801 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN1950 (78 in.)                                                                                                                                  |        |        | 951        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN2000 (80 in.)                                                                                                                                  |        |        | 002        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN2100 (84 in.)                                                                                                                                  |        |        | 102        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| DN2200 (88 in.)<br>DN2400 (96 in.)                                                                                                               |        |        | 202<br>402 |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Others                                                                                                                                           |        |        | 999        |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Liner material                                                                                                                                   |        |        |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| PTFE – DN10 to 600 (3/8 to 24 in. NB)                                                                                                            |        |        |            | А      | I |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Hard rubber – DN40 to 2400 (1 <sup>1</sup> / <sub>2</sub> to 96 in. NB)<br>Elastomer – DN40 to 2400 (1 <sup>1</sup> / <sub>2</sub> to 96 in. NB) |        |        |            | H<br>K |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Elastoniei – Divido to 2400 (172 to 96 int. NB)<br>Electrode design                                                                              |        |        |            | IX.    |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Standard                                                                                                                                         |        |        |            |        | 1 |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Other                                                                                                                                            |        |        |            |        | 9 |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Measuring electrodes material                                                                                                                    |        |        |            |        |   |        |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Hastelloy <sup>®</sup> C-4 (2.4610)                                                                                                              |        |        |            |        |   | D      |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Stainless steel 316Ti/316L<br>Hastelloy C-22                                                                                                     |        |        |            |        |   | S<br>C |        |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Grounding accessories                                                                                                                            |        | _      |            |        |   | -      | J      |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Not required                                                                                                                                     |        |        |            |        |   |        | 0      |    |   |   |   |   |     |   |   |   |   |   |    |   |
| Standard                                                                                                                                         |        |        |            |        |   |        | 1      |    |   |   |   |   |     |   |   |   |   |   |    |   |
| One potential equalizing ring (stainless steel)<br>Two potential equalizing rings (stainless steel)                                              |        |        |            |        |   |        | 3<br>4 |    |   |   |   |   |     |   |   |   |   |   |    |   |
| iwo potentiai equalizing nings (stainless steel)                                                                                                 |        |        |            |        |   |        | 4      |    |   | 1 | 1 |   | i i |   | 1 |   |   | 1 | 1  |   |

| Product coding field num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | per 1 5 | 6 | 7 9 | 10 | 11 | 12 | 13 | 14, 15                                                                                 | 16     | 17 | 18     | 19   | 20   | 21                                             | 22               | 23 | 24 | 25 | 26 | 27 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-----|----|----|----|----|----------------------------------------------------------------------------------------|--------|----|--------|------|------|------------------------------------------------|------------------|----|----|----|----|----|
| Flowmeter system – full bore, integral mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FEW31   |   |     |    |    |    |    |                                                                                        |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| Flowmeter system – full bore, remote mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FEW32   | x | xxx | x  | x  | x  | x  | xx                                                                                     | x      | x  | x      | x    | x    | x                                              | x                | x  | x  | x  | x  | x  |
| Full bore sensor only – for use with WaterMaster transmitter / remote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FEW38   |   |     |    |    | Â  | Î  |                                                                                        |        | Â  |        |      |      | Â                                              | Â                | Â  |    |    | Â  |    |
| Process connection type (refer to pages 21 to 26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |   |     |    |    |    |    | 1                                                                                      |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| Flanges ASME B16.47 series B / B16.5 Class 150<br>Flanges ASME B16.47 series B / B16.5 Class 300<br>Flanges ASME B16.47 series A Class 150<br>Flanges ASME B16.47 series A Class 300<br>Flanges AWWA C207 Class B<br>Flanges AWWA C207 Class B<br>Flanges AWWA C207 Class E<br>Flanges JS 10K<br>Flanges JS 10K<br>Flanges JS 5K<br>Flanges AS 4087 PN 16<br>Flanges AS 2129 Table E<br>Flanges AS 2129 Table D<br>Flanges AS 2129 Table D<br>Flanges AS 4087 PN 35<br>ISO 7005, DIN, EN 1092-1 PN6<br>ISO 7005, DIN, EN 1092-1 PN16<br>ISO 7005, DIN, EN 1092-1 PN16<br>ISO 7005, DIN, EN 1092-1 PN25<br>ISO 7005, DIN, EN 1092-1 PN25<br>ISO 7005, DIN, EN 1092-1 PN40 |         |   |     |    |    |    |    | A1<br>A3<br>B1<br>C2<br>C3<br>C4<br>J1<br>J2<br>E1<br>E8<br>S0<br>S1<br>S2<br>S3<br>S4 |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| Process connection material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| Carbon steel flanges<br>Stainless steel flange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |   |     |    |    |    |    |                                                                                        | B<br>D |    |        |      |      |                                                |                  |    |    |    |    |    |
| Usage certifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |   |     |    |    |    |    |                                                                                        |        | -  |        |      |      |                                                |                  |    |    |    |    |    |
| Standard (without PED)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |   |     |    |    |    |    |                                                                                        |        | 1  |        |      |      |                                                |                  |    |    |    |    |    |
| Calibration type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| Class 2 calibration – standard accuracy 0.4 %<br>Class 1 calibration – high accuracy 0.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |   |     |    |    |    |    |                                                                                        |        |    | A<br>B |      |      |                                                |                  |    |    |    |    |    |
| Temperature range installation / ambient temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| Standard design/ -20 60 °C (-4 140 °F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |   |     |    |    |    |    |                                                                                        |        |    |        | 1    |      |                                                |                  |    |    |    |    |    |
| Nameplate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |   |     |    |    |    |    |                                                                                        |        |    |        |      | ,    |                                                |                  |    |    |    |    |    |
| Adhesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |   |     |    |    |    |    |                                                                                        |        |    |        |      | А    |                                                |                  |    |    |    |    |    |
| Signal cable length and type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      | -                                              |                  |    |    |    |    |    |
| Without signal cable<br>5 m (15 ft.) cable<br>10 m (30 ft.) cable<br>20 m (60 ft.) cable<br>30 m (100 ft.) cable<br>50 m (165 ft.) cable<br>80 m (260 ft.) cable<br>100 m (325 ft.) cable<br>150 m (490 ft.) cable<br>Special length or cable type                                                                                                                                                                                                                                                                                                                                                                                                                       |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                  |    |    |    |    |    |
| Explosion protection certification*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      |                                                |                  |    |    |    |    |    |
| General purpose (non-Ex design)<br>FM Class 1 Div. 2<br>usFMc Class 1 Div. 2<br>ATEX / IECEx Zone 2, 21 & 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |   |     |    |    |    |    |                                                                                        |        |    |        |      |      |                                                | A<br>G<br>P<br>M |    |    |    |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |   |     |    |    |    |    |                                                                                        |        | 0  | Conti  | nued | on n | ext pa                                         | age              |    |    |    |    |    |

| Product coding field number 1 5                                                                                                                                                                                               | 6    | 7 9                                     | 10                               | 11 | 12 | 13 | 14, 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23          | 24                    | 25                    | 26               | 27     | 0p      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|----------------------------------|----|----|----|--------|----|----|----|----|----|----|----|-------------|-----------------------|-----------------------|------------------|--------|---------|
| Flowmeter system – full bore, integral mount FEW31                                                                                                                                                                            |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        | Options |
| Flowmeter system – full bore, remote mount FEW32                                                                                                                                                                              | x    | xxx                                     | x                                | x  | x  | x  | xx     | x  | x  | x  | x  | x  | x  | x  | x           | x                     | х                     | x                | x      |         |
| Full bore sensor only – for use with WaterMaster FEW38 transmitter / remote                                                                                                                                                   |      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                  |    |    |    |        |    |    |    |    |    |    |    | ~           | ~                     | ~                     | ~                | ~      |         |
| Protection class transmitter / protection class sensor                                                                                                                                                                        |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| IP67 (NEMA 4X) / IP67 (NEMA 4X) – cable not fitted and not potted to sensor IP 67 (NEMA 4x) / IP68 (NEMA 6P) – cable not fitted and not potted to sensor IP 67 (NEMA 4x) / IP68 (NEMA 6P) – cable fitted and potted to sensor |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    | 1<br>2<br>3 |                       |                       |                  |        |         |
| Cable conduits **                                                                                                                                                                                                             |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| M20 x 1.5 (plastic)<br>NPT 1/2 in. (blanked when cable not fitted)<br>M20 SWA (armored)<br>M20 SWA sensor, M20 x 1.5 (plastic) power / output<br>Without                                                                      |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             | A<br>B<br>D<br>F<br>Y |                       |                  |        |         |
| Power supply                                                                                                                                                                                                                  |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Without<br>108. 230 V AC, 50 Hz<br>24 V AC or 24 V DC, 50 Hz<br>100230 V AC, 60 Hz<br>24 V AC or 24 V DC, 60 Hz                                                                                                               |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       | 0<br>1<br>2<br>3<br>4 |                  |        |         |
| Input and output signal type                                                                                                                                                                                                  |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| HART + 20 mA + pulse + contact output<br>PROFIBUS DP RS485 physical layer + pulse + contact output (general-purpos<br>MODBUS RTU RS485 physical layer + pulse + contact output (general-purpos<br>Without                     |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       | A<br>G<br>M<br>Y |        |         |
| Configuration type / diagnostics type                                                                                                                                                                                         |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Not required<br>Factory default / Standard                                                                                                                                                                                    |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  | 0<br>1 |         |
| Options***                                                                                                                                                                                                                    |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Accessories                                                                                                                                                                                                                   |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Configuration lead                                                                                                                                                                                                            |      |                                         | AC                               |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Documentation language                                                                                                                                                                                                        |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| German     M1     Chinese       Italian     M2     Swedish       Spanish     M3     Finnish       French     M4     Portuguese       English     M5 (default)     Danish       Norwegian     Norwegian                        |      |                                         | M6<br>M7<br>M8<br>MA<br>MF<br>MN |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Lay length                                                                                                                                                                                                                    |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| ISO length - DN10 to 600 (3/e to 24 in.) and 1.25D DN1800 to 2400 (72 to 96 i                                                                                                                                                 | in.) |                                         | JB                               |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| 1.3D DN700 to 2400 (28 to 96 in.) – see dimensional pages 25, 26, 27                                                                                                                                                          |      |                                         | JK                               |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| 1.0D DN700 to 1600 (28 to 64 in.) – see dimensional pages 25, 26, 27                                                                                                                                                          |      |                                         | JH                               |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Verification type                                                                                                                                                                                                             |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Without fingerprint<br>VeriMaster                                                                                                                                                                                             |      |                                         | V0<br>V3                         |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Potable water approval                                                                                                                                                                                                        |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| WRAS cold water approval<br>DVGW<br>WRAS 60 °C (140 °F) water approval<br>NSF material approval<br>Without                                                                                                                    |      |                                         | CWA<br>CWD<br>CWK<br>CWM<br>CWY  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| Power supply frequency (sensor FEW38 only)                                                                                                                                                                                    |      |                                         |                                  |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |
| 50 Hz<br>60 Hz                                                                                                                                                                                                                |      |                                         | F5<br>F6                         |    |    |    |        |    |    |    |    |    |    |    |             |                       |                       |                  |        |         |

\*\* The type of signal cable supplied (standard or armored) depends on the type of cable conduit (variant digit number 24) ordered. For FM or FMC Approved versions, NPT only permitted.

\*\*\* Add codes for options.

## WaterMaster FER reduced-bore sensor flowmeter series

| Product coding field number       16       79       10       11       12       10       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       17       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18       18 </th <th></th>                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|-----------------------------------------|----|----------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|------|
| automation       Water Matering system. Reduced-bore sensor only, remote mount, without       FEP111       XXX       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                               | r 16                                                                                                                                              | 7 9                                                                                                                                    | 10                                                      | 11                                   | 12                                      | 13 | 14,15                                                                | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | - pt |
| Interactive reduced-oor sensor only, remote mount, without         FEH 19           Bore diameter         DN 40 (1% n)           DN 50 (2 n)         000           DN 50 (0 (1 n)         000           Subriage chord oun                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 | FER121                                                                                                                                            |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    | ons  |
| transmiter         remove           Drs dumies         000           Drs 02 (11/r n)         000 <tr< td=""><td>NaterMaster system. Reduced-bore sensor with integral transmitter</td><td>FER111</td><td>XXX</td><td>x</td><td>х</td><td>x</td><td>x</td><td>xx</td><td>x</td><td>x</td><td>х</td><td>х</td><td>х</td><td>x</td><td>x</td><td>x</td><td>х</td><td>х</td><td>х</td><td>x</td><td></td></tr<>                                                                                 | NaterMaster system. Reduced-bore sensor with integral transmitter                                                                                                                                                                                                                                               | FER111                                                                                                                                            | XXX                                                                                                                                    | x                                                       | х                                    | x                                       | x  | xx                                                                   | x  | x  | х  | х  | х  | x  | x  | x  | х  | х  | х  | x  |      |
| DN 400 (1% n)       000         DN 80 (2% n)       006         DN 80 (2% n)       006         DN 100 (4 n)       100         DN 100 (4 n)       100         DN 100 (1 n)       200         DN 100 (1 n)       300         DN 100 (2 n)       500         DN 100 (1 n)       400         DN 100 (1 n)       300         DN 100 (2 n)       50         DN 100 (1 n)       300         DN 100 (1 n)       300 <td></td> <td>FER181</td> <td></td>                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 | FER181                                                                                                                                            |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| DN 50 (2 m)       060         DN 50 (2 m)       070         DN 50 (2 m)       250         DN 50 (2 m)       250         DN 50 (2 m)       300         DN 50 (2 m)       600         DN 50 (2 m)       500         DN 50 (2 m)       3         Standard       1         A tanies stele quality mg       3         A tanies stele quality mg       3         A tanies stele quality mg       4         Parges MN A ADK Dates Job (3 h A A B B B C J h B A B B B C B B C B B C B B C B B C B B C B B C B B C B B C B B C B C B C B C B C B C B C B C B C B C B C B C B C B C B                                                                                                                                                                                                                                                                                                                                                                                                       | Bore diameter                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   | _                                                                                                                                      |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Elastomer – DN40 to 600 (11/z to 24 in. NB)       K         Electrode design       1         Standard       1         Measuring electrodes material       5         Staniess steel 316       5         Super austentic steel (1.4529)       U         Grounding<br>accessories       3         1 x Stainless steel equalizing ring       3         2 x Stainless steel equalizing ring       3         2 x Stainless steel equalizing ring       4         Process connection type (reft to pages 30 and 30)       63         Flanges ANS// SMKE B165/1647 series B Class 150       (40/50/80/100/150 600)       C3         Planges AS 120 Table F       (40/50/80/100/150 600)       E1         Flanges AS 4087 PN 11       (50/80/100/150 600)       E1         Flanges AS 2129 Table F       (40/50/80/100/150 600)       E3         Flanges AS 2129 Table F       (40/50/80/100                                                                                                                                                                                                                                 | DN 50 (2 in.)<br>DN 65 (2 <sup>1</sup> / <sub>2</sub> in.)<br>DN 80 (3 in.)<br>DN 100 (4 in.)<br>DN 125 (5 in.)<br>DN 150 (6 in.)<br>DN 250 (10 in.)<br>DN 250 (10 in.)<br>DN 350 (14 in.)<br>DN 355 (15 in.)<br>DN 355 (15 in.)<br>DN 450 (16 in.)<br>DN 450 (16 in.)<br>DN 450 (20 in.)                       |                                                                                                                                                   | 050<br>065<br>080<br>100<br>125<br>150<br>200<br>250<br>300<br>350<br>375<br>400<br>450<br>500                                         |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Electrode design           Standard           1           Measuring electrodes material           Stainless steel 316           Super austinic steel (1.4529)           Grounding<br>accessories           1 x Stainless steel equalizing ring           2 x Stainless steel equalizing ring           2 x Stainless steel equalizing ring           3 2 x Stainless steel equalizing ring           4           Process connection type (refer to pages 30 and 30)           Flanges ANSI / ASME B16.5 / 16.47 series B Class 150           (40 / 50 / 80)           Group of the steel equalizing ring           2 x Stainless steel equalizing ring           3 and the steel equalizing ring           3 and the steel equalizing ring           3 and the steel equalizing ring           4           Process connection type (refer to pages 30 and 30)           Flanges ANWA C207 Class E           (40 / 50 / 80 / 100 / 150 300)         J0           Flanges AS 105 / M N21           (50 / 80 / 100 / 150 300)         J0           Flanges AS 2129 Table F         (40 / 50 / 80 / 100 / 150 600)         E2           Flanges AS 2129 Table F         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table D         (40 / 50 /                                                                                                                                                                                                                | iner material                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Standard         1           Measuring electrodes material         Super austenitic steel (1.4529)         U           Grounding accessories         0         0         0           1 × Stainless steel equalizing ring         3         4           Process connection type (refer to pages 30 and 30)         4           Flanges ANSI / ASME B16.5 / 16.47 series B Class 150         (40 / 50 / 80 / 100 / 150 300)         A1           Flanges JIS 7.5K         (100 / 150 300)         J0           Flanges JIS 7.5K         (100 / 150 300)         J1           Flanges JIS 10K         (40 / 50 / 80 / 100 / 150 300)         J1           Flanges AS 087 PN 16         (50 / 80 / 100 / 150 300)         E0           Flanges AS 087 PN 16         (50 / 80 / 100 / 150 600)         E0           Flanges AS 2129 Table F         (40 / 50 / 80 / 100 / 150 600)         E2           Flanges AS 2129 Table D         (40 / 50 / 80 / 100 / 150 600)         E4           Flanges AS 2129 Table D         (40 600)         S2           Flanges AS 2129 Table D         (40 600)         S1           Flanges AS 2129 Table D         (40 600)         S1           Flanges AS 2129 Table D         (40 600)         S2           Flanges AS 2129 Table D                                                                                                                                                                                                            | Elastomer – DN40 to 600 (11/2 to 24 in. NB)                                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                        | Κ                                                       |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Measuring electrodes material           Stainless steel 316           Super austenitic steel (1.4529)           Grounding           accessories           1 x Stainless steel equalizing ring           2 x Stainless steel equalizing ring           3 2 x Stainless steel equalizing ring           6 x Stainless steel equalizing ring           7 Ranges ANSI / ASME B16.5 / 16.47 series B Class 150           (40 / 50 / 80 / 100 / 150 300)           7 Ranges ANSI / ASME B16.5 / 16.47 series B Class 150           (40 / 50 / 80 / 100 / 150 300)           7 Ranges ANSI / ASME B16.5 / 16.47 series B Class 150           (40 / 50 / 80 / 100 / 150 300)           9 Ranges JS 7.5K           (100 / 150 300)           9 Ranges A 087 PN 16           (50 / 80 / 100 / 150 600)           8 Ranges A 2087 PN 16           9 Ranges AS 2129 Table F           (40 / 50 / 80 / 100 / 150 600)           9 Ranges AS 2129 Table D                                                                                                                                                                                                                                                               | Electrode design                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                        |                                                         | _                                    |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Stainless steel 316       S         Super austentitic steel (1.4529)       U         Grounding accessories       U         1 x Stainless steel equalizing ring       3         2 x Stainless steel equalizing rings       4         Process connection type (refer to pages 30 and 30)       A1         Flanges ANSI / ASME B16.5 / 16.47 series B Class 150       (40 / 50 / 80 / 100 / 150 300)       A1         Flanges ANSI / ASME B16.5 / 16.47 series B Class 150       (40 / 50 / 80 / 100 / 150 300)       J0         Flanges ANSI / ASME B16.5 / 16.47 series B Class 150       (40 / 50 / 80 / 100 / 150 300)       J0         Flanges AS 1087 PN 21       (50 / 80 / 100 / 150 300)       J0         Flanges AS 4087 PN 21       (50 / 80 / 100 / 150 600)       E2         Flanges AS 4087 PN 14       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table F       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table E       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table E       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table E       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table E       (40 / 50 / 80 / 100 / 150 600)       E3         ISO 7005 PN 10 EN 1002-1       (40 600)                                                                                                                                                                  | Standard                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                        |                                                         | 1                                    |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Super austenitic steel (1.4529)         U           Grounding<br>accessories         3           1 x Stainless steel equalizing ring         3           2 x Stainless steel equalizing rings         4           Process connection type (refer to pages 30 and 30)         A1           Flanges ANSI / ASME B16.5 / 16.47 series B Class 150         (40 / 50 / 80 / 100 / 150 300)         A1           Process connection type (refer to pages 30 and 30)         Grounding<br>(40 / 50 / 80 / 100 / 150 300)         J0           Flanges JS 7.5K         (100 / 150 300)         J0           Flanges AS 4087 PN 21         (50 / 80 / 100 / 150 300)         E0           Flanges AS 4087 PN 15         (60 / 80 / 100 / 150 300)         E1           Flanges AS 2129 Table F         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table D         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table D         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table D         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table D         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table D         (40 / 50 / 80 / 100 / 150 300)         E4           Flanges AS 2129 Table C         (40 / 50 / 80 / 100 / 150 300)                                                                                                                              | Measuring electrodes material                                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      | -                                       |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| accessories         1 x Stainless steel equalizing ring       3         2 x Stainless steel equalizing rings       4         Process connection type (refer to pages 30 and 30)       1         Flanges ANSI / ASME B16.5 / 16.47 series B Class 150       (40 / 50 / 80 / 100 / 150 300)       A1         Flanges AWWA C207 Class E       (40 / 50 / 80 / 100 / 150 300)       J1         Flanges JIS 7.5K       (100 / 150 300)       J0         Flanges AS 4087 PN 21       (50 / 80 / 100 / 150 300)       J0         Flanges AS 4087 PN 16       (50 / 80 / 100 / 150 600)       E2         Flanges AS 4087 PN 16       (50 / 80 / 100 / 150 600)       E2         Flanges AS 4087 PN 16       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table F       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table C       (40 / 50 / 80 / 100 / 150 300)       E6         Flanges AS 2129 Table D       (40 / 50 / 80 / 100 / 150 300)       E6         I SO 7005 PN 10EN 1092-1       (40 600)       S1         I SO 7005 PN 10EN 1092-1       (40 600)       S2         I SO 7005 PN 10EN 1092-1       (40 600)       S2         I SO 7005 PN 10EN 1092-1       (40 600)       S2         I SO 7005 PN 10EN 1092-1 </td <td></td> |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| 2 x Stainless steel equalizing rings       4         Process connection type (refer to pages 30 and 30)         Flanges ANSI / ASME B16.5 / 16.47 series B Class 150       (40 / 50 / 80 / 100 / 150 300)       A1         Flanges AWWA C207 Class E       (40 / 50 / 80 / 100 / 150 300)       J0         Flanges JIS 7.5K       (100 / 150 300)       J0         Flanges JIS 10K       (40 / 50 / 80 / 100 / 150 300)       J1         Flanges AS 4087 PN 21       (50 / 80 / 100 / 150 600)       E0         Flanges AS 4087 PN 16       (50 / 80 / 100 / 150 600)       E2         Flanges AS 4087 PN 16       (40 / 50 / 80 / 100 / 150 600)       E2         Flanges AS 2129 Table F       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table C       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table D       (40 / 50 / 80 / 100 / 150 300)       E5         Flanges AS 2129 Table C       (40 / 50 / 80 / 100 / 150 300)       E5         Flanges AS 2129 Table C       (40 600)       S2         ISO 7005 PN 16 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         | 1  |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Flanges ANSI / ASME B16.5 / 16.47 series B Class 150       (40 / 50 / 80 / 100 / 150 300)       A1         Flanges AWWA C207 Class E       (100 / 150 300)       J0         Flanges JIS 7.5K       (100 / 150 300)       J0         Flanges JIS 10K       (40 / 50 / 80 / 100 / 150 300)       J1         Flanges AS 4087 PN 21       (50 / 80 / 100 / 150 300)       E0         Flanges AS 4087 PN 14       (40 / 50 / 80 / 100 / 150 600)       E1         Flanges AS 2129 Table F       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table E       (40 / 50 / 80 / 100 / 150 300)       E4         Flanges AS 2129 Table C       (40 / 50 / 80 / 100 / 150 300)       E5         Flanges AS 2129 Table D       (40 / 50 / 80 / 100 / 150 300)       E5         Flanges AS 2129 Table C       (40 600)       S1         ISO 7005 PN 10 EN 1092-1       (40 600)       S1         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40 600)       S2         ISO 7005 PN 40 EN 1092-1       (40                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Flanges AWWA C207 Class E       (40 / 50 / 80)       C3         Flanges JIS 7.5K       (100 / 150 300)       J0         Flanges JIS 10K       (40 / 50 / 80 / 100 / 150 300)       J1         Flanges AS 4087 PN 21       (50 / 80 / 100 / 150 600)       E0         Flanges AS 4087 PN 16       (50 / 80 / 100 / 150 600)       E1         Flanges AS 4087 PN 16       (40 / 50 / 80 / 100 / 150 600)       E2         Flanges AS 2129 Table F       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table D       (40 / 50 / 80 / 100 / 150 600)       E3         Flanges AS 2129 Table C       (40 / 50 / 80 / 100 / 150 300)       E6         ISO 7005 PN 10 EN 1092-1       (40 600)       S1         ISO 7005 PN 16 EN 1092-1       (40)       S4         Varbon steel       B       B         Usage certifications       B       Carbon steel       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Process connection type (refer to pages 30 and 30)                                                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Carbon steel B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flanges AWWA C207 Class E<br>Flanges JIS 7.5K<br>Flanges JIS 10K<br>Flanges AS 4087 PN 21<br>Flanges AS 4087 PN 16<br>Flanges AS 4087 PN 14<br>Flanges AS 2129 Table F<br>Flanges AS 2129 Table E<br>Flanges AS 2129 Table D<br>Flanges AS 2129 Table C<br>ISO 7005 PN 10 EN 1092-1<br>ISO 7005 PN 16 EN 1092-1 | (40 / 50 /<br>(100 / 150<br>(40 / 50 /<br>(50 / 80 /<br>(50 / 80 /<br>(40 / 50 /<br>(40 / 50 /<br>(40 / 50 /<br>(40 / 50 /<br>(40 600<br>(40 600) | 80)<br>) 300)<br>80 / 100<br>100 / 15<br>100 / 15(<br>80 / 100<br>80 / 100<br>80 / 100<br>80 / 100<br>80 / 100<br>90 / 100<br>90 / 100 | / 150<br>0 6<br>0 3<br>/ 150<br>/ 150<br>/ 125<br>/ 125 | 30<br>50 / 4<br>60<br>60<br>60<br>30 | )00)<br>50<br>00)<br>00)<br>0 60<br>00) |    | C3<br>J0<br>J1<br>E0<br>E1<br>E2<br>E3<br>E4<br>E5<br>E6<br>S1<br>S2 |    |    |    |    |    |    |    |    |    |    |    |    |      |
| Usage certifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Process connection material                                                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      | В  |    |    |    |    |    |    |    |    |    |    |    |      |
| Standard 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jsage certifications                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    |    |    |    |    |    |    |    |    |    |    |    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Standard                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                        |                                                         |                                      |                                         |    |                                                                      |    | 1  |    |    |    |    |    |    |    |    |    |    |      |

| Product coding field numbe<br>WaterMaster system. Reduced-bore sensor with remote mounted                                                                                                             |                      | 7 9 | 10 |   | 12 | 13    | 14,15    | 16   | 17 | 18          | 19 | 20 | 21                                             | 22 | 23     | 24               | 25                    | 26               | 27     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|----|---|----|-------|----------|------|----|-------------|----|----|------------------------------------------------|----|--------|------------------|-----------------------|------------------|--------|
| ransmitter                                                                                                                                                                                            | FER121               |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| NaterMaster system. Reduced-bore sensor with integral transmitter                                                                                                                                     | FER111               | XXX | X  | х | x  | х     | XX       | x    | x  | х           | X  | x  | х                                              | х  | x      | x                | X                     | х                | х      |
| WaterMaster reduced-bore sensor only, remote mount, without transmitter                                                                                                                               | FER181               |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| ransmuer                                                                                                                                                                                              |                      |     |    |   |    | Soo r |          | 0000 |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Calibration type                                                                                                                                                                                      |                      |     |    |   |    | See p | orevious | page |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Class 2 calibration – standard accuracy 0.4 %                                                                                                                                                         |                      |     |    |   |    |       |          |      |    | А           |    |    |                                                |    |        |                  |                       |                  |        |
| Class 2 calibration – high accuracy 0.2<br>Extended range, class 1 calibration – high accuracy 0.2 %<br>Extended range, class 2 calibration – standard accuracy 0.4 %                                 |                      |     |    |   |    |       |          |      |    | B<br>N<br>P |    |    |                                                |    |        |                  |                       |                  |        |
| Installation temperature range / ambient temperature range                                                                                                                                            |                      |     | _  | _ |    | _     |          |      |    | _           | J  |    |                                                |    |        |                  |                       |                  |        |
| Standard design –20 60 °C (–4 140 °F)                                                                                                                                                                 |                      |     |    |   |    |       |          |      |    |             | 1  |    |                                                |    |        |                  |                       |                  |        |
| Name plate                                                                                                                                                                                            |                      |     |    |   |    |       |          |      |    |             |    | J  |                                                |    |        |                  |                       |                  |        |
| Adhesive label                                                                                                                                                                                        |                      |     |    |   |    |       |          |      |    |             |    | А  |                                                |    |        |                  |                       |                  |        |
| Signal cable length and type                                                                                                                                                                          |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Without signal cable<br>5 m (16.4 ft)<br>10 m (32.8 ft)<br>20 m (85.6 ft)<br>30 m (98.4 ft)<br>50 m (164.0 ft)<br>80 m (262.5 ft)<br>100 m (325 ft)<br>150 m (490 ft)<br>Others                       |                      |     |    |   |    |       |          |      |    |             |    |    | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |    |        |                  |                       |                  |        |
| Explosion protection certification                                                                                                                                                                    |                      |     |    |   |    |       |          |      |    |             |    |    |                                                | J  |        |                  |                       |                  |        |
| General purpose                                                                                                                                                                                       |                      |     |    |   |    |       |          |      |    |             |    |    |                                                | А  |        |                  |                       |                  |        |
| (non-Ex design)                                                                                                                                                                                       |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Protection class transmitter / protection class sensor<br>IP67 (NEMA 4X) / IP68 (NEMA 6P) – cable not fitted and not potted<br>IP67 (NEMA 4X) / IP68 (NEMA 6P) – cable fitted and potted              |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    | 2<br>3 |                  |                       |                  |        |
| Cable conduits*                                                                                                                                                                                       |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        | J                |                       |                  |        |
| M20 x 1.5<br>NPT <sup>1</sup> / <sub>2</sub> in (blanked when cable not fitted)<br>M20 SWA armored (FEV121 and FEV181 only)<br>M20 SWA sensor, output and power connector (FEV121 and FEV181          | only)                |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        | A<br>B<br>D<br>F |                       |                  |        |
| Power supply                                                                                                                                                                                          |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  | 1                     |                  |        |
| Without (FEV18 only)<br>100 230 V AC, 50 Hz<br>24 V AC or 24 V DC, 50 Hz<br>100 230 V AC, 60 Hz<br>24 V AC or 24 V DC, 60 Hz                                                                          |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  | 0<br>1<br>2<br>3<br>4 |                  |        |
| Input and output signal type                                                                                                                                                                          |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       | ]                |        |
| HART + 20 mA + pulse + contact output<br>PROFIBUS DP RS485 physical layer + pulse + contact output (FEV11<br>MODBUS RTU RS485 physical layer + pulse + contact output (FEV11<br>Without (FEV181 only) |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       | A<br>G<br>M<br>Y |        |
| Configuration type / diagnostics type                                                                                                                                                                 |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  | -      |
| Without (FEV18 only)<br>Factory defaults / standard diagnostics (FEV11 and FEV12 only)                                                                                                                |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  | 0<br>1 |
| Options**                                                                                                                                                                                             |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Documentation language                                                                                                                                                                                |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| German     M1     Chinese       Italian     M2     Portuguese       Spanish     M3     Russian       French     M4     Danish                                                                         | M6<br>MA<br>MB<br>MF |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| English M5 (default)                                                                                                                                                                                  |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Verification type                                                                                                                                                                                     |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Without fingerprint<br>VeriMaster                                                                                                                                                                     | V0<br>V3             |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| Potable water approval                                                                                                                                                                                |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| WRAS cold water approval<br>DVGW<br>ACS                                                                                                                                                               | CWA<br>CWD<br>CWF    |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| ACS Power supply frequency (sensor FER18 only)                                                                                                                                                        | 000                  |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| . Star supply requerey (sensor r Little Unity)                                                                                                                                                        | F5                   |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |
| 50 Hz                                                                                                                                                                                                 |                      |     |    |   |    |       |          |      |    |             |    |    |                                                |    |        |                  |                       |                  |        |

# Electromagnetic flowmeter transmitter for WaterMaster FET10 and FET12

|                                                                              |                                                                                                    |                                                                    |                                  | Product coding field numbe      | r 15     | 6      | 7     | 8     | 9    | 10               | 11  | 12                    | 13     | 14          | 15 | Opt     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|---------------------------------|----------|--------|-------|-------|------|------------------|-----|-----------------------|--------|-------------|----|---------|
| Transmitter module                                                           | e                                                                                                  |                                                                    |                                  |                                 | FET10    |        |       |       |      |                  |     |                       |        |             |    | Options |
| Remote transmitte                                                            | r                                                                                                  |                                                                    |                                  |                                 | FET12    |        | x     | X     | ×    | x                | X   | х                     | x      | x           | х  |         |
| Design                                                                       |                                                                                                    |                                                                    |                                  |                                 |          | J      |       |       |      |                  |     |                       |        |             |    |         |
| Non-hazardous a<br>Hazardous area                                            | area                                                                                               |                                                                    |                                  |                                 |          | 1<br>5 |       |       |      |                  |     |                       |        |             |    |         |
| Temperature range                                                            | installation / ambient tempera                                                                     | iture range                                                        |                                  |                                 |          |        | 1     |       |      |                  |     |                       |        |             |    |         |
| Standard design                                                              | / −20 60 °C (−4 140 °F)                                                                            |                                                                    |                                  |                                 |          |        | 1     |       |      |                  |     |                       |        |             |    |         |
| Nameplate                                                                    |                                                                                                    |                                                                    |                                  |                                 |          |        |       | _     |      |                  |     |                       |        |             |    |         |
| Adhesive                                                                     |                                                                                                    |                                                                    |                                  |                                 |          |        |       | А     |      |                  |     |                       |        |             |    |         |
| Signal cable length                                                          | 1                                                                                                  |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Without signal ca                                                            | able                                                                                               |                                                                    |                                  |                                 |          |        |       |       | 0    |                  |     |                       |        |             |    |         |
| Explosion protection                                                         | on                                                                                                 |                                                                    |                                  |                                 |          |        |       |       |      | ,                |     |                       |        |             |    |         |
| Without (transmit<br>FM Class 1 Div. 2<br>usFMc Class 1 D<br>ATEX / IECEx Zo | 2<br>Div. 2                                                                                        |                                                                    |                                  |                                 |          |        |       |       |      | Y<br>G<br>P<br>M |     |                       |        |             |    |         |
| Protection class tra                                                         | ansmitter / protection class se                                                                    | nsor                                                               |                                  |                                 |          |        |       |       |      |                  | -   |                       |        |             |    |         |
| IP67 (NEMA 4X)                                                               | / IP67 (NEMA 4X)                                                                                   |                                                                    |                                  |                                 |          |        |       |       |      |                  | 1   |                       |        |             |    |         |
| Cable conduits                                                               |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| M20 SWA (armor                                                               | ked when cable not fitted)                                                                         | put                                                                |                                  |                                 |          |        |       |       |      |                  |     | A<br>B<br>D<br>F<br>Y |        |             |    |         |
| Power supply                                                                 |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| 100 230 V AC<br>24 V AC or 24 V                                              | DC                                                                                                 |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       | 1<br>2 |             |    |         |
| Input and output                                                             |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| PROFIBUS DP R                                                                | + pulse + contact output<br>IS485 physical layer + pulse + co<br>IS485 physical layer + pulse + co |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        | A<br>G<br>M |    |         |
| Configuration type                                                           | / diagnostics type                                                                                 |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Factory defaults                                                             | / standard diagnostics                                                                             |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             | 1  |         |
| Options**                                                                    |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Accessories                                                                  |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Configuration lea                                                            | d                                                                                                  |                                                                    | AC                               |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Documentation                                                                |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| German<br>Italian<br>Spanish<br>French<br>English                            | M1<br>M2<br>M3<br>M4<br>M5 (default)                                                               | Chinese<br>Swedish<br>Finnish<br>Portuguese<br>Danish<br>Norwegian | M6<br>M7<br>M8<br>MA<br>MF<br>MN |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Other usage                                                                  |                                                                                                    |                                                                    |                                  |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| Measuring Instru                                                             | ments Directive (MID)                                                                              |                                                                    | CM1                              |                                 |          |        |       |       |      |                  |     |                       |        |             |    |         |
| -                                                                            | verter module Input and Output                                                                     | Signal Type must match th                                          |                                  | kplane output configuration (HA | BT or PB | OFIBL  | JS) – | see O | /FFT | 100-F            | ΞN. |                       |        |             |    |         |

\*The transmitter converter module Input and Output Signal Type must match the transmitter backplane output configuration (HART or PROFIBUS) – see OI/FET100-EN. \*\*Add codes for options.

# **Common accessories**

| Accessory                                                                                                                                                                                                                 | Item Number                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| WaterMaster AC Fuse F1 Type T 250 mA A/S TR5                                                                                                                                                                              | B20411                                                                                                                        |
| WaterMaster DC Fuse F2 Type T 2 A A/S TR5                                                                                                                                                                                 | B20412                                                                                                                        |
| WaterMaster Infra Red Comms Pack                                                                                                                                                                                          | MJBX9932                                                                                                                      |
| WaterMaster Backplane PCB Board (STD)                                                                                                                                                                                     | WATX2505                                                                                                                      |
| WaterMaster Sensor PCB Board                                                                                                                                                                                              | WATX2506                                                                                                                      |
| WaterMaster Comms Cable                                                                                                                                                                                                   | WEBC2500                                                                                                                      |
| Signal cable for remote WaterMaster transmitter<br>5 m (15 ft.)<br>10 m (30 ft.)<br>20 m (60 ft.)<br>30 m (100 ft.)<br>50 m (165 ft.)<br>80 m (260 ft.)<br>100 m (325 ft.)<br>150 m (490 ft.)<br>500 m (1650 ft.)         | STT4500/05<br>STT4500/10<br>STT4500/20<br>STT4500/30<br>STT4500/50<br>STT4500/80<br>STT4500/150<br>STT4500/150<br>STT4500/500 |
| Armored signal cable for remote WaterMaster transmitter<br>5 m (15 ft.)<br>10 m (30 ft.)<br>20 m (60 ft.)<br>30 m (100 ft.)<br>50 m (165 ft.)<br>80 m (260 ft.)<br>100 m (325 ft.)<br>150 m (490 ft.)<br>500 m (1650 ft.) | STT4501/05<br>STT4501/10<br>STT4501/20<br>STT4501/30<br>STT4501/50<br>STT4501/80<br>STT4501/100<br>STT4501/150<br>STT4501/150 |

# Acknowledgements

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries

Modbus is a registered trademark of the Modbus-IDA organization

HART is a registered trademark of the HART Communication Foundation

# Contact us

### ABB Limited Process Automation

Oldends Lane Stonehouse Gloucestershire GL10 3TA UK Tel: +44 1453 826 661 Fax: +44 1453 829 671

# ABB Inc.

## **Process Automation**

125 E. County Line Road Warminster PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

#### ABB Engineering (Shanghai) Ltd. Process Automation

No. 5, Lane 369, Chuangye Road 201319, Shanghai, P.R. China Phone: +86 (0) 21 6105 6666 Fax: +86 (0) 21 6105 6992 Mail:china.instrumentation@cn.abb.com

### www.abb.com

#### Note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents in whole or in parts – is forbidden without prior written consent of ABB.

Copyright© 2013 ABB All rights reserved

3KXF211101R1001



Sales



Service



Software





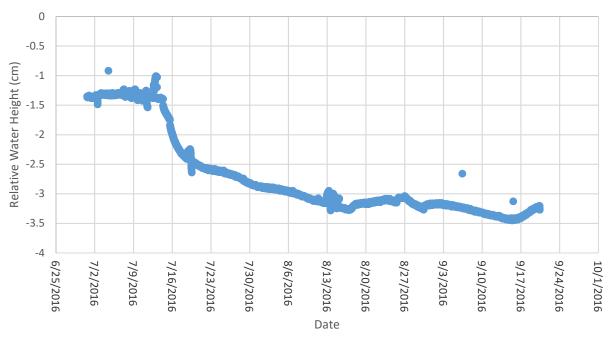



Figure C1: Well water level height from June 30, 2016 to September 20, 2016

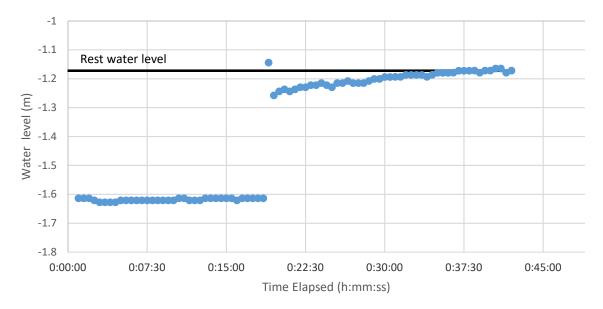
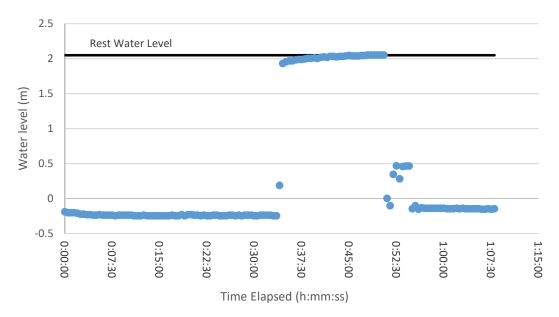
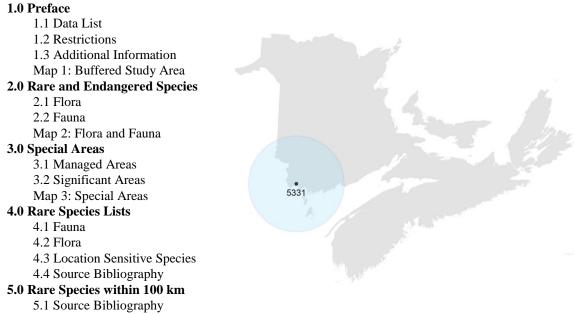
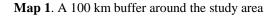



Figure C2: Well recovery data for well #8





Figure C3: Well recovery data for the combined system of well #1 and #2. The smattering of data points when the pump was turned back on (around 0:52:30) was due to a delay between turning well pump #1 on and well pump #2


Atlantic Canada Conservation Data Centre Centre de données sur la conservation du Canada Atlantique

# DATA REPORT 5331: Oak Haven Road, NB

Prepared 9 March 2015 by J. Churchill, Data Manager

# **CONTENTS OF REPORT**





# **1.0 PREFACE**

The Atlantic Canada Conservation Data Centre (ACCDC) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The ACCDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the ACCDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees. URL: <a href="http://www.ACCDC.com">www.ACCDC.com</a>.

Upon request and for a fee, the ACCDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area. As a supplement to that data, the ACCDC includes locations of managed areas with some level of protection, and known sites of ecological interest or sensitivity.

# 1.1 DATA LIST

Included datasets:

| Filename                     | Contents                                                                              |
|------------------------------|---------------------------------------------------------------------------------------|
| OakHavenRdNB_5331ob.xls      | All Rare and legally protected Flora and Fauna within 5 km of your study area         |
| OakHavenRdNB_5331ob100km.xls | A list of Rare and legally protected Flora and Fauna within 100 km of your study area |
| OakHavenRdNB_5331ma.xls      | All Managed Areas in your study area                                                  |
| OakHavenRdNB_5331sa.xls      | All Significant Natural Areas in your study area                                      |
| OakHavenRdNB_5331ff.xls      | Rare and common Freshwater Fish in your study area (DFO database)                     |

### **1.2 RESTRICTIONS**

The ACCDC makes a strong effort to verify the accuracy of all the data that it manages, but it shall not be held responsible for any inaccuracies in data that it provides. By accepting ACCDC data, recipients assent to the following limits of use:

- a) Data is restricted to use by trained personnel who are sensitive to landowner interests and to potential threats to rare and/or endangered flora and fauna posed by the information provided.
- b) Data is restricted to use by the specified Data User; any third party requiring data must make its own data request.
- c) The ACCDC requires Data Users to cease using and delete data 12 months after receipt, and to make a new request for updated data if necessary at that time.
- d) ACCDC data responses are restricted to the data in our Data System at the time of the data request.
- e) Each record has an estimate of locational uncertainty, which must be referenced in order to understand the record's relevance to a particular location. Please see attached Data Dictionary for details.
- f) ACCDC data responses are not to be construed as exhaustive inventories of taxa in an area.
- g) The absence of a taxon cannot be inferred by its absence in an ACCDC data response.

### **1.3 ADDITIONAL INFORMATION**

The attached file DataDictionary 2.1.pdf provides metadata for the data provided.

Please direct any additional questions about ACCDC data to the following individuals:

#### Plants, Lichens, Ranking Methods, All other Inquiries

Sean Blaney, Senior Scientist, Executive Director Tel: (506) 364-2658 <a href="mailto:sblaney@mta.ca">sblaney@mta.ca</a>

Animals (Fauna) John Klymko, Zoologist Tel: (506) 364-2660 jklymko@mta.ca

#### Data Management, GIS

James Churchill, Data Manager Tel: (902) 679-6146 jlchurchill@mta.ca Plant Communities Sarah Robinson , Community Ecologist Tel: (506) 364-2664 <u>srobinson@mta.ca</u>

Billing Jean Breau Tel: (506) 364-2659 jrbreau@mta.ca

Questions on the biology of Federal Species at Risk can be directed to ACCDC: (506) 364-2657, with questions on Species at Risk regulations to: Samara Eaton, Canadian Wildlife Service (NB and PE): (506) 364-5060 or Julie McKnight, Canadian Wildlife Service (NS): (902) 426-4196.

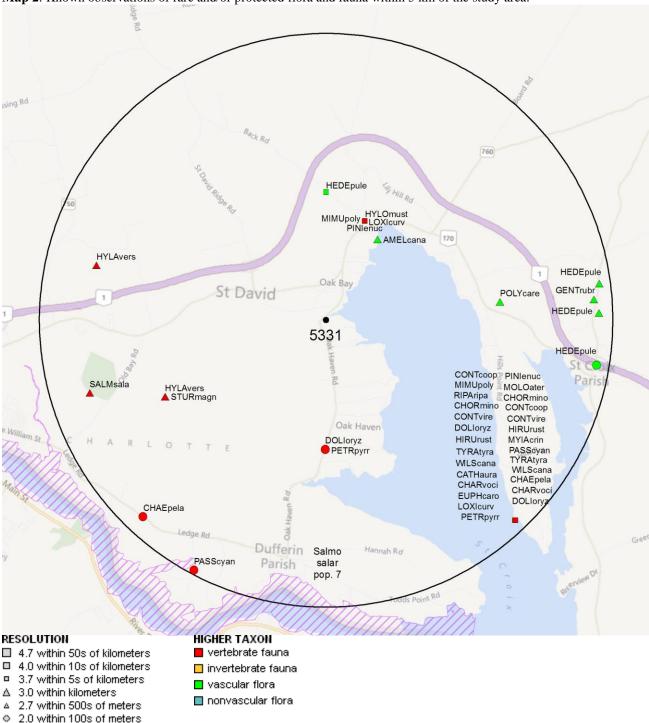
For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in New Brunswick, please contact Stewart Lusk, Natural Resources: (506) 453-7110.

For provincial information about rare taxa and protected areas, or information about game animals, deer yards, old growth forests, archeological sites, fish habitat etc., in Nova Scotia, please contact Sherman Boates, NSDNR: (902) 679-6146. To determine if location-sensitive species (section 4.3) occur near your study site please contact a NSDNR Regional Biologist:

| Western: Duncan Bayne  | Western: Donald Sam              | <b>Central</b> : Shavonne Meyer | Central: Kimberly George |
|------------------------|----------------------------------|---------------------------------|--------------------------|
| (902) 648-3536         | (902) 634-7525                   | (902) 893-6353                  | (902) 893-5630           |
| baynedz@gov.ns.ca      | samdx@gov.ns.ca                  | <u>meyersj@gov.ns.ca</u>        | georgeka@gov.ns.ca       |
| Eastern: Mark Pulsifer | <b>Eastern</b> : Donald Anderson | Eastern: Terry Power            |                          |
| (902) 863-7523         | (902) 295-3949                   | (902) 563-3370                  |                          |
| pulsifmd@gov.ns.ca     | andersdg@gov.ns.ca               | powertd@gov.ns.ca               |                          |

For provincial information about rare taxa and protected areas, or information about game animals, fish habitat etc., in Prince Edward Island, please contact Rosemary Curley, PEI Dept. of Agriculture and Forestry: (902) 368-4807.

# 2.0 RARE AND ENDANGERED SPECIES


# 2.1 FLORA

A 5 km buffer around the study area contains 8 records of 4 vascular, no records of nonvascular flora (Map 2 and attached: \*ob.xls).

# 2.2 FAUNA

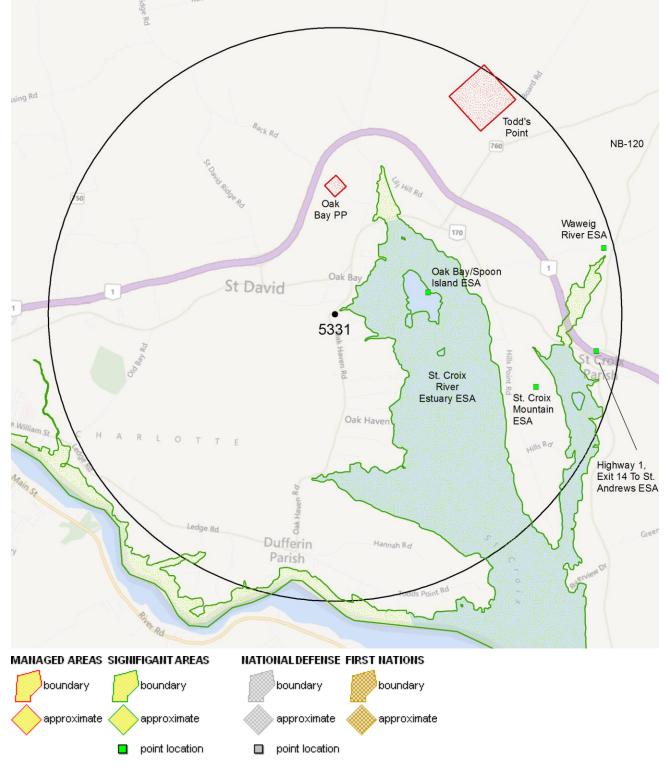
1.7 within 10s of meters

A 5 km buffer around the study area contains 56 records of 23 vertebrate, no records of invertebrate fauna (Map 2 and attached data files - see 1.1 Data List). Please see section 4.3 to determine if 'location-sensitive' species occur near your study site.



Map 2: Known observations of rare and/or protected flora and fauna within 5 km of the study area.

# **3.0 SPECIAL AREAS**


# **3.1 MANAGED AREAS**

The GIS scan identified 2 managed areas in the vicinity of the study area (Map 3 and attached file: \*ma\*.xls)

# **3.2 SIGNIFICANT AREAS**

The GIS scan identified 5 biologically significant sites in the vicinity of the study area (Map 3 and attached file: \*sa\*.xls)

Map 3: Boundaries and/or locations of known Managed and Significant Areas within 5 km of the study area.



# 4.0 RARE SPECIES LISTS

Rare and/or endangered taxa (excluding "location-sensitive" species, section 4.3) within the 5 km-buffered area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation ( $\pm$  the precision, in km, of the record). [P] = vascular plant, [N] = nonvascular plant, [A] = vertebrate animal, [I] = invertebrate animal, [C] = community.

# 4.1 FLORA

|     | Scientific Name          | Common Name                               | COSEWIC         | SARA            | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs | Distance (km) |
|-----|--------------------------|-------------------------------------------|-----------------|-----------------|-----------------|------------------|------------------|--------|---------------|
| Ρ   | Gentiana rubricaulis     | Purple-stemmed Gentian                    |                 |                 |                 | S1               | 2 May Be At Risk | 2      | 4.7 ± 1.0     |
| Р   | Hedeoma pulegioides      | American False Pennyroyal                 |                 |                 |                 | S2               | 4 Secure         | 4      | 2.2 ± 2.0     |
| Р   | Polygonum careyi         | Carey's Smartweed                         |                 |                 |                 | S2               | 3 Sensitive      | 1      | 3.1 ± 1.0     |
| Р   | Amelanchier canadensis   | Canada Serviceberry                       |                 |                 |                 | S3               | 4 Secure         | 1      | 1.7 ± 1.0     |
| 4.2 | 2 FAUNA                  |                                           |                 |                 |                 |                  |                  |        |               |
|     | Scientific Name          | Common Name                               | COSEWIC         | SARA            | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs | Distance (km) |
| А   | Salmo salar pop. 7       | Atlantic Salmon - Outer Bay of Fundy pop. | Endangered      |                 |                 | S2               |                  | 1      | 4.5 ± 0       |
| А   | Hylocichla mustelina     | Wood Thrush                               | Threatened      |                 | Threatened      | S1S2B            | 2 May Be At Risk | 1      | 1.9 ± 7.0     |
| А   | Sturnella magna          | Eastern Meadowlark                        | Threatened      |                 | Threatened      | S1S2B            | 2 May Be At Risk | 1      | 3.1 ± 1.0     |
| А   | Chaetura pelagica        | Chimney Swift                             | Threatened      | Threatened      | Threatened      | S2S3B            | 1 At Risk        | 3      | 4.7 ± 0.0     |
| А   | Chordeiles minor         | Common Nighthawk                          | Threatened      | Threatened      | Threatened      | S3B              | 1 At Risk        | 4      | 4.8 ± 7.0     |
| Α   | Hirundo rustica          | Barn Swallow                              | Threatened      |                 | Threatened      | S3B              | 3 Sensitive      | 4      | 4.8 ± 7.0     |
| Α   | Riparia riparia          | Bank Swallow                              | Threatened      |                 |                 | S3B              | 3 Sensitive      | 1      | 4.8 ± 7.0     |
| Α   | Contopus cooperi         | Olive-sided Flycatcher                    | Threatened      | Threatened      | Threatened      | S3S4B            | 1 At Risk        | 3      | 4.8 ± 7.0     |
| Α   | Wilsonia canadensis      | Canada Warbler                            | Threatened      | Threatened      | Threatened      | S3S4B            | 1 At Risk        | 3      | 4.8 ± 7.0     |
| Α   | Dolichonyx oryzivorus    | Bobolink                                  | Threatened      |                 | Threatened      | S3S4B            | 3 Sensitive      | 4      | $2.3 \pm 0.0$ |
| Α   | Euphagus carolinus       | Rusty Blackbird                           | Special Concern | Special Concern | Special Concern | S3B              | 2 May Be At Risk | 1      | 4.8 ± 7.0     |
| А   | Contopus virens          | Eastern Wood-Pewee                        | Special Concern |                 | Special Concern | S4B              | 4 Secure         | 2      | 4.8 ± 7.0     |
| Α   | Salmo salar              | Atlantic Salmon                           |                 |                 |                 | S2               | 2 May Be At Risk | 1      | 4.3 ± 1.0     |
| А   | Pinicola enucleator      | Pine Grosbeak                             |                 |                 |                 | S2S3B,S4S5N      | 3 Sensitive      | 2      | 1.9 ± 7.0     |
| Α   | Hyla versicolor          | Gray Treefrog                             |                 |                 |                 | S3               | 4 Secure         | 6      | 3.1 ± 1.0     |
| А   | Loxia curvirostra        | Red Crossbill                             |                 |                 |                 | S3               | 4 Secure         | 4      | 1.9 ± 7.0     |
| Α   | Cathartes aura           | Turkey Vulture                            |                 |                 |                 | S3B              | 4 Secure         | 3      | 4.8 ± 7.0     |
| Α   | Charadrius vociferus     | Killdeer                                  |                 |                 |                 | S3B              | 3 Sensitive      | 2      | 4.8 ± 7.0     |
| Α   | Myiarchus crinitus       | Great Crested Flycatcher                  |                 |                 |                 | S3B              | 3 Sensitive      | 1      | 4.8 ± 7.0     |
| Α   | Mimus polyglottos        | Northern Mockingbird                      |                 |                 |                 | S3B              | 3 Sensitive      | 2      | 1.9 ± 7.0     |
| А   | Passerina cyanea         | Indigo Bunting                            |                 |                 |                 | S3B              | 4 Secure         | 2      | 4.8 ± 7.0     |
| А   | Molothrus ater           | Brown-headed Cowbird                      |                 |                 |                 | S3B              | 2 May Be At Risk | 1      | 4.8 ± 7.0     |
| А   | Tyrannus tyrannus        | Eastern Kingbird                          |                 |                 |                 | S3S4B            | 3 Sensitive      | 3      | 4.8 ± 7.0     |
| Α   | Petrochelidon pyrrhonota | Cliff Swallow                             |                 |                 |                 | S3S4B            | 3 Sensitive      | 2      | $2.3 \pm 0.0$ |

#### **4.3 LOCATION SENSITIVE SPECIES**

The Department of Natural Resources in each Maritimes province considers a number of species "location sensitive". Concern about exploitation of location-sensitive species precludes inclusion of precise coordinates in this report. Those intersecting a 5 km buffer of your study area are indicated below with "YES".

#### **New Brunswick**

| Scientific Name          | Common Name                             | SARA            | Prov Legal Prot | Known within 5 km of Study Site? |
|--------------------------|-----------------------------------------|-----------------|-----------------|----------------------------------|
| Chrysemys picta picta    | Eastern Painted Turtle                  |                 |                 | No                               |
| Chelydra serpentina      | Snapping Turtle                         | Special Concern | Special Concern | No                               |
| Glyptemys insculpta      | Wood Turtle                             | Threatened      | Threatened      | No                               |
| Haliaeetus leucocephalus | Bald Eagle                              |                 | Endangered      | YES                              |
| Falco peregrinus pop. 1  | Peregrine Falcon - anatum/tundrius pop. | Special Concern | Endangered      | No                               |
| Cicindela marginipennis  | Cobblestone Tiger Beetle                | Endangered      | Endangered      | No                               |
| Coenonympha nipisiquit   | Maritime Ringlet                        | Endangered      | Endangered      | No                               |
| Bat Hibernaculum         |                                         | [Endangered]1   | [Endangered]1   | No                               |

1 Myotis lucifugus (Little Brown Myotis), Myotis septentrionalis (Long-eared Myotis), and Perimyotis subflavus (Tri-colored Bat or Eastern Pipistrelle) are all Endangered under the Federal Species at Risk Act and the NB Species at Risk Act.

#### **4.4 SOURCE BIBLIOGRAPHY**

The recipient of these data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

#### # recs CITATION

- 26 Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.
- 22 Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.
- 5 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc.
- 4 McAlpine, D.F., Fletcher, T.J., Gorham, S.W. & Gorham, I.T. 1991. Distribution & habitat of the Tetraploid Gray Treefrog, Hyla versicolor, in New Brunswick & Eastern Maine. Can. Field-Nat., 105 (4): 526-529. 17 recs.
- 3 Benedict, B. Connell Herbarium Specimens (Data) . University New Brunswick, Fredericton. 2003.
- 2 Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.
- 2 Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs.
- 1 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.
- 1 Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.
- 1 Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.
- 1 Dept of Fisheris & Oceans. 2001. Atlantic Salmon Maritime provinces overview for 2000. DFO.
- 1 Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.
- 1 NSDNR website
- 1 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.
- 1 Sheppard NTNB 2000

# **5.0 RARE SPECIES WITHIN 100 KM**

A 100 km buffer around the study area contains 8227 records of 126 vertebrate and 760 records of 61 invertebrate fauna; 4860 records of 340 vascular, 180 records of 99 nonvascular flora (attached: \*ob100km.xls).

Rare and/or endangered taxa within the 100 km-buffered area listed in order of concern, beginning with legally listed taxa, with the number of observations per taxon and the distance in kilometers from study area centroid to the closest observation ( $\pm$  the precision, in km, of the record).

| Taxonomic Group | Scientific Name                      | Common Name                                  | COSEWIC         | SARA            | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs   | Distance (km)               |
|-----------------|--------------------------------------|----------------------------------------------|-----------------|-----------------|-----------------|------------------|------------------|----------|-----------------------------|
| A               | Myotis septentrionalis               | Northern Long-eared Myotis                   | Endangered      | Endangered      | Endangered      | S1               | 1 At Risk        | 13       | 72.8 ± 1.0                  |
| A               | Perimyotis subflavus                 | Eastern Pipistrelle                          | Endangered      | Endangered      | Endangered      | S1               | 1 At Risk        | 2        | 84.1 ± 0.0                  |
| А               | Eubalaena glacialis                  | North Atlantic Right Whale                   | Endangered      | Endangered      | Endangered      | S1               |                  | 6        | 28.5 ± 1.0                  |
| Α               | Sterna dougallii                     | Roseate Tern<br>Leatherback Sea Turtle -     | Endangered      | Endangered      | Endangered      | S1B              | 1 At Risk        | 18       | $79.4 \pm 0.0$              |
| А               | Dermochelys coriacea (Atlantic pop.) | Atlantic pop.                                | Endangered      | Endangered      | Endangered      | S1S2N            | 1 At Risk        | 4        | $65.9 \pm 0.0$              |
| А               | Morone saxatilis                     | Striped Bass                                 | Endangered      |                 |                 | S2               | 2 May Be At Risk | 8        | 16.4 ± 1.0                  |
| A               | Salmo salar pop. 1                   | Atlantic Salmon - Inner Bay of<br>Fundy pop. | Endangered      | Endangered      | Endangered      | S2               | 2 May Be At Risk | 3        | $51.4 \pm 0.0$              |
| A               | Charadrius melodus melodus           | Piping Plover melodus ssp                    | Endangered      | Endangered      | Endangered      | S2B              | 1 At Risk        | 23       | 58.2 ± 0.0                  |
| Α               | Calidris canutus rufa                | Red Knot rufa ssp                            | Endangered      | -               | Endangered      | S3M              | 1 At Risk        | 244      | 17.1 ± 0.0                  |
| A               | Protonotaria citrea                  | Prothonotary Warbler                         | Endangered      | Endangered      | Ū               | SNA              | 8 Accidental     | 1        | 78.5 ± 1.0                  |
| А               | Rangifer tarandus pop. 2             | Woodland Caribou (Atlantic-<br>Gasp          | Endangered      | Endangered      | Extirpated      | SX               | 0.1 Extirpated   | 2        | 31.8 ± 1.0                  |
| Α               | Colinus virginianus                  | Northern Bobwhite                            | Endangered      | Endangered      |                 |                  |                  | 2        | 85.3 ± 7.0                  |
| Α               | Myotis lucifugus                     | Little Brown Myotis                          | Endangered      | Endangered      |                 |                  |                  | 54       | 6.7 ± 5.0                   |
| Α               | Ixobrychus exilis                    | Least Bittern                                | Threatened      | Threatened      | Threatened      | S1S2B            | 1 At Risk        | 19       | 30.2 ± 0.0                  |
| А               | Hylocichla mustelina                 | Wood Thrush                                  | Threatened      |                 | Threatened      | S1S2B            | 2 May Be At Risk | 124      | 1.9 ± 7.0                   |
| А               | Sturnella magna                      | Eastern Meadowlark                           | Threatened      |                 | Threatened      | S1S2B            | 2 May Be At Risk | 22       | 3.1 ± 1.0                   |
| A               | Caprimulgus vociferus                | Whip-Poor-Will                               | Threatened      | Threatened      | Threatened      | S2B              | 1 At Risk        | 60       | $6.8 \pm 7.0$               |
| A               | Chaetura pelagica                    | Chimney Swift                                | Threatened      | Threatened      | Threatened      | S2S3B            | 1 At Risk        | 124      | $4.7 \pm 0.0$               |
| A               | Catharus bicknelli                   | Bicknell's Thrush                            | Threatened      | Special Concern | Threatened      | S2S3B            | 1 At Risk        | 14       | 36.1 ± 7.0                  |
| A               | Acipenser oxyrinchus                 | Atlantic Sturgeon                            | Threatened      |                 | Threatened      | S3               | 4 Secure         | 1        | $74.6 \pm 1.0$              |
| A               | Glyptemys insculpta                  | Wood Turtle                                  | Threatened      | Threatened      | Threatened      | S3               | 1 At Risk        | 57       | $9.3 \pm 1.0$               |
| A               | Chordeiles minor                     | Common Nighthawk                             | Threatened      | Threatened      | Threatened      | S3B              | 1 At Risk        | 176      | $4.8 \pm 7.0$               |
| A               | Hirundo rustica                      | Barn Swallow                                 | Threatened      | modellou        | Threatened      | S3B              | 3 Sensitive      | 386      | 4.8 ± 7.0                   |
| A               | Riparia riparia                      | Bank Swallow                                 | Threatened      |                 | moatomoa        | S3B              | 3 Sensitive      | 161      | $4.8 \pm 7.0$               |
| A               | Contopus cooperi                     | Olive-sided Flycatcher                       | Threatened      | Threatened      | Threatened      | S3S4B            | 1 At Risk        | 164      | $4.8 \pm 7.0$               |
| A               | Wilsonia canadensis                  | Canada Warbler                               | Threatened      | Threatened      | Threatened      | S3S4B            | 1 At Risk        | 475      | $4.8 \pm 7.0$               |
| A               | Dolichonyx oryzivorus                | Bobolink                                     | Threatened      | Inicatoriou     | Threatened      | S3S4B            | 3 Sensitive      | 264      | $2.3 \pm 0.0$               |
| A               | Anguilla rostrata                    | American Eel                                 | Threatened      |                 | Threatened      | S5               | 4 Secure         | 34       | $12.8 \pm 1.0$              |
| A               | Melanerpes erythrocephalus           | Red-headed Woodpecker                        | Threatened      | Threatened      | medicined       | SNA              | 8 Accidental     | 1        | $31.5 \pm 7.0$              |
| Â               | Vermivora chrysoptera                | Golden-winged Warbler                        | Threatened      | Threatened      |                 | SNA              | 8 Accidental     | 1        | 78.5 ± 1.0                  |
| A               | Osmerus mordax pop. 2                | Lake Utopia Smelt large-<br>bodied pop.      | Threatened      |                 | Threatened      |                  |                  | 2        | 31.8 ± 1.0                  |
| А               | Falco peregrinus pop. 1              | Peregrine Falcon -<br>anatum/tundrius        | Special Concern | Special Concern | Endangered      | S1B              | 1 At Risk        | 122      | 33.1 ± 7.0                  |
| А               | Histrionicus histrionicus pop. 1     | Harleguin Duck - Eastern pop.                | Special Concern | Special Concern | Endangered      | S1B.S1N          | 1 At Risk        | 193      | 42.3 ± 12.0                 |
| A               | Acipenser brevirostrum               | Shortnose Sturgeon                           | Special Concern | Special Concern | Special Concern | S2               | 3 Sensitive      | 2        | 82.5 ± 10.0                 |
| A               | Balaenoptera physalus                | Fin Whale - Atlantic pop.                    | Special Concern | Special Concern | Special Concern | S2S3             | 2 20101010       | 3        | $67.0 \pm 0.0$              |
| A               | Chelydra serpentina                  | Snapping Turtle                              | Special Concern | Special Concern | Special Concern | S3               | 3 Sensitive      | 24       | $5.3 \pm 1.0$               |
| A               | Asio flammeus                        | Shapping Turte<br>Short-eared Owl            | Special Concern | Special Concern | Special Concern | S3B              | 3 Sensitive      | 16       | $63.0 \pm 7.0$              |
| A               | Euphagus carolinus                   | Rusty Blackbird                              | Special Concern | Special Concern | Special Concern | S3B<br>S3B       | 2 May Be At Risk | 87       | 4.8 ± 7.0                   |
| A               | Phalaropus lobatus                   | Red-necked Phalarope                         | Special Concern |                 |                 | S3D<br>S3M       | 3 Sensitive      | 07<br>11 | $4.8 \pm 7.0$<br>25.4 ± 0.0 |
|                 |                                      | Harbour Porpoise - Northwest                 |                 | Thursday        |                 |                  | 0 Densitive      |          |                             |
| A               | Phocoena phocoena (NW Atlantic pop.) | Atlantic pop.                                | Special Concern | Threatened      |                 | S4               |                  | 213      | 9.9 ± 100.0                 |
| А               | Contopus virens                      | Eastern Wood-Pewee                           | Special Concern |                 | Special Concern | S4B              | 4 Secure         | 222      | $4.8 \pm 7.0$               |

| Taxonomic Group | Scientific Name                  | Common Name                  | COSEWIC         | SARA            | Prov Legal Prot | Prov Rarity Rank   | Prov GS Rank     | # recs   | Distance (km)                |
|-----------------|----------------------------------|------------------------------|-----------------|-----------------|-----------------|--------------------|------------------|----------|------------------------------|
| A               | Tryngites subruficollis          | Buff-breasted Sandpiper      | Special Concern |                 |                 | SNA                | 8 Accidental     | 22       | 64.7 ± 0.0                   |
| A               | Lynx canadensis                  | Canadian Lynx                | Not At Risk     |                 | Endangered      | S1                 | 1 At Risk        | 7        | 18.8 ± 1.0                   |
| A               | Sorex dispar                     | Long-tailed Shrew            | Not At Risk     | Special Concern |                 | S1                 | 3 Sensitive      | 2        | 82.3 ± 1.0                   |
| A               | Accipiter cooperii               | Cooper's Hawk                | Not At Risk     |                 |                 | S1S2B              | 2 May Be At Risk | 11       | 37.7 ± 7.0                   |
| A               | Aegolius funereus                | Boreal Owl                   | Not At Risk     |                 |                 | S1S2B              | 2 May Be At Risk | 3        | 64.4 ± 1.0                   |
| A               | Buteo lineatus                   | Red-shouldered Hawk          | Not At Risk     | Special Concern |                 | S2B                | 2 May Be At Risk | 33       | 7.2 ± 7.0                    |
| A               | Fulica americana                 | American Coot                | Not At Risk     |                 |                 | S2B                | 3 Sensitive      | 2        | 36.1 ± 7.0                   |
| A               | Chlidonias niger                 | Black Tern                   | Not At Risk     |                 |                 | S2B                | 3 Sensitive      | 34       | 23.5 ± 7.0                   |
| A               | Globicephala melas               | Long-finned Pilot Whale      | Not At Risk     |                 |                 | S2S3               |                  | 2        | 53.1 ± 1.0                   |
| •               |                                  | Northern Dusky Salamander -  |                 |                 |                 | 00                 | 0.0              |          | 00.40                        |
| A               | Desmognathus fuscus (QC/NB pop.) | QC/NB pop.                   | Not At Risk     |                 |                 | S3                 | 3 Sensitive      | 91       | 9.3 ± 1.0                    |
| •               |                                  | Humpback Whale (NW           | Net At Diele    | 0               |                 | 00                 |                  | 0        | 00 5 . 5 0                   |
| A               | Megaptera novaeangliae           | Atlantic pop.)               | Not At Risk     | Special Concern |                 | S3                 |                  | 3        | 28.5 ± 5.0                   |
| А               | Haliaeetus leucocephalus         | Bald Eagle                   | Not At Risk     |                 | Endangered      | S3B                | 1 At Risk        | 299      | 4.1 ± 1.0                    |
| А               | Sterna hirundo                   | Common Tern                  | Not At Risk     |                 | <b>J</b>        | S3B                | 3 Sensitive      | 92       | $36.7 \pm 0.0$               |
| A               | Podiceps grisegena               | Red-necked Grebe             | Not At Risk     |                 |                 | S3M,S2N            | 3 Sensitive      | 3        | 37.4 ± 10.0                  |
| A               | Lagenorhynchus acutus            | Atlantic White-sided Dolphin | Not At Risk     |                 |                 | S3S4               |                  | 1        | 93.0 ± 1.0                   |
| A               | Canis lupus                      | Gray Wolf                    | Not At Risk     |                 | Extirpated      | SX                 | 0.1 Extirpated   | 3        | 59.9 ± 1.0                   |
| A               | Lepomis auritus                  | Redbreast Sunfish            | Data Deficient  | Special Concern | Exapatod        | S3?                | 4 Secure         | 28       | 29.1 ± 10.0                  |
| A               | Puma concolor pop. 1             | Cougar - Eastern pop.        | Data Deficient  | opoolal concom  | Endangered      | SU,SH              | 5 Undetermined   | 39       | $11.3 \pm 1.0$               |
| A               | Lasionycteris noctivagans        | Silver-haired Bat            | Data Denoient   |                 | Endangered      | S1?                | 5 Undetermined   | 1        | 86.8 ± 1.0                   |
| A               | Bartramia longicauda             | Upland Sandpiper             |                 |                 |                 | S1B                | 3 Sensitive      | 40       | 23.8 ± 7.0                   |
| A               | Phalaropus tricolor              | Wilson's Phalarope           |                 |                 |                 | S1B                | 3 Sensitive      | 33       | $64.7 \pm 0.0$               |
| A               | Leucophaeus atricilla            | Laughing Gull                |                 |                 |                 | S1B                | 3 Sensitive      | 6        | $78.5 \pm 1.0$               |
| A               | Sterna paradisaea                | Arctic Tern                  |                 |                 |                 | S1B<br>S1B         | 2 May Be At Risk | 25       | $76.5 \pm 1.0$<br>36.0 ± 1.0 |
| A               | Troglodytes aedon                | House Wren                   |                 |                 |                 | S1B<br>S1B         | 5 Undetermined   | 25<br>24 | $6.8 \pm 7.0$                |
|                 |                                  |                              |                 |                 |                 |                    |                  | 24<br>17 |                              |
| A               | Aythya marila                    | Greater Scaup                |                 |                 |                 | S1B,S2N            | 4 Secure         |          | 70.4 ± 1.0                   |
| A               | Uria aalge                       | Common Murre                 |                 |                 |                 | S1B,S3N<br>S1B,S3N | 4 Secure         | 14<br>32 | 79.4 ± 0.0<br>47.7 ± 0.0     |
| A               | Alca torda                       | Razorbill                    |                 |                 |                 |                    | 4 Secure         |          |                              |
| A               | Oxyura jamaicensis               | Ruddy Duck                   |                 |                 |                 | S1B,S4N            | 4 Secure         | 1        | 70.1 ± 1.0                   |
| A               | Rissa tridactyla                 | Black-legged Kittiwake       |                 |                 |                 | S1B,S4N            | 4 Secure         | 13       | 33.1 ± 7.0                   |
| A               | Butorides virescens              | Green Heron                  |                 |                 |                 | S1S2B              | 3 Sensitive      | 16       | $6.8 \pm 7.0$                |
| A               | Nycticorax nycticorax            | Black-crowned Night-heron    |                 |                 |                 | S1S2B              | 3 Sensitive      | 34       | 35.7 ± 0.0                   |
| A               | Gallinula chloropus              | Common Moorhen               |                 |                 |                 | S1S2B              | 3 Sensitive      | 13       | 68.9 ± 0.0                   |
| A               | Fratercula arctica               | Atlantic Puffin              |                 |                 |                 | S1S2B              | 3 Sensitive      | 17       | 46.6 ± 0.0                   |
| A               | Empidonax traillii               | Willow Flycatcher            |                 |                 |                 | S1S2B              | 3 Sensitive      | 48       | 13.8 ± 0.0                   |
| A               | Progne subis                     | Purple Martin                |                 |                 |                 | S1S2B              | 2 May Be At Risk | 104      | 6.8 ± 7.0                    |
| А               | Stelgidopteryx serripennis       | Northern Rough-winged        |                 |                 |                 | S1S2B              | 2 May Be At Risk | 23       | 22.2 ± 7.0                   |
|                 |                                  | Swallow                      |                 |                 |                 |                    | -                |          |                              |
| A               | Prosopium cylindraceum           | Round Whitefish              |                 |                 |                 | S2                 | 4 Secure         | 2        | 40.5 ± 10.0                  |
| A               | Salmo salar                      | Atlantic Salmon              |                 |                 |                 | S2                 | 2 May Be At Risk | 36       | 4.3 ± 1.0                    |
| A               | Eptesicus fuscus                 | Big Brown Bat                |                 |                 |                 | S2?                | 3 Sensitive      | 43       | 6.8 ± 1.0                    |
| A               | Lasiurus borealis                | Eastern Red Bat              |                 |                 |                 | S2?                | 5 Undetermined   | 9        | 18.6 ± 1.0                   |
| A               | Lasiurus cinereus                | Hoary Bat                    |                 |                 |                 | S2?                | 5 Undetermined   | 11       | 6.8 ± 1.0                    |
| A               | Oceanodroma leucorhoa            | Leach's Storm-Petrel         |                 |                 |                 | S2B                | 3 Sensitive      | 30       | $46.9 \pm 1.0$               |
| A               | Anas clypeata                    | Northern Shoveler            |                 |                 |                 | S2B                | 4 Secure         | 18       | 73.7 ± 7.0                   |
| A               | Anas strepera                    | Gadwall                      |                 |                 |                 | S2B                | 4 Secure         | 28       | 63.7 ± 7.0                   |
| A               | Eremophila alpestris             | Horned Lark                  |                 |                 |                 | S2B                | 2 May Be At Risk | 14       | 21.2 ± 7.0                   |
| A               | Cistothorus palustris            | Marsh Wren                   |                 |                 |                 | S2B                | 3 Sensitive      | 55       | $68.9 \pm 0.0$               |
| A               | Toxostoma rufum                  | Brown Thrasher               |                 |                 |                 | S2B                | 3 Sensitive      | 68       | 6.8 ± 7.0                    |
| A               | Pooecetes gramineus              | Vesper Sparrow               |                 |                 |                 | S2B                | 2 May Be At Risk | 36       | 14.6 ± 0.0                   |
| A               | Tringa solitaria                 | Solitary Sandpiper           |                 |                 |                 | S2B,S5M            | 4 Secure         | 127      | 58.2 ± 0.0                   |
| A               | Chroicocephalus ridibundus       | Black-headed Gull            |                 |                 |                 | S2M,S1N            | 3 Sensitive      | 2        | $35.9 \pm 0.0$               |
| Α               | Somateria spectabilis            | King Eider                   |                 |                 |                 | S2N                | 4 Secure         | 1        | $20.5 \pm 0.0$               |
| Α               | Asio otus                        | Long-eared Owl               |                 |                 |                 | S2S3               | 5 Undetermined   | 17       | 33.7 ± 7.0                   |
| Α               | Tringa semipalmata               | Willet                       |                 |                 |                 | S2S3B              | 3 Sensitive      | 124      | 17.2 ± 7.0                   |
| Α               | Pinicola enucleator              | Pine Grosbeak                |                 |                 |                 | S2S3B,S4S5N        | 3 Sensitive      | 19       | 1.9 ± 7.0                    |
| Α               | Branta bernicla                  | Brant                        |                 |                 |                 | S2S3M,S2S3N        | 4 Secure         | 71       | 16.4 ± 1.0                   |
|                 |                                  |                              |                 |                 |                 | -                  |                  |          |                              |

| Taxonomic Group | Scientific Name              | Common Name                       | COSEWIC         | SARA            | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs | Distance (km)  |
|-----------------|------------------------------|-----------------------------------|-----------------|-----------------|-----------------|------------------|------------------|--------|----------------|
| A               | Hyla versicolor              | Gray Treefrog                     |                 |                 |                 | S3               | 4 Secure         | 101    | 3.1 ± 1.0      |
| A               | Cepphus grylle               | Black Guillemot                   |                 |                 |                 | S3               | 4 Secure         | 167    | 8.9 ± 16.0     |
| A               | Loxia curvirostra            | Red Crossbill                     |                 |                 |                 | S3               | 4 Secure         | 67     | 1.9 ± 7.0      |
| A               | Coregonus clupeaformis       | Lake Whitefish                    |                 |                 |                 | S3               | 4 Secure         | 12     | 44.7 ± 10.0    |
| A               | Salvelinus namaycush         | Lake Trout                        |                 |                 |                 | S3               | 3 Sensitive      | 6      | 11.8 ± 0.0     |
| A               | Sorex maritimensis           | Maritime Shrew                    |                 |                 |                 | S3               | 4 Secure         | 1      | 83.7 ± 1.0     |
| A               | Synaptomys cooperi           | Southern Bog Lemming              |                 |                 |                 | S3               | 4 Secure         | 12     | 81.3 ± 1.0     |
| А               | Picoides dorsalis            | American Three-toed<br>Woodpecker |                 |                 |                 | S3?              | 3 Sensitive      | 9      | 21.7 ± 7.0     |
| А               | Anas acuta                   | Northern Pintail                  |                 |                 |                 | S3B              | 3 Sensitive      | 12     | 69.3 ± 0.0     |
| А               | Anas americana               | American Wigeon                   |                 |                 |                 | S3B              | 4 Secure         | 159    | 6.8 ± 7.0      |
| A               | Cathartes aura               | Turkey Vulture                    |                 |                 |                 | S3B              | 4 Secure         | 109    | 4.8 ± 7.0      |
| A               | Rallus limicola              | Virginia Rail                     |                 |                 |                 | S3B              | 3 Sensitive      | 59     | 13.1 ± 0.0     |
| A               | Charadrius vociferus         | Killdeer                          |                 |                 |                 | S3B              | 3 Sensitive      | 534    | 4.8 ± 7.0      |
| А               | Larus delawarensis           | Ring-billed Gull                  |                 |                 |                 | S3B              | 4 Secure         | 16     | 53.7 ± 7.0     |
| A               | Myiarchus crinitus           | Great Crested Flycatcher          |                 |                 |                 | S3B              | 3 Sensitive      | 106    | 4.8 ± 7.0      |
| А               | Mimus polyglottos            | Northern Mockingbird              |                 |                 |                 | S3B              | 3 Sensitive      | 84     | 1.9 ± 7.0      |
| А               | Passerina cyanea             | Indigo Bunting                    |                 |                 |                 | S3B              | 4 Secure         | 84     | 4.8 ± 7.0      |
| А               | Molothrus ater               | Brown-headed Cowbird              |                 |                 |                 | S3B              | 2 May Be At Risk | 119    | 4.8 ± 7.0      |
| А               | Mergus serrator              | Red-breasted Merganser            |                 |                 |                 | S3B,S4S5N        | 4 Secure         | 99     | 8.9 ± 16.0     |
| А               | Pluvialis dominica           | American Golden-Plover            |                 |                 |                 | S3M              | 3 Sensitive      | 149    | 19.2 ± 0.0     |
| А               | Phalaropus fulicarius        | Red Phalarope                     |                 |                 |                 | S3M              | 3 Sensitive      | 6      | 25.4 ± 0.0     |
| А               | Melanitta nigra              | Black Scoter                      |                 |                 |                 | S3M,S2S3N        | 3 Sensitive      | 84     | 8.9 ± 16.0     |
| А               | Calidris maritima            | Purple Sandpiper                  |                 |                 |                 | S3M,S3N          | 4 Secure         | 181    | 19.8 ± 9.0     |
| А               | Bucephala albeola            | Bufflehead                        |                 |                 |                 | S3N              | 3 Sensitive      | 137    | 8.9 ± 16.0     |
| А               | Tyrannus tyrannus            | Eastern Kingbird                  |                 |                 |                 | S3S4B            | 3 Sensitive      | 202    | 4.8 ± 7.0      |
| А               | Petrochelidon pyrrhonota     | Cliff Swallow                     |                 |                 |                 | S3S4B            | 3 Sensitive      | 242    | $2.3 \pm 0.0$  |
| А               | Piranga olivacea             | Scarlet Tanager                   |                 |                 |                 | S3S4B            | 4 Secure         | 161    | 7.2 ± 7.0      |
| А               | Coccothraustes vespertinus   | Evening Grosbeak                  |                 |                 |                 | S3S4B,S4S5N      | 3 Sensitive      | 100    | 7.2 ± 7.0      |
| А               | Podiceps auritus             | Horned Grebe                      |                 |                 | Special Concern | S4M.S4N          | 4 Secure         | 3      | 37.4 ± 10.0    |
| А               | Morus bassanus               | Northern Gannet                   |                 |                 |                 | SHB,S5M,S5N      | 4 Secure         | 1      | 35.6 ± 0.0     |
| 1               | Gomphus ventricosus          | Skillet Clubtail                  | Endangered      | Endangered      | Endangered      | S1               | 2 May Be At Risk | 39     | 89.7 ± 1.0     |
| I               | Ophiogomphus howei           | Pygmy Snaketail                   | Special Concern | Special Concern | Special Concern | S1               | 2 May Be At Risk | 3      | 27.8 ± 0.0     |
| I               | Alasmidonta varicosa         | Brook Floater                     | Special Concern | •               | Special Concern | S1S2             | 3 Sensitive      | 1      | 50.0 ± 0.0     |
| I               | Lampsilis cariosa            | Yellow Lampmussel                 | Special Concern | Special Concern | Special Concern | S2               | 3 Sensitive      | 54     | 70.4 ± 0.0     |
| I               | Danaus plexippus             | Monarch                           | Special Concern | Special Concern | Special Concern | S3B              | 3 Sensitive      | 73     | 18.5 ± 0.0     |
| 1               | Lyogyrus granum              | Squat Duskysnail                  | Data Deficient  |                 |                 | S2               |                  | 5      | 75.9 ± 0.0     |
| I               | Erynnis juvenalis            | Juvenal's Duskywing               |                 |                 |                 | S1               | 5 Undetermined   | 1      | 72.8 ± 1.0     |
| I               | Lycaena dorcas claytoni      | Clayton's Copper                  |                 |                 |                 | S1               | 2 May Be At Risk | 4      | 80.5 ± 0.0     |
| I               | Somatochlora septentrionalis | Muskeg Emerald                    |                 |                 |                 | S1               | 2 May Be At Risk | 1      | 75.5 ± 1.0     |
| 1               | Celithemis martha            | Martha's Pennant                  |                 |                 |                 | S1               | 5 Undetermined   | 1      | 75.3 ± 0.0     |
| I               | Pachydiplax longipennis      | Blue Dasher                       |                 |                 |                 | S1               | 5 Undetermined   | 1      | 25.1 ± 1.0     |
|                 | Coccinella transversoguttata |                                   |                 |                 |                 | 0400             |                  | •      |                |
| I               | richardsoni                  | Transverse Lady Beetle            |                 |                 |                 | S1S2             | 2 May Be At Risk | 2      | 79.3 ± 0.0     |
| I               | Ophiogomphus colubrinus      | Boreal Snaketail                  |                 |                 |                 | S1S2             | 2 May Be At Risk | 34     | 11.8 ± 0.0     |
| I               | Satyrium calanus             | Banded Hairstreak                 |                 |                 |                 | S2               | 3 Sensitive      | 12     | 91.8 ± 0.0     |
| I               | Satyrium calanus falacer     | Banded Hairstreak                 |                 |                 |                 | S2               | 4 Secure         | 4      | 88.7 ± 1.0     |
| I               | Callophrys henrici           | Henry's Elfin                     |                 |                 |                 | S2               | 4 Secure         | 12     | 74.1 ± 0.0     |
| I               | Strymon melinus              | Grey Hairstreak                   |                 |                 |                 | S2               | 4 Secure         | 3      | 67.6 ± 1.0     |
| I               | Cupido comyntas              | Eastern Tailed Blue               |                 |                 |                 | S2               | 4 Secure         | 8      | $61.5 \pm 0.0$ |
| I               | Gomphus vastus               | Cobra Clubtail                    |                 |                 |                 | S2               | 3 Sensitive      | 40     | $80.5 \pm 0.0$ |
| I               | Aeshna clepsydra             | Mottled Darner                    |                 |                 |                 | S2               | 3 Sensitive      | 12     | $60.5 \pm 0.0$ |
| I               | Somatochlora tenebrosa       | Clamp-Tipped Emerald              |                 |                 |                 | S2               | 5 Undetermined   | 5      | 13.0 ± 1.0     |
| I               | Ladona exusta                | White Corporal                    |                 |                 |                 | S2               | 5 Undetermined   | 8      | 9.1 ± 1.0      |
| I               | Hetaerina americana          | American Rubyspot                 |                 |                 |                 | S2               | 3 Sensitive      | 14     | $50.0 \pm 0.0$ |
| I               | Coenagrion interrogatum      | Subarctic Bluet                   |                 |                 |                 | S2               | 3 Sensitive      | 1      | 83.2 ± 0.0     |
| I               | Enallagma vesperum           | Vesper Bluet                      |                 |                 |                 | S2               | 5 Undetermined   | 6      | 9.1 ± 1.0      |
| I               | Ischnura posita              | Fragile Forktail                  |                 |                 |                 | S2               | 2 May Be At Risk | 6      | $13.4 \pm 1.0$ |
|                 |                              |                                   |                 |                 |                 |                  | .,               | -      |                |

| Taxonomic Group | Scientific Name                                        | Common Name                           | COSEWIC         | SARA            | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank                         | # recs | Distance (km)                    |
|-----------------|--------------------------------------------------------|---------------------------------------|-----------------|-----------------|-----------------|------------------|--------------------------------------|--------|----------------------------------|
| I               | Arigomphus furcifer                                    | Lilypad Clubtail                      |                 |                 |                 | S2               | 5 Undetermined                       | 1      | 97.3 ± 0.0                       |
| I               | Alasmidonta undulata                                   | Triangle Floater                      |                 |                 |                 | S2               | 3 Sensitive                          | 16     | 6.4 ± 1.0                        |
| I               | Anatis labiculata                                      | Fifteen-spotted Lady Beetle           |                 |                 |                 | S2S3             | 3 Sensitive                          | 1      | 79.8 ± 0.0                       |
| I               | Chrysops indus                                         | a Tabanid Fly                         |                 |                 |                 | S2S3             | 3 Sensitive                          | 2      | 85.4 ± 0.0                       |
| 1               | Gomphus abbreviatus                                    | Spine-crowned Clubtail                |                 |                 |                 | S2S3             | 4 Secure                             | 34     | 21.6 ± 1.0                       |
| 1               | Lestes vigilax                                         | Swamp Spreadwing                      |                 |                 |                 | S2S3             | 3 Sensitive                          | 34     | 5.9 ± 1.0                        |
| 1               | Hesperia sassacus                                      | Indian Skipper                        |                 |                 |                 | S3               | 4 Secure                             | 4      | 33.7 ± 0.0                       |
| 1               | Euphyes bimacula                                       | Two-spotted Skipper                   |                 |                 |                 | S3               | 4 Secure                             | 8      | 10.8 ± 1.0                       |
| 1               | Lycaena hyllus                                         | Bronze Copper                         |                 |                 |                 | S3               | 3 Sensitive                          | 3      | 68.5 ± 1.0                       |
| 1               | Lycaena dospassosi                                     | Salt Marsh Copper                     |                 |                 |                 | S3               | 4 Secure                             | 1      | 90.4 ± 1.0                       |
| 1               | Śatyrium acadica                                       | Acadian Hairstreak                    |                 |                 |                 | S3               | 4 Secure                             | 5      | 12.5 ± 0.0                       |
| 1               | Callophrys polios                                      | Hoary Elfin                           |                 |                 |                 | S3               | 4 Secure                             | 3      | 85.6 ± 0.0                       |
| 1               | Plebejus idas                                          | Northern Blue                         |                 |                 |                 | S3               | 4 Secure                             | 6      | 58.1 ± 0.0                       |
| i               | Plebejus idas empetri                                  | Crowberry Blue                        |                 |                 |                 | S3               | 4 Secure                             | 8      | 52.6 ± 1.0                       |
| i               | Plebejus saepiolus                                     | Greenish Blue                         |                 |                 |                 | S3               | 4 Secure                             | 3      | $34.0 \pm 0.0$                   |
| i               | Speveria aphrodite                                     | Aphrodite Fritillary                  |                 |                 |                 | S3               | 4 Secure                             | 18     | $39.1 \pm 0.0$                   |
| i               | Boloria bellona                                        | Meadow Fritillary                     |                 |                 |                 | S3               | 4 Secure                             | 26     | $36.8 \pm 1.0$                   |
| i               | Chlosyne nycteis                                       | Silvery Checkerspot                   |                 |                 |                 | S3               | 4 Secure                             | 5      | 82.0 ± 1.0                       |
| i               | Polygonia satyrus                                      | Satyr Comma                           |                 |                 |                 | S3               | 4 Secure                             | 8      | 22.7 ± 1.0                       |
| i               | Polygonia gracilis                                     | Hoary Comma                           |                 |                 |                 | S3               | 4 Secure                             | 0<br>1 | $22.7 \pm 1.0$<br>94.1 ± 1.0     |
| 1               | Nymphalis I-album                                      | Compton Tortoiseshell                 |                 |                 |                 | S3               | 4 Secure                             | 14     | $94.1 \pm 1.0$<br>67.5 ± 5.0     |
| 1               |                                                        | Jutta Arctic                          |                 |                 |                 | S3               | 4 Secure                             | 14     | $7.7 \pm 1.0$                    |
|                 | Oeneis jutta<br>Gomphaeschna furcillata                |                                       |                 |                 |                 |                  |                                      |        |                                  |
|                 |                                                        | Harlequin Darner                      |                 |                 |                 | S3               | 5 Undetermined                       | 11     | 12.5 ± 1.0                       |
|                 | Dorocordulia lepida                                    | Petite Emerald                        |                 |                 |                 | S3               | 4 Secure                             | 20     | $9.5 \pm 0.0$                    |
| 1               | Somatochlora cingulata                                 | Lake Emerald                          |                 |                 |                 | S3               | 4 Secure                             | 11     | 14.1 ± 1.0                       |
| 1               | Somatochlora forcipata                                 | Forcipate Emerald                     |                 |                 |                 | S3               | 4 Secure                             | 20     | 9.1 ± 1.0                        |
| 1               | Williamsonia fletcheri                                 | Ebony Boghaunter                      |                 |                 |                 | S3               | 4 Secure                             | 13     | 12.5 ± 1.0                       |
| 1               | Lestes eurinus                                         | Amber-Winged Spreadwing               |                 |                 |                 | S3               | 4 Secure                             | 8      | 32.8 ± 0.0                       |
|                 | Enallagma geminatum                                    | Skimming Bluet                        |                 |                 |                 | S3               | 5 Undetermined                       | 5      | 12.8 ± 1.0                       |
| I               | Enallagma signatum                                     | Orange Bluet                          |                 |                 |                 | S3               | 4 Secure                             | 6      | 12.8 ± 1.0                       |
| 1               | Stylurus scudderi                                      | Zebra Clubtail                        |                 |                 |                 | S3               | 4 Secure                             | 61     | 29.0 ± 1.0                       |
| I               | Leptodea ochracea                                      | Tidewater Mucket                      |                 |                 |                 | S3               | 4 Secure                             | 30     | $76.6 \pm 0.0$                   |
| 1               | Pantala hymenaea                                       | Spot-Winged Glider                    |                 |                 |                 | S3B              | 4 Secure                             | 5      | 20.7 ± 1.0                       |
| I               | Satyrium liparops                                      | Striped Hairstreak                    |                 |                 |                 | S3S4             | 4 Secure                             | 2      | 91.8 ± 0.0                       |
| 1               | Satyrium liparops strigosum                            | Striped Hairstreak                    |                 |                 |                 | S3S4             | 4 Secure                             | 1      | 97.4 ± 10.0                      |
| Ν               | Erioderma pedicellatum (Atlantic pop.)                 | Boreal Felt Lichen - Atlantic<br>pop. | Endangered      | Endangered      | Endangered      | SH               | 1 At Risk                            | 1      | 41.2 ± 1.0                       |
| Ν               | Degelia plumbea                                        | Blue Felt Lichen                      | Special Concern | Special Concern | Special Concern | S1               | 2 May Be At Risk                     | 2      | 41.8 ± 5.0                       |
| Ν               | Pseudevernia cladonia                                  | Ghost Antler Lichen                   | Not At Risk     | •               | •               | S3               | 5 Undetermined                       | 13     | 33.0 ± 5.0                       |
| Ν               | Anomodon viticulosus                                   | a Moss                                |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 87.8 ± 1.0                       |
| Ν               | Bryum muehlenbeckii                                    | Muehlenbeck's Bryum Moss              |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 82.2 ± 1.0                       |
| Ν               | Bryum salinum                                          | a Moss                                |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 54.8 ± 1.0                       |
| Ν               | Calliergon trifarium                                   | Three-ranked Moss                     |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 78.0 ± 0.0                       |
| N               | Dichelyma falcatum                                     | a Moss                                |                 |                 |                 | S1               | 2 May Be At Risk                     | 2      | $74.1 \pm 1.0$                   |
| N               | Dicranum bonjeanii                                     | Boniean's Broom Moss                  |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | $92.5 \pm 1.0$                   |
| N               | Ditrichum pallidum                                     | Pale Cow-hair Moss                    |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | $32.0 \pm 1.0$<br>72.0 ± 1.0     |
| N               | Eurhynchium hians                                      | Light Beaked Moss                     |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 94.1 ± 1.0                       |
| N               | Fissidens taxifolius                                   | Yew-leaved Pocket Moss                |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 83.6 ± 0.0                       |
| N               | Meesia triguetra                                       | Three-ranked Cold Moss                |                 |                 |                 | S1               | 2 May Be At Risk<br>2 May Be At Risk | 1      | 83.6 ± 0.0<br>81.7 ± 0.0         |
| N               | Plagiothecium latebricola                              | Alder Silk Moss                       |                 |                 |                 | S1               | 2 May Be At Risk<br>2 May Be At Risk | 1      | $81.7 \pm 0.0$<br>$85.5 \pm 0.0$ |
| N               | Racomitrium ericoides                                  | a Moss                                |                 |                 |                 | S1               |                                      | 1      | $52.9 \pm 3.0$                   |
| N               |                                                        |                                       |                 |                 |                 | S1<br>S1         | 2 May Be At Risk                     |        |                                  |
|                 | Rhytidiadelphus loreus                                 | Lanky Moss                            |                 |                 |                 |                  | 2 May Be At Risk                     | 1      | 78.3 ± 10.0                      |
| N               | Sphagnum macrophyllum                                  | Sphagnum                              |                 |                 |                 | S1               | 2 May Be At Risk                     | 2      | $63.3 \pm 0.0$                   |
| N               | Sphagnum subfulvum                                     | a Peatmoss                            |                 |                 |                 | S1               | 2 May Be At Risk                     | 4      | $23.2 \pm 0.0$                   |
| N               | Splachnum pennsylvanicum                               | Southern Dung Moss                    |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 75.1 ± 0.0                       |
| N               | Tomentypnum falcifolium                                | Sickle-leaved Golden Moss             |                 |                 |                 | S1               | 2 May Be At Risk                     | 1      | 63.5 ± 1.0                       |
|                 | Llooudate vin bullum distich cours                     |                                       |                 |                 |                 |                  |                                      |        | LAD. 10                          |
| N<br>N          | Pseudotaxiphyllum distichaceum<br>Coscinodon cribrosus | a Moss<br>Sieve-Toothed Moss          |                 |                 |                 | S1<br>S1         | 2 May Be At Risk<br>2 May Be At Risk | 2<br>1 | 54.8 ± 1.0<br>88.3 ± 0.0         |

| Taxonomic Group | Scientific Name          | Common Name                 | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs | Distance (km)                 |
|-----------------|--------------------------|-----------------------------|---------|------|-----------------|------------------|------------------|--------|-------------------------------|
| N               | Peltigera collina        | Tree Pelt Lichen            |         |      |                 | S1               | 2 May Be At Risk | 1      | 64.3 ± 10.0                   |
| N               | Pohlia filum             | a Moss                      |         |      |                 | S1?              | 5 Undetermined   | 2      | 74.2 ± 3.0                    |
| Ν               | Sphagnum platyphyllum    | Flat-leaved Peat Moss       |         |      |                 | S1?              | 5 Undetermined   | 3      | 23.2 ± 0.0                    |
| Ν               | Anomobryum filiforme     | a moss                      |         |      |                 | S1?              | 5 Undetermined   | 1      | 94.1 ± 1.0                    |
| Ν               | Platylomella lescurii    | a Moss                      |         |      |                 | S1?              | 5 Undetermined   | 1      | 12.0 ± 1.0                    |
| Ν               | Brachythecium digastrum  | a Moss                      |         |      |                 | S1S2             | 3 Sensitive      | 1      | 94.1 ± 1.0                    |
| N               | Bryum pallescens         | Pale Bryum Moss             |         |      |                 | S1S2             | 5 Undetermined   | 2      | 56.4 ± 1.0                    |
| N               | Campylium radicale       | Long-stalked Fine Wet Moss  |         |      |                 | S1S2             | 5 Undetermined   | 1      | 94.1 ± 1.0                    |
| N               | Cynodontium strumiferum  | Strumose Dogtooth Moss      |         |      |                 | S1S2             | 3 Sensitive      | 1      | $6.0 \pm 8.0$                 |
| N               | Dichelyma capillaceum    | Hairlike Dichelyma Moss     |         |      |                 | S1S2             | 3 Sensitive      | 1      | $63.5 \pm 4.0$                |
| N               | Dicranum spurium         | Spurred Broom Moss          |         |      |                 | S1S2             | 3 Sensitive      | 2      | $14.4 \pm 0.0$                |
| N               | Anomodon tristis         | a Moss                      |         |      |                 | S1S2             | 2 May Be At Risk | 1      | $48.9 \pm 1.0$                |
| N               | Schistostega pennata     | Luminous Moss               |         |      |                 | S1S2             | 3 Sensitive      | 1      | 94.1 ± 1.0                    |
| N               | Sphagnum angermanicum    | a Peatmoss                  |         |      |                 | S1S2             | 3 Sensitive      | 2      | $49.5 \pm 1.0$                |
| N               | Tortula mucronifolia     | Mucronate Screw Moss        |         |      |                 | S1S2             | 3 Sensitive      | 1      | 49.5 ± 1.0<br>87.6 ± 0.0      |
| N               | Cephaloziella elachista  | Spurred Threadwort          |         |      |                 | S1S2<br>S1S3     | 6 Not Assessed   | 1      | 78.1 ± 5.0                    |
|                 |                          |                             |         |      |                 |                  |                  | 1      |                               |
| N               | Jungermannia obovata     | Egg Flapwort                |         |      |                 | S1S3             | 6 Not Assessed   |        | 94.8 ± 0.0                    |
| N               | Porella pinnata          | Pinnate Scalewort           |         |      |                 | S1S3             | 6 Not Assessed   | 1      | 30.1 ± 1.0                    |
| N               | Reboulia hemisphaerica   | Purple-margined Liverwort   |         |      |                 | S1S3             | 6 Not Assessed   | 1      | 10.3 ± 1.0                    |
| N               | Amphidium mougeotii      | a Moss                      |         |      |                 | S2               | 3 Sensitive      | 1      | $6.0 \pm 8.0$                 |
| N               | Buxbaumia aphylla        | Brown Shield Moss           |         |      |                 | S2               | 3 Sensitive      | 2      | $6.0 \pm 8.0$                 |
| N               | Campylium polygamum      | a Moss                      |         |      |                 | S2               | 3 Sensitive      | 1      | 48.0 ± 1.0                    |
| N               | Cirriphyllum piliferum   | Hair-pointed Moss           |         |      |                 | S2               | 3 Sensitive      | 1      | 95.9 ± 1.0                    |
| N               | Cynodontium tenellum     | Delicate Dogtooth Moss      |         |      |                 | S2               | 3 Sensitive      | 1      | 54.3 ± 1.0                    |
| N               | Hypnum pratense          | Meadow Plait Moss           |         |      |                 | S2               | 3 Sensitive      | 1      | 81.3 ± 0.0                    |
| N               | Orthotrichum speciosum   | Showy Bristle Moss          |         |      |                 | S2               | 4 Secure         | 3      | 19.4 ± 2.0                    |
| Ν               | Physcomitrium immersum   | a Moss                      |         |      |                 | S2               | 3 Sensitive      | 5      | 94.1 ± 1.0                    |
| Ν               | Physcomitrium pyriforme  | Pear-shaped Urn Moss        |         |      |                 | S2               | 3 Sensitive      | 3      | 94.1 ± 10.0                   |
| Ν               | Racomitrium fasciculare  | a Moss                      |         |      |                 | S2               | 3 Sensitive      | 1      | 13.0 ± 0.0                    |
| Ν               | Scorpidium scorpioides   | Hooked Scorpion Moss        |         |      |                 | S2               | 3 Sensitive      | 4      | 78.0 ± 0.0                    |
| Ν               | Sphagnum centrale        | Central Peat Moss           |         |      |                 | S2               | 3 Sensitive      | 1      | $21.7 \pm 0.0$                |
| N               | Sphagnum lindbergii      | Lindberg's Peat Moss        |         |      |                 | S2               | 3 Sensitive      | 4      | 54.8 ± 1.0                    |
| N               | Taxiphyllum deplanatum   | Imbricate Yew-leaved Moss   |         |      |                 | S2               | 3 Sensitive      | 1      | 54.3 ± 1.0                    |
| N               | Tetraplodon mnioides     | Entire-leaved Nitrogen Moss |         |      |                 | S2               | 3 Sensitive      | 3      | 54.3 ± 1.0                    |
| N               | Ulota phyllantha         | a Moss                      |         |      |                 | S2               | 3 Sensitive      | 1      | 54.3 ± 1.0                    |
| N               | Zygodon viridissimus     | a Moss                      |         |      |                 | S2               | 2 May Be At Risk | 2      | 9.6 ± 5.0                     |
| N               | Schistidium agassizii    | Elf Bloom Moss              |         |      |                 | S2               | 3 Sensitive      | 2      | 9.6 ± 5.0                     |
| N               | Nephroma laevigatum      | Mustard Kidney Lichen       |         |      |                 | S2<br>S2         | 2 May Be At Risk | 1      | $9.0 \pm 3.0$<br>64.3 ± 10.0  |
| N               | Calliergonella cuspidata | Common Large Wetland Moss   |         |      |                 | S2S3             | 3 Sensitive      | 4      | $30.0 \pm 10.0$               |
| N               | Didymodon rigidulus      | Rigid Screw Moss            |         |      |                 | S2S3             | 3 Sensitive      | 4      | $50.0 \pm 10.0$<br>68.9 ± 8.0 |
|                 | Cephaloziella divaricata |                             |         |      |                 | S2S3<br>S2S4     |                  | 2      |                               |
| N               |                          | Common Threadwort           |         |      |                 |                  | 6 Not Assessed   |        | 10.3 ± 1.0                    |
| N               | Aulacomnium androgynum   | Little Groove Moss          |         |      |                 | S3               | 4 Secure         | 2      | 8.3 ± 1.0                     |
| N               | Dicranella cerviculata   | a Moss                      |         |      |                 | S3               | 3 Sensitive      | 3      | $20.0 \pm 6.0$                |
| N               | Dicranum majus           | Greater Broom Moss          |         |      |                 | S3               | 4 Secure         | 4      | 7.3 ± 15.0                    |
| N               | Heterocladium dimorphum  | Dimorphous Tangle Moss      |         |      |                 | S3               | 4 Secure         | 1      | 19.4 ± 2.0                    |
| N               | Hypnum curvifolium       | Curved-leaved Plait Moss    |         |      |                 | S3               | 3 Sensitive      | 1      | 9.6 ± 5.0                     |
| N               | Pleuridium subulatum     | a Moss                      |         |      |                 | S3               | 3 Sensitive      | 2      | 90.9 ± 1.0                    |
| N               | Pogonatum dentatum       | Mountain Hair Moss          |         |      |                 | S3               | 4 Secure         | 1      | 54.3 ± 1.0                    |
| N               | Sphagnum torreyanum      | a Peatmoss                  |         |      |                 | S3               | 4 Secure         | 4      | 21.3 ± 1.0                    |
| N               | Sphagnum austinii        | Austin's Peat Moss          |         |      |                 | S3               | 4 Secure         | 1      | 75.8 ± 1.0                    |
| Ν               | Tetraphis geniculata     | Geniculate Four-tooth Moss  |         |      |                 | S3               | 4 Secure         | 4      | $54.0 \pm 0.0$                |
| Ν               | Trichostomum tenuirostre | Acid-Soil Moss              |         |      |                 | S3               | 4 Secure         | 2      | $9.6 \pm 5.0$                 |
| Ν               | Schistidium maritimum    | a Moss                      |         |      |                 | S3               | 4 Secure         | 1      | 54.3 ± 1.0                    |
| Ν               | Rauiella scita           | Smaller Fern Moss           |         |      |                 | S3               | 3 Sensitive      | 1      | 95.2 ± 3.0                    |
| N               | Dicranella rufescens     | Red Forklet Moss            |         |      |                 | S3?              | 5 Undetermined   | 2      | 74.1 ± 4.0                    |
| N               | Sphagnum contortum       | Twisted Peat Moss           |         |      |                 | S3?              | 4 Secure         | 1      | 95.2 ± 0.0                    |
| N               | Sphagnum lescurii        | a Peatmoss                  |         |      |                 | S3?              | 5 Undetermined   | 2      | $21.1 \pm 1.0$                |
| N               | Atrichum tenellum        | Slender Smoothcap Moss      |         |      |                 | S3S4             | 4 Secure         | 4      | $20.0 \pm 6.0$                |
|                 |                          |                             |         |      |                 |                  |                  |        |                               |

| N A  | Barbula convoluta<br>Brachythecium campestre | Lesser Bird's-claw Beard Moss  |                 |                 |            |              |                                      |    | Distance (km)   |
|------|----------------------------------------------|--------------------------------|-----------------|-----------------|------------|--------------|--------------------------------------|----|-----------------|
| N    | Brachythocium compostro                      | Ecocor Bird c clair Board mooo |                 |                 |            | S3S4         | 4 Secure                             | 1  | 68.9 ± 8.0      |
|      | Diachymecium campesire                       | Field Ragged Moss              |                 |                 |            | S3S4         | 4 Secure                             | 2  | 74.2 ± 3.0      |
| N    | Brachythecium velutinum                      | Velvet Ragged Moss             |                 |                 |            | S3S4         | 4 Secure                             | 3  | 7.3 ± 15.0      |
| IN / | Dicranella schreberiana                      | Schreber's Forklet Moss        |                 |                 |            | S3S4         | 4 Secure                             | 1  | 94.1 ± 1.0      |
| Ν    | Dicranella subulata                          | Awl-leaved Forklet Moss        |                 |                 |            | S3S4         | 4 Secure                             | 1  | 72.7 ± 2.0      |
|      | Distichium capillaceum                       | Erect-fruited Iris Moss        |                 |                 |            | S3S4         | 4 Secure                             | 1  | $56.6 \pm 0.0$  |
|      | Fissidens bryoides                           | Lesser Pocket Moss             |                 |                 |            | S3S4         | 4 Secure                             | 1  | $66.4 \pm 4.0$  |
|      | Hypnum fauriei                               | a Moss                         |                 |                 |            | S3S4         | 4 Secure                             | 3  | $54.3 \pm 1.0$  |
|      | Isopterygiopsis muelleriana                  | a Moss                         |                 |                 |            | S3S4         | 4 Secure                             | 6  | $7.3 \pm 15.0$  |
|      | Myurella julacea                             | Small Mouse-tail Moss          |                 |                 |            | S3S4         | 4 Secure                             | 1  | $6.0 \pm 8.0$   |
|      | Pohlia annotina                              | a Moss                         |                 |                 |            | S3S4         | 4 Secure                             | 2  | $19.4 \pm 2.0$  |
|      | Tortula truncata                             | a Moss                         |                 |                 |            | S3S4         | 4 Secure                             | 1  | 89.1 ± 1.0      |
|      | Racomitrium microcarpon                      | a Moss                         |                 |                 |            | S3S4         | 4 Secure                             | 1  | $10.7 \pm 0.0$  |
|      | Sphagnum majus                               | Olive Peat Moss                |                 |                 |            | S3S4         | 4 Secure                             | 1  | $97.7 \pm 5.0$  |
|      | Tetraplodon angustatus                       | Toothed-leaved Nitrogen Moss   |                 |                 |            | S3S4         | 4 Secure                             | 1  | $54.3 \pm 1.0$  |
|      | Tomentypnum nitens                           | Golden Fuzzy Fen Moss          |                 |                 |            | S3S4<br>S3S4 | 4 Secure                             | 1  | 82.7 ± 3.0      |
|      | Limprichtia revolvens                        | a Moss                         |                 |                 |            | S3S4<br>S3S4 | 4 Secure                             | 2  | $83.5 \pm 0.0$  |
|      |                                              | Toothless Grimmia Moss         |                 |                 |            | SH           | 5 Undetermined                       |    | $89.3 \pm 10.0$ |
|      | Grimmia anodon                               |                                |                 |                 |            |              |                                      | 2  |                 |
|      | Leucodon brachypus                           | a Moss                         |                 |                 | <b>-</b>   | SH           | 2 May Be At Risk                     | 2  | 18.1 ± 100.0    |
|      | Juglans cinerea                              | Butternut                      | Endangered      | Endangered      | Endangered | S1           | 1 At Risk                            | 72 | 74.7 ± 1.0      |
|      | Polemonium vanbruntiae                       | Van Brunt's Jacob's-ladder     | Threatened      | Threatened      | Threatened | S1           | 1 At Risk                            | 72 | 34.2 ± 1.0      |
|      | Symphyotrichum anticostense                  | Anticosti Aster                | Threatened      | Threatened      | Endangered | S1S3         | 1 At Risk                            | 4  | 80.5 ± 0.0      |
|      | Symphyotrichum praealtum                     | Willow-leaved Aster            | Threatened      | Threatened      |            | SNA          | 7 Exotic                             | 1  | 18.1 ± 1.0      |
|      | Isoetes prototypus                           | Prototype Quillwort            | Special Concern | Special Concern | Endangered | S2           | 1 At Risk                            | 22 | 61.7 ± 0.0      |
|      | Pterospora andromedea                        | Woodland Pinedrops             |                 |                 | Endangered | S1           | 1 At Risk                            | 14 | 87.5 ± 1.0      |
|      | Sanicula trifoliata                          | Large-Fruited Sanicle          |                 |                 |            | S1           | 2 May Be At Risk                     | 2  | 89.3 ± 0.0      |
|      | Antennaria parlinii                          | a Pussytoes                    |                 |                 |            | S1           | 2 May Be At Risk                     | 2  | 19.7 ± 0.0      |
|      | Antennaria howellii ssp. petaloidea          | Pussy-Toes                     |                 |                 |            | S1           | 2 May Be At Risk                     | 4  | 70.5 ± 1.0      |
| Р    | Helianthus decapetalus                       | Ten-rayed Sunflower            |                 |                 |            | S1           | 2 May Be At Risk                     | 20 | 88.5 ± 1.0      |
| P I  | Hieracium kalmii                             | Kalm's Hawkweed                |                 |                 |            | S1           | 2 May Be At Risk                     | 5  | 53.1 ± 1.0      |
| P I  | Hieracium kalmii var. kalmii                 | Kalm's Hawkweed                |                 |                 |            | S1           | 2 May Be At Risk                     | 7  | 52.4 ± 1.0      |
| Р    | Hieracium paniculatum                        | Panicled Hawkweed              |                 |                 |            | S1           | 2 May Be At Risk                     | 2  | 69.4 ± 1.0      |
| P    | Senecio pseudoarnica                         | Seabeach Ragwort               |                 |                 |            | S1           | 2 May Be At Risk                     | 14 | 69.3 ± 0.0      |
| P    | Solidago simplex var. monticola              | Sticky Goldenrod               |                 |                 |            | S1           | 2 May Be At Risk                     | 1  | 90.2 ± 0.0      |
| P    | Symphyotrichum laeve                         | Smooth Aster                   |                 |                 |            | S1           | 5 Undetermined                       | 3  | 84.3 ± 1.0      |
| Р    | Cardamine parviflora var. arenicola          | Small-flowered Bittercress     |                 |                 |            | S1           | 2 May Be At Risk                     | 9  | 33.1 ± 1.0      |
| Р    | Draba arabisans                              | Rock Whitlow-Grass             |                 |                 |            | S1           | 2 May Be At Risk                     | 6  | $41.5 \pm 0.0$  |
|      | Draba breweri var. cana                      | Brewer's Whitlow-grass         |                 |                 |            | S1           | 2 May Be At Risk                     | 10 | $98.0 \pm 0.0$  |
|      | Draba glabella                               | Rock Whitlow-Grass             |                 |                 |            | S1           | 2 May Be At Risk                     | 7  | 62.4 ± 1.0      |
|      | Minuartia groenlandica                       | Greenland Stitchwort           |                 |                 |            | S1           | 2 May Be At Risk                     | 1  | $68.0 \pm 0.0$  |
|      | Chenopodium capitatum                        | Strawberry-blite               |                 |                 |            | S1           | 2 May Be At Risk                     | 2  | 90.5 ± 1.0      |
|      | Chenopodium simplex                          | Maple-leaved Goosefoot         |                 |                 |            | S1           | 2 May Be At Risk                     | 10 | 72.4 ± 1.0      |
| · ·  | Callitriche terrestris                       | Terrestrial Water-Starwort     |                 |                 |            | S1           | 5 Undetermined                       | 10 | $22.7 \pm 0.0$  |
|      | Triadenum virginicum                         | Virginia St John's-wort        |                 |                 |            | S1           | 2 May Be At Risk                     | 7  | $69.7 \pm 0.0$  |
| 1    | Viburnum acerifolium                         | Maple-leaved Viburnum          |                 |                 |            | S1<br>S1     | 2 May Be At Risk<br>2 May Be At Risk | 10 | $15.5 \pm 0.0$  |
|      |                                              |                                |                 |                 |            | S1<br>S1     |                                      | 10 |                 |
|      | Drosera anglica<br>Drosera linearis          | English Sundew                 |                 |                 |            | S1<br>S1     | 2 May Be At Risk                     | 1  | 81.6 ± 0.0      |
|      |                                              | Slender-Leaved Sundew          |                 |                 |            |              | 2 May Be At Risk                     |    | 81.6 ± 0.0      |
|      | Corema conradii                              | Broom Crowberry                |                 |                 |            | S1           | 2 May Be At Risk                     | 1  | 88.5 ± 10.0     |
| -    | Vaccinium boreale                            | Northern Blueberry             |                 |                 |            | S1           | 2 May Be At Risk                     | 1  | 50.8 ± 0.0      |
|      | Vaccinium corymbosum                         | Highbush Blueberry             |                 |                 |            | S1           | 3 Sensitive                          | 9  | 11.0 ± 5.0      |
|      | Chamaesyce polygonifolia                     | Seaside Spurge                 |                 |                 |            | S1           | 2 May Be At Risk                     | 8  | $68.6 \pm 0.0$  |
|      | Desmodium glutinosum                         | Large Tick-Trefoil             |                 |                 |            | S1           | 2 May Be At Risk                     | 1  | 17.0 ± 1.0      |
|      | Gentiana rubricaulis                         | Purple-stemmed Gentian         |                 |                 |            | S1           | 2 May Be At Risk                     | 14 | 4.7 ± 1.0       |
|      | Lomatogonium rotatum                         | Marsh Felwort                  |                 |                 |            | S1           | 2 May Be At Risk                     | 2  | 47.8 ± 0.0      |
|      | Proserpinaca pectinata                       | Comb-leaved Mermaidweed        |                 |                 |            | S1           | 2 May Be At Risk                     | 1  | 48.7 ± 0.0      |
|      | Decodon verticillatus                        | Swamp Loosestrife              |                 |                 |            | S1           | 2 May Be At Risk                     | 3  | 79.2 ± 0.0      |
|      | Polygala verticillata var. verticillata      | Whorled Milkwort               |                 |                 |            | S1           | 5 Undetermined                       | 2  | 93.0 ± 0.0      |
| Р    | Lysimachia hybrida                           | Lowland Yellow Loosestrife     |                 |                 |            | S1           | 2 May Be At Risk                     | 15 | 12.0 ± 0.0      |

| Taxonomic Group | Scientific Name                         | Common Name                          | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank                         | # recs | Distance (km)                   |
|-----------------|-----------------------------------------|--------------------------------------|---------|------|-----------------|------------------|--------------------------------------|--------|---------------------------------|
| Р               | Lysimachia quadrifolia                  | Whorled Yellow Loosestrife           |         |      |                 | S1               | 2 May Be At Risk                     | 10     | 66.6 ± 1.0                      |
| Р               | Ranunculus sceleratus                   | Cursed Buttercup                     |         |      |                 | S1               | 2 May Be At Risk                     | 6      | 8.6 ± 1.0                       |
| Р               | Crataegus jonesiae                      | Jones' Hawthorn                      |         |      |                 | S1               | 2 May Be At Risk                     | 5      | 17.8 ± 1.0                      |
| Р               | Waldsteinia fragarioides                | Barren Strawberry                    |         |      |                 | S1               | 2 May Be At Risk                     | 27     | $84.4 \pm 0.0$                  |
| P               | Galium brevipes                         | Limestone Swamp Bedstraw             |         |      |                 | S1               | 2 May Be At Risk                     | 3      | 36.7 ± 5.0                      |
| Р               | Saxifraga paniculata ssp. neogaea       | White Mountain Saxifrage             |         |      |                 | S1               | 2 May Be At Risk                     | 7      | 94.7 ± 10.0                     |
| Р               | Agalinis paupercula var. borealis       | Small-flowered Agalinis              |         |      |                 | S1               | 2 May Be At Risk                     | 5      | 92.9 ± 10.0                     |
| Р               | Agalinis tenuifolia                     | Slender Agalinis                     |         |      |                 | S1               | 2 May Be At Risk                     | 6      | $92.3 \pm 0.0$                  |
| Р               | Gratiola aurea                          | Golden Hedge-Hyssop                  |         |      |                 | S1               | 3 Sensitive                          | 2      | $69.5 \pm 5.0$                  |
| Р               | Pedicularis canadensis                  | Canada Lousewort                     |         |      |                 | S1               | 2 May Be At Risk                     | 20     | 15.8 ± 0.0                      |
| Р               | Viola sagittata var. ovata              | Arrow-Leaved Violet                  |         |      |                 | S1               | 2 May Be At Risk                     | 12     | $55.6 \pm 0.0$                  |
| Р               | Alisma subcordatum                      | Southern Water Plantain              |         |      |                 | S1               | 5 Undetermined                       | 6      | $48.4 \pm 0.0$                  |
| Р               | Carex backii                            | Rocky Mountain Sedge                 |         |      |                 | S1               | 2 May Be At Risk                     | 5      | 97.7 ± 1.0                      |
| Р               | Carex cephaloidea                       | Thin-leaved Sedge                    |         |      |                 | S1               | 2 May Be At Risk                     | 4      | $79.3 \pm 0.0$                  |
| Р               | Carex merritt-fernaldii                 | Merritt Fernald's Sedge              |         |      |                 | S1               | 2 May Be At Risk                     | 2      | $13.4 \pm 0.0$                  |
| Р               | Carex saxatilis                         | Russet Sedge                         |         |      |                 | S1               | 2 May Be At Risk                     | 7      | 86.9 ± 10.0                     |
| Р               | Carex sterilis                          | Sterile Sedge                        |         |      |                 | S1               | 2 May Be At Risk                     | 1      | $86.6 \pm 0.0$                  |
| Р               | Carex grisea                            | Inflated Narrow-leaved Sedge         |         |      |                 | S1               | 2 May Be At Risk                     | 1      | 90.9 ± 1.0                      |
| Р               | Cyperus diandrus                        | Low Flatsedge                        |         |      |                 | S1               | 2 May Be At Risk                     | 7      | 88.9 ± 0.0                      |
| Р               | Eleocharis olivacea                     | Yellow Spikerush                     |         |      |                 | S1               | 2 May Be At Risk                     | 3      | 10.0 ± 1.0                      |
| Р               | Rhynchospora capillacea                 | Slender Beakrush                     |         |      |                 | S1               | 2 May Be At Risk                     | 3      | 87.9 ± 0.0                      |
| Р               | Sisyrinchium angustifolium              | Narrow-leaved Blue-eyed-<br>grass    |         |      |                 | S1               | 2 May Be At Risk                     | 3      | 86.0 ± 0.0                      |
| Р               | Juncus greenei                          | Greene's Rush                        |         |      |                 | S1               | 2 May Be At Risk                     | 1      | 43.1 ± 0.0                      |
| P               | Allium canadense                        | Canada Garlic                        |         |      |                 | S1               | 2 May Be At Risk                     | 10     | $40.7 \pm 0.0$<br>81.7 ± 5.0    |
| P               | Goodyera pubescens                      | Downy Rattlesnake-Plantain           |         |      |                 | S1               | 2 May Be At Risk                     | 1      | $92.6 \pm 0.0$                  |
| P               | Malaxis brachypoda                      | White Adder's-Mouth                  |         |      |                 | S1               | 2 May Be At Risk                     | 5      | $44.3 \pm 5.0$                  |
| P               | Platanthera flava var. herbiola         | Pale Green Orchid                    |         |      |                 | S1               | 2 May Be At Risk                     | 13     | $30.4 \pm 0.0$                  |
| P               | Platanthera macrophylla                 | Large Round-Leaved Orchid            |         |      |                 | S1               | 2 May Be At Risk                     | 2      | 92.0 ± 1.0                      |
| P               | Spiranthes casei                        | Case's Ladies'-Tresses               |         |      |                 | S1               | 2 May Be At Risk                     | 6      | 92.3 ± 0.0                      |
| P               | Spiranthes ochroleuca                   | Yellow Ladies'-tresses               |         |      |                 | S1               | 2 May Be At Risk                     | 9      | $32.7 \pm 5.0$                  |
| P               | Cinna arundinacea                       | Sweet Wood Reed Grass                |         |      |                 | S1               | 2 May Be At Risk                     | 17     | $7.6 \pm 0.0$                   |
| P               | Danthonia compressa                     | Flattened Oat Grass                  |         |      |                 | S1               | 2 May Be At Risk                     | 2      | $70.3 \pm 0.0$                  |
| P               | Dichanthelium dichotomum                | Forked Panic Grass                   |         |      |                 | S1               | 2 May Be At Risk                     | 18     | $70.0 \pm 0.0$<br>$7.1 \pm 0.0$ |
| P               | Elymus wiegandii                        | Wiegand's Wild Rye                   |         |      |                 | S1               | 2 May Be At Risk                     | 1      | 88.2 ± 0.0                      |
| P               | Elymus hystrix var. bigeloviana         | Spreading Wild Rye                   |         |      |                 | S1               | 2 May Be At Risk                     | 18     | 85.0 ± 0.0                      |
| P               | Glyceria obtusa                         | Atlantic Manna Grass                 |         |      |                 | S1               | 2 May Be At Risk                     | 6      | $6.5 \pm 10.0$                  |
| P               | Sporobolus compositus                   | Rough Dropseed                       |         |      |                 | S1               | 2 May Be At Risk                     | 17     | 86.1 ± 0.0                      |
| P               | Potamogeton friesii                     | Fries' Pondweed                      |         |      |                 | S1               | 2 May Be At Risk                     | 6      | $78.4 \pm 5.0$                  |
| P               | Potamogeton nodosus                     | Long-leaved Pondweed                 |         |      |                 | S1               | 2 May Be At Risk                     | 4      | $91.5 \pm 1.0$                  |
| P               | Potamogeton strictifolius               | Straight-leaved Pondweed             |         |      |                 | S1               | 2 May Be At Risk                     | 1      | 99.5 ± 0.0                      |
| P               | Xyris difformis                         | Bog Yellow-eyed-grass                |         |      |                 | S1               | 5 Undetermined                       | 3      | 84.0 ± 0.0                      |
| P               | Asplenium ruta-muraria var. cryptolepis | Wallrue Spleenwort                   |         |      |                 | S1               | 2 May Be At Risk                     | 3      | 94.2 ± 0.0                      |
| P               | Botrychium oneidense                    | Blunt-lobed Moonwort                 |         |      |                 | S1               | 2 May Be At Risk                     | 3      | $70.2 \pm 0.0$                  |
| P               | Botrychium rugulosum                    | Rugulose Moonwort                    |         |      |                 | S1               | 2 May Be At Risk                     | 1      | $28.3 \pm 1.0$                  |
| P               | Schizaea pusilla                        | Little Curlygrass Fern               |         |      |                 | S1               | 2 May Be At Risk                     | 16     | $65.8 \pm 0.0$                  |
| P               | Hieracium kalmii var. fasciculatum      | Kalm's Hawkweed                      |         |      |                 | S1?              | 5 Undetermined                       | 6      | 18.9 ± 0.0                      |
| F<br>D          | Cuscuta cephalanthi                     | Buttonbush Dodder                    |         |      |                 | S1?              | 2 May Be At Risk                     | 2      | 87.8 ± 1.0                      |
| P               | Drosera rotundifolia var. comosa        | Round-leaved Sundew                  |         |      |                 | S1?              | 5 Undetermined                       | 2<br>5 | $47.1 \pm 1.0$                  |
| P               | Wolffia columbiana                      | Columbian Watermeal                  |         |      |                 | S1?              | 2 May Be At Risk                     | 3      | $47.1 \pm 1.0$<br>91.5 ± 0.0    |
| P               | Humulus lupulus var. lupuloides         | Common Hop                           |         |      |                 | S1S2             | 3 Sensitive                          | 5      | $91.5 \pm 0.0$<br>88.0 ± 0.0    |
| r<br>D          | Rumex aquaticus var. iupuioides         | Western Dock                         |         |      |                 | S1S2<br>S1S2     |                                      | 5<br>1 | 88.0 ± 0.0<br>84.7 ± 1.0        |
|                 | Saxifraga virginiensis                  |                                      |         |      |                 | S1S2<br>S1S2     | 2 May Be At Risk<br>2 May Be At Risk |        | 84.7 ± 1.0<br>82.1 ± 0.0        |
| r<br>D          |                                         | Early Saxifrage                      |         |      |                 |                  |                                      | 14     |                                 |
|                 | Carex rostrata                          | Narrow-leaved Beaked Sedge           |         |      |                 | S1S2<br>S1S2     | 3 Sensitive                          | 1      | $58.9 \pm 0.0$                  |
|                 | Potamogeton bicupulatus                 | Snailseed Pondweed                   |         |      |                 | S1S2<br>S1S2     | 2 May Be At Risk                     | 5<br>7 | 45.7 ± 0.0                      |
|                 | Selaginella rupestris                   | Rock Spikemoss<br>Southern Twayblade |         |      | Endonastad      | S152<br>S2       | 2 May Be At Risk                     | 11     | $86.3 \pm 0.0$                  |
| P               | Listera australis<br>Sanicula odorata   |                                      |         |      | Endangered      | S2<br>S2         | 1 At Risk                            |        | 61.6 ± 0.0                      |
| ۲               | Samoula Uuurala                         | Clustered Sanicle                    |         |      |                 | 32               | 2 May Be At Risk                     | 4      | 88.9 ± 0.0                      |

| Taxonomic Group | Scientific Name                                     | Common Name                                              | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank               | # recs  | Distance (km)                   |
|-----------------|-----------------------------------------------------|----------------------------------------------------------|---------|------|-----------------|------------------|----------------------------|---------|---------------------------------|
| Р               | Pseudognaphalium macounii                           | Macoun's Cudweed                                         |         |      |                 | S2               | 3 Sensitive                | 10      | $24.5 \pm 0.0$                  |
| Р               | Solidago altissima                                  | Tall Goldenrod                                           |         |      |                 | S2               | 4 Secure                   | 5       | $43.0 \pm 0.0$                  |
| Р               | Solidago simplex var. racemosa                      | Sticky Goldenrod                                         |         |      |                 | S2               | 2 May Be At Risk           | 8       | 85.6 ± 1.0                      |
| Р               | Solidago simplex ssp. randii                        | Sticky Goldenrod                                         |         |      |                 | S2               | 2 May Be At Risk           | 2       | $90.0 \pm 0.0$                  |
| Р               | Solidago simplex                                    | Sticky Goldenrod                                         |         |      |                 | S2               | 2 May Be At Risk           | 2       | 89.7 ± 1.0                      |
| Р               | Ionactis linariifolius                              | Stiff Aster                                              |         |      |                 | S2               | 3 Sensitive                | 1       | 95.2 ± 0.0                      |
| Р               | Symphyotrichum racemosum                            | Small White Aster                                        |         |      |                 | S2               | 3 Sensitive                | 5       | 47.7 ± 1.0                      |
| Р               | Alnus serrulata                                     | Smooth Alder                                             |         |      |                 | S2               | 3 Sensitive                | 55      | $14.2 \pm 0.0$                  |
| Р               | Arabis drummondii                                   | Drummond's Rockcress                                     |         |      |                 | S2               | 3 Sensitive                | 8       | 86.2 ± 0.0                      |
| Р               | Cardamine concatenata                               | Cut-leaved Toothwort                                     |         |      |                 | S2               | 2 May Be At Risk           | 1       | 77.1 ± 1.0                      |
| Р               | Sagina nodosa                                       | Knotted Pearlwort                                        |         |      |                 | S2               | 3 Sensitive                | 7       | $36.4 \pm 0.0$                  |
| Р               | Sagina nodosa ssp. borealis                         | Knotted Pearlwort                                        |         |      |                 | S2               | 3 Sensitive                | 1       | 74.8 ± 0.0                      |
| Р               | Stellaria longifolia                                | Long-leaved Starwort                                     |         |      |                 | S2               | 3 Sensitive                | 4       | 87.8 ± 10.0                     |
| Р               | Atriplex franktonii                                 | Frankton's Saltbush                                      |         |      |                 | S2               | 4 Secure                   | 1       | 18.1 ± 1.0                      |
| Р               | Chenopodium rubrum                                  | Red Pigweed                                              |         |      |                 | S2               | 3 Sensitive                | 4       | 84.1 ± 0.0                      |
| Р               | Callitriche hermaphroditica                         | Northern Water-starwort                                  |         |      |                 | S2               | 4 Secure                   | 2       | $12.8 \pm 0.0$                  |
| Р               | Hypericum dissimulatum                              | Disguised St John's-wort                                 |         |      |                 | S2               | 3 Sensitive                | 6       | 37.6 ± 1.0                      |
| P               | Lonicera oblongifolia                               | Swamp Fly Honeysuckle                                    |         |      |                 | S2               | 3 Sensitive                | 38      | $20.2 \pm 0.0$                  |
| P               | Triosteum aurantiacum                               | Orange-fruited Tinker's Weed                             |         |      |                 | S2               | 3 Sensitive                | 14      | $79.9 \pm 1.0$                  |
| P               | Viburnum lentago                                    | Nannyberry                                               |         |      |                 | S2               | 4 Secure                   | 101     | $10.7 \pm 0.0$                  |
| P               | Viburnum recognitum                                 | Northern Arrow-Wood                                      |         |      |                 | S2               | 4 Secure                   | 168     | $8.9 \pm 0.0$                   |
| P               | Astragalus eucosmus                                 | Elegant Milk-vetch                                       |         |      |                 | S2               | 2 May Be At Risk           | 7       | 78.3 ± 1.0                      |
| P               | Oxytropis campestris var. johannensis               | Field Locoweed                                           |         |      |                 | S2               | 3 Sensitive                | 8       | $70.3 \pm 1.0$<br>79.3 ± 1.0    |
| P               | Quercus macrocarpa                                  | Bur Oak                                                  |         |      |                 | S2               | 2 May Be At Risk           | 6       | $17.8 \pm 1.0$                  |
| P               | Gentiana linearis                                   | Narrow-Leaved Gentian                                    |         |      |                 | S2<br>S2         | 3 Sensitive                | 5       | 94.2 ± 5.0                      |
| P               | Myriophyllum humile                                 | Low Water Milfoil                                        |         |      |                 | S2<br>S2         | 3 Sensitive                | 9       | $94.2 \pm 0.0$<br>42.4 ± 0.0    |
| P               |                                                     |                                                          |         |      |                 | S2<br>S2         | 4 Secure                   | 9<br>17 | $42.4 \pm 0.0$<br>2.2 ± 2.0     |
| F<br>D          | Hedeoma pulegioides<br>Nuphar lutea ssp. rubrodisca | American False Pennyroyal<br>Red-disked Yellow Pond-lily |         |      |                 | S2<br>S2         | 3 Sensitive                | 7       | $2.2 \pm 2.0$<br>19.9 ± 0.0     |
| P<br>P          | Orobanche uniflora                                  | One-Flowered Broomrape                                   |         |      |                 | S2<br>S2         | 3 Sensitive                | 7<br>12 | $19.9 \pm 0.0$<br>56.4 ± 0.0    |
| F<br>D          |                                                     | Fringed Milkwort                                         |         |      |                 | S2<br>S2         | 3 Sensitive                | 12      | $50.4 \pm 0.0$<br>$6.8 \pm 5.0$ |
| P<br>P          | Polygala paucifolia                                 | Blood Milkwort                                           |         |      |                 | S2<br>S2         |                            |         |                                 |
|                 | Polygala sanguinea                                  |                                                          |         |      |                 | 52<br>S2         | 3 Sensitive                | 12      | 73.1 ± 0.0<br>80.0 ± 1.0        |
| P               | Polygala senega                                     | Seneca Snakeroot<br>Water Smartweed                      |         |      |                 | S2<br>S2         | 3 Sensitive<br>3 Sensitive | 5<br>6  | $80.0 \pm 1.0$<br>29.8 ± 0.0    |
| P               | Polygonum amphibium var. emersum                    |                                                          |         |      |                 | 52<br>S2         |                            |         |                                 |
| P<br>P          | Polygonum careyi                                    | Carey's Smartweed                                        |         |      |                 |                  | 3 Sensitive                | 6       | 3.1 ± 1.0                       |
| P               | Podostemum ceratophyllum                            | Horn-leaved Riverweed                                    |         |      |                 | S2               | 3 Sensitive                | 45      | 12.5 ± 0.0                      |
| P               | Anemone multifida                                   | Cut-leaved Anemone                                       |         |      |                 | S2               | 3 Sensitive                | 1       | 86.8 ± 0.0                      |
| P               | Hepatica nobilis var. obtusa                        | Round-lobed Hepatica                                     |         |      |                 | S2               | 3 Sensitive                | 33      | $7.0 \pm 0.0$                   |
| P               | Ranunculus flabellaris                              | Yellow Water Buttercup                                   |         |      |                 | S2               | 4 Secure                   | 8       | $16.2 \pm 0.0$                  |
| P               | Ranunculus longirostris                             | Eastern White Water-Crowfoot                             |         |      |                 | S2               | 5 Undetermined             | 4       | 16.8 ± 1.0                      |
| P               | Crataegus scabrida                                  | Rough Hawthorn                                           |         |      |                 | S2               | 3 Sensitive                | 2       | 93.6 ± 0.0                      |
| P               | Crataegus succulenta                                | Fleshy Hawthorn                                          |         |      |                 | S2               | 3 Sensitive                | 1       | 94.1 ± 5.0                      |
| P               | Cephalanthus occidentalis                           | Common Buttonbush                                        |         |      |                 | S2               | 3 Sensitive                | 47      | 9.5 ± 0.0                       |
| P               | Salix candida                                       | Sage Willow                                              |         |      |                 | S2               | 3 Sensitive                | 2       | 74.6 ± 1.0                      |
| 1               | Agalinis neoscotica                                 | Nova Scotia Agalinis                                     |         |      |                 | S2               | 3 Sensitive                | 13      | 57.6 ± 1.0                      |
| P               | Euphrasia randii                                    | Rand's Eyebright                                         |         |      |                 | S2               | 2 May Be At Risk           | 23      | $33.0 \pm 0.0$                  |
| P               | Scrophularia lanceolata                             | Lance-leaved Figwort                                     |         |      |                 | S2               | 3 Sensitive                | 3       | 78.1 ± 100.0                    |
| Р               | Dirca palustris                                     | Eastern Leatherwood                                      |         |      |                 | S2               | 2 May Be At Risk           | 7       | 86.6 ± 1.0                      |
| Р               | Phryma leptostachya                                 | American Lopseed                                         |         |      |                 | S2               | 3 Sensitive                | 7       | $86.4 \pm 0.0$                  |
| Р               | Verbena urticifolia                                 | White Vervain                                            |         |      |                 | S2               | 2 May Be At Risk           | 14      | 79.3 ± 1.0                      |
| Р               | Viola novae-angliae                                 | New England Violet                                       |         |      |                 | S2               | 3 Sensitive                | 4       | 33.2 ± 1.0                      |
| Р               | Symplocarpus foetidus                               | Eastern Skunk Cabbage                                    |         |      |                 | S2               | 3 Sensitive                | 43      | $14.9 \pm 0.0$                  |
| Р               | Carex granularis                                    | Limestone Meadow Sedge                                   |         |      |                 | S2               | 3 Sensitive                | 7       | 71.8 ± 0.0                      |
| Р               | Carex gynocrates                                    | Northern Bog Sedge                                       |         |      |                 | S2               | 3 Sensitive                | 10      | $22.2 \pm 0.0$                  |
| Р               | Carex hirtifolia                                    | Pubescent Sedge                                          |         |      |                 | S2               | 3 Sensitive                | 23      | 83.2 ± 0.0                      |
| Р               | Carex livida var. radicaulis                        | Livid Sedge                                              |         |      |                 | S2               | 3 Sensitive                | 1       | 88.2 ± 2.0                      |
| Р               | Carex prairea                                       | Prairie Sedge                                            |         |      |                 | S2               | 3 Sensitive                | 1       | 88.3 ± 0.0                      |
| Р               | Carex salina                                        | Saltmarsh Sedge                                          |         |      |                 | S2               | 3 Sensitive                | 2       | 86.5 ± 1.0                      |
| Р               | Carex sprengelii                                    | Longbeak Sedge                                           |         |      |                 | S2               | 3 Sensitive                | 12      | 86.6 ± 0.0                      |
|                 |                                                     | -                                                        |         |      |                 |                  |                            |         |                                 |

| Taxonomic Group | Scientific Name                         | Common Name                 | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs  | Distance (km)                |
|-----------------|-----------------------------------------|-----------------------------|---------|------|-----------------|------------------|------------------|---------|------------------------------|
| Р               | Carex tenuiflora                        | Sparse-Flowered Sedge       |         |      |                 | S2               | 2 May Be At Risk | 8       | 31.5 ± 0.0                   |
| Р               | Carex albicans var. emmonsii            | White-tinged Sedge          |         |      |                 | S2               | 3 Sensitive      | 1       | $96.4 \pm 0.0$               |
| Р               | Carex vacillans                         | Estuarine Sedge             |         |      |                 | S2               | 3 Sensitive      | 4       | 13.4 ± 10.0                  |
| Р               | Cyperus squarrosus                      | Awned Flatsedge             |         |      |                 | S2               | 3 Sensitive      | 2       | 92.3 ± 10.0                  |
| Р               | Blysmus rufus                           | Red Bulrush                 |         |      |                 | S2               | 3 Sensitive      | 3       | 65.1 ± 0.0                   |
| Р               | Elodea nuttallii                        | Nuttall's Waterweed         |         |      |                 | S2               | 3 Sensitive      | 8       | 14.9 ± 0.0                   |
| Р               | Lemna trisulca                          | Star Duckweed               |         |      |                 | S2               | 4 Secure         | 1       | 97.1 ± 1.0                   |
| Р               | Allium tricoccum                        | Wild Leek                   |         |      |                 | S2               | 2 May Be At Risk | 6       | 89.0 ± 0.0                   |
| Р               | Najas gracillima                        | Thread-Like Naiad           |         |      |                 | S2               | 3 Sensitive      | 8       | 8.0 ± 0.0                    |
| Р               | Calypso bulbosa var. americana          | Calypso                     |         |      |                 | S2               | 2 May Be At Risk | 3       | 92.0 ± 1.0                   |
| Р               | Coeloglossum viride var. virescens      | Long-bracted Frog Orchid    |         |      |                 | S2               | 2 May Be At Risk | 3       | 80.6 ± 5.0                   |
| Р               | Cypripedium parviflorum var. makasin    | Small Yellow Lady's-Slipper |         |      |                 | S2               | 2 May Be At Risk | 6       | 19.6 ± 1.0                   |
| Р               | Galearis spectabilis                    | Showy Orchis                |         |      |                 | S2               | 2 May Be At Risk | 4       | 88.5 ± 0.0                   |
| Р               | Spiranthes cernua                       | Nodding Ladies'-Tresses     |         |      |                 | S2               | 3 Sensitive      | 14      | 10.9 ± 0.0                   |
| Р               | Spiranthes lucida                       | Shining Ladies'-Tresses     |         |      |                 | S2               | 3 Sensitive      | 8       | 61.9 ± 1.0                   |
| Р               | Dichanthelium linearifolium             | Narrow-leaved Panic Grass   |         |      |                 | S2               | 3 Sensitive      | 10      | $7.0 \pm 0.0$                |
| Р               | Elymus canadensis                       | Canada Wild Rye             |         |      |                 | S2               | 2 May Be At Risk | 15      | 83.8 ± 1.0                   |
| Р               | Leersia virginica                       | White Cut Grass             |         |      |                 | S2               | 2 May Be At Risk | 13      | 84.8 ± 10.0                  |
| P               | Piptatherum canadense                   | Canada Rice Grass           |         |      |                 | S2               | 3 Sensitive      | 5       | $40.5 \pm 0.0$               |
| P               | Puccinellia phryganodes                 | Creeping Alkali Grass       |         |      |                 | S2               | 3 Sensitive      | 15      | 5.8 ± 10.0                   |
| P               | Schizachyrium scoparium                 | Little Bluestem             |         |      |                 | S2               | 3 Sensitive      | 17      | $79.6 \pm 0.0$               |
| P               | Zizania aquatica var. aquatica          | Indian Wild Rice            |         |      |                 | S2               | 5 Undetermined   | 2       | $80.2 \pm 0.0$               |
| P               | Stuckenia filiformis ssp. alpina        | Thread-leaved Pondweed      |         |      |                 | S2               | 3 Sensitive      | 6       | 88.2 ± 0.0                   |
| D               | Potamogeton richardsonii                | Richardson's Pondweed       |         |      |                 | S2               | 3 Sensitive      | 5       | 88.2 ± 1.0                   |
| F<br>D          | Potamogeton vaseyi                      | Vasey's Pondweed            |         |      |                 | S2<br>S2         | 3 Sensitive      | 10      | $39.3 \pm 0.0$               |
| P               | Asplenium trichomanes                   | Maidenhair Spleenwort       |         |      |                 | S2               | 3 Sensitive      | 7       | 74.6 ± 0.0                   |
| F<br>P          | Woodwardia virginica                    | Virginia Chain Fern         |         |      |                 | S2               | 3 Sensitive      | ,<br>19 | $74.0 \pm 0.0$<br>50.7 ± 1.0 |
| P               | Woodsia alpina                          |                             |         |      |                 | S2<br>S2         | 3 Sensitive      | 19<br>5 | $50.7 \pm 1.0$<br>94.7 ± 0.0 |
| P               |                                         | Alpine Cliff Fern           |         |      |                 | S2<br>S2         | 3 Sensitive      | 5<br>4  | $94.7 \pm 0.0$<br>63.8 ± 0.0 |
| P               | Selaginella selaginoides                | Low Spikemoss               |         |      |                 |                  |                  | -       |                              |
| P               | Toxicodendron radicans                  | Poison Ivy                  |         |      |                 | S2?              | 3 Sensitive      | 6       | 90.1 ± 1.0                   |
| P               | Osmorhiza longistylis                   | Smooth Sweet Cicely         |         |      |                 | S2?              | 3 Sensitive      | 3       | 17.6 ± 0.0                   |
| Р               | Symphyotrichum novi-belgii var.         | New York Aster              |         |      |                 | S2?              | 5 Undetermined   | 9       | 33.1 ± 0.0                   |
| <b>D</b>        | crenifolium                             | Manala Manazai duna ad      |         |      |                 | 000              | 0.0              | 04      | 40.4 . 0.0                   |
| P               | Proserpinaca palustris var. crebra      | Marsh Mermaidweed           |         |      |                 | S2?              | 3 Sensitive      | 21      | $12.1 \pm 0.0$               |
| P               | Epilobium coloratum                     | Purple-veined Willowherb    |         |      |                 | S2?              | 3 Sensitive      | 9       | 38.9 ± 1.0                   |
| P               | Rubus pensilvanicus                     | Pennsylvania Blackberry     |         |      |                 | S2?              | 4 Secure         | 7       | 16.9 ± 3.0                   |
| P               | Rubus recurvicaulis                     | Arching Dewberry            |         |      |                 | S2?              | 4 Secure         | 2       | 62.2 ± 1.0                   |
| P               | Galium obtusum                          | Blunt-leaved Bedstraw       |         |      |                 | S2?              | 4 Secure         | 2       | 89.1 ± 1.0                   |
|                 | Salix myricoides                        | Bayberry Willow             |         |      |                 | S2?              | 3 Sensitive      | 9       | 31.6 ± 0.0                   |
| Р               | Platanthera huronensis                  | Fragrant Green Orchid       |         |      |                 | S2?              | 5 Undetermined   | 2       | 23.7 ± 1.0                   |
| Р               | Eragrostis pectinacea                   | Tufted Love Grass           |         |      |                 | S2?              | 4 Secure         | 13      | 6.1 ± 1.0                    |
| Р               | Ceratophyllum echinatum                 | Prickly Hornwort            |         |      |                 | S2S3             | 3 Sensitive      | 10      | $10.2 \pm 0.0$               |
| Р               | Elatine americana                       | American Waterwort          |         |      |                 | S2S3             | 3 Sensitive      | 2       | $23.2 \pm 0.0$               |
| Р               | Bartonia paniculata                     | Branched Bartonia           |         |      |                 | S2S3             | 3 Sensitive      | 4       | $66.0 \pm 0.0$               |
| Р               | Bartonia paniculata ssp. iodandra       | Branched Bartonia           |         |      |                 | S2S3             | 3 Sensitive      | 14      | 54.7 ± 1.0                   |
| Р               | Geranium robertianum                    | Herb Robert                 |         |      |                 | S2S3             | 4 Secure         | 9       | 18.4 ± 5.0                   |
| Р               | Myriophyllum quitense                   | Andean Water Milfoil        |         |      |                 | S2S3             | 4 Secure         | 37      | 78.6 ± 0.0                   |
| Р               | Rumex pallidus                          | Seabeach Dock               |         |      |                 | S2S3             | 3 Sensitive      | 5       | 35.6 ± 0.0                   |
| Р               | Galium labradoricum                     | Labrador Bedstraw           |         |      |                 | S2S3             | 3 Sensitive      | 24      | 13.6 ± 0.0                   |
| Р               | Valeriana uliginosa                     | Swamp Valerian              |         |      |                 | S2S3             | 3 Sensitive      | 14      | 6.6 ± 1.0                    |
| Р               | Carex adusta                            | Lesser Brown Sedge          |         |      |                 | S2S3             | 4 Secure         | 2       | 67.8 ± 10.0                  |
| Р               | Carex plantaginea                       | Plantain-Leaved Sedge       |         |      |                 | S2S3             | 3 Sensitive      | 3       | 78.4 ± 1.0                   |
| Р               | Juncus brachycephalus                   | Small-Head Rush             |         |      |                 | S2S3             | 3 Sensitive      | 1       | 85.6 ± 0.0                   |
| Р               | Corallorhiza maculata var. occidentalis | Spotted Coralroot           |         |      |                 | S2S3             | 3 Sensitive      | 6       | $13.4 \pm 0.0$               |
| Р               | Corallorhiza maculata var. maculata     | Spotted Coralroot           |         |      |                 | S2S3             | 3 Sensitive      | 2       | 92.0 ± 1.0                   |
| Р               | Listera auriculata                      | Auricled Twayblade          |         |      |                 | S2S3             | 3 Sensitive      | 9       | $29.5 \pm 0.0$               |
| P               | Potamogeton praelongus                  | White-stemmed Pondweed      |         |      |                 | S2S3             | 4 Secure         | 12      | $16.4 \pm 0.0$               |
| P               | Isoetes acadiensis                      | Acadian Quillwort           |         |      |                 | S2S3             | 3 Sensitive      | 10      | $11.3 \pm 1.0$               |
| •               |                                         |                             |         |      |                 | 2200             | 0.00101110       |         |                              |

| Taxonomic Group | Scientific Name                                 | Common Name                   | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank         | # recs         | Distance (km)                         |
|-----------------|-------------------------------------------------|-------------------------------|---------|------|-----------------|------------------|----------------------|----------------|---------------------------------------|
| Р               | Ophioglossum pusillum                           | Northern Adder's-tongue       |         |      |                 | S2S3             | 3 Sensitive          | 6              | 33.5 ± 1.0                            |
| Р               | Panax trifolius                                 | Dwarf Ginseng                 |         |      |                 | S3               | 3 Sensitive          | 6              | $76.9 \pm 0.0$                        |
| Р               | Artemisia campestris                            | Field Wormwood                |         |      |                 | S3               | 4 Secure             | 2              | 89.7 ± 1.0                            |
| Р               | Artemisia campestris ssp. caudata               | Field Wormwood                |         |      |                 | S3               | 4 Secure             | 5              | 68.8 ± 0.0                            |
| Р               | Erigeron hyssopifolius                          | Hyssop-leaved Fleabane        |         |      |                 | S3               | 4 Secure             | 5              | 58.1 ± 0.0                            |
| Р               | Prenanthes racemosa                             | Glaucous Rattlesnakeroot      |         |      |                 | S3               | 4 Secure             | 32             | 76.0 ± 0.0                            |
| Р               | Tanacetum bipinnatum ssp. huronense             | Lake Huron Tansy              |         |      |                 | S3               | 4 Secure             | 14             | 79.3 ± 1.0                            |
| P               | Symphyotrichum boreale                          | Boreal Aster                  |         |      |                 | S3               | 3 Sensitive          | 42             | $6.4 \pm 0.0$                         |
| P               | Betula pumila                                   | Bog Birch                     |         |      |                 | S3               | 4 Secure             | 31             | $25.2 \pm 0.0$                        |
| P               | Arabis glabra                                   | Tower Mustard                 |         |      |                 | S3               | 5 Undetermined       | 3              | 79.6 ± 1.0                            |
| L<br>D          | Arabis glasia<br>Arabis hirsuta var. pycnocarpa | Western Hairy Rockcress       |         |      |                 | S3               | 4 Secure             | 10             | 87.3 ± 1.0                            |
| Г<br>D          | Cardamine maxima                                | Large Toothwort               |         |      |                 | S3               | 4 Secure             | 16             | $84.5 \pm 0.0$                        |
| Г               | Subularia aquatica var. americana               | Water Awlwort                 |         |      |                 | S3               | 4 Secure             | 18             | $16.4 \pm 0.0$                        |
|                 |                                                 |                               |         |      |                 |                  |                      |                |                                       |
| P               | Lobelia cardinalis                              | Cardinal Flower               |         |      |                 | S3               | 4 Secure             | 378            | $6.4 \pm 0.0$                         |
| P               | Stellaria humifusa                              | Saltmarsh Starwort            |         |      |                 | S3               | 4 Secure             | 6              | 18.8 ± 5.0                            |
| Р               | Hudsonia tomentosa                              | Woolly Beach-heath            |         |      |                 | S3               | 4 Secure             | 3              | $63.2 \pm 0.0$                        |
| P               | Cornus amomum ssp. obliqua                      | Pale Dogwood                  |         |      |                 | S3               | 3 Sensitive          | 195            | $7.3 \pm 0.0$                         |
| Р               | Crassula aquatica                               | Water Pygmyweed               |         |      |                 | S3               | 4 Secure             | 7              | 69.2 ± 0.0                            |
| Р               | Rhodiola rosea                                  | Roseroot                      |         |      |                 | S3               | 4 Secure             | 34             | 27.2 ± 1.0                            |
| Р               | Penthorum sedoides                              | Ditch Stonecrop               |         |      |                 | S3               | 4 Secure             | 29             | 9.7 ± 0.0                             |
| Р               | Elatine minima                                  | Small Waterwort               |         |      |                 | S3               | 4 Secure             | 54             | 10.1 ± 0.0                            |
| Р               | Astragalus alpinus var. brunetianus             | Alpine Milk-Vetch             |         |      |                 | S3               | 4 Secure             | 4              | 77.1 ± 0.0                            |
| P               | Gentianella amarella ssp. acuta                 | Northern Gentian              |         |      |                 | S3               | 4 Secure             | 7              | $67.7 \pm 0.0$                        |
| L<br>D          | Geranium bicknellii                             | Bicknell's Crane's-bill       |         |      |                 | S3               | 4 Secure             | 4              | $9.5 \pm 1.0$                         |
| Г<br>D          | Myriophyllum farwellii                          | Farwell's Water Milfoil       |         |      |                 | S3               | 4 Secure             | 19             | $30.5 \pm 0.0$                        |
| F<br>D          |                                                 |                               |         |      |                 |                  |                      |                |                                       |
| P               | Myriophyllum heterophyllum                      | Variable-leaved Water Milfoil |         |      |                 | S3               | 4 Secure             | 7              | 76.0 ± 0.0                            |
| Р               | Myriophyllum verticillatum                      | Whorled Water Milfoil         |         |      |                 | S3               | 4 Secure             | 8              | $20.8 \pm 0.0$                        |
| Р               | Myriophyllum sibiricum                          | Siberian Water Milfoil        |         |      |                 | S3               | 4 Secure             | 10             | 13.9 ± 1.0                            |
| Р               | Stachys tenuifolia                              | Smooth Hedge-Nettle           |         |      |                 | S3               | 3 Sensitive          | 8              | 87.2 ± 0.0                            |
| Р               | Teucrium canadense                              | Canada Germander              |         |      |                 | S3               | 3 Sensitive          | 2              | 69.6 ± 1.0                            |
| Р               | Utricularia radiata                             | Little Floating Bladderwort   |         |      |                 | S3               | 4 Secure             | 52             | 12.6 ± 0.0                            |
| Р               | Nuphar lutea ssp. pumila                        | Small Yellow Pond-lily        |         |      |                 | S3               | 4 Secure             | 4              | 88.2 ± 0.0                            |
| Р               | Epilobium hornemannii                           | Hornemann's Willowherb        |         |      |                 | S3               | 4 Secure             | 3              | 58.1 ± 0.0                            |
| Р               | Epilobium strictum                              | Downy Willowherb              |         |      |                 | S3               | 4 Secure             | 20             | 15.9 ± 0.0                            |
| Р               | Polygonum arifolium                             | Halberd-leaved Tearthumb      |         |      |                 | S3               | 4 Secure             | 11             | $10.5 \pm 0.0$                        |
| P               | Polygonum punctatum                             | Dotted Smartweed              |         |      |                 | S3               | 4 Secure             | 1              | $62.4 \pm 0.0$                        |
| 1               | Polygonum punctatum var.                        |                               |         |      |                 |                  |                      |                |                                       |
| P               | confertiflorum                                  | Dotted Smartweed              |         |      |                 | S3               | 4 Secure             | 16             | 7.8 ± 0.0                             |
| Р               | Polygonum scandens                              | Climbing False Buckwheat      |         |      |                 | S3               | 4 Secure             | 14             | 12.6 ± 0.0                            |
|                 |                                                 |                               |         |      |                 | S3               |                      | 24             |                                       |
| P               | Littorella uniflora                             | American Shoreweed            |         |      |                 |                  | 4 Secure             |                | 16.8 ± 1.0                            |
| P               | Primula mistassinica                            | Mistassini Primrose           |         |      |                 | S3               | 4 Secure             | 8              | 62.6 ± 0.0                            |
| Р               | Pyrola minor                                    | Lesser Pyrola                 |         |      |                 | S3               | 4 Secure             | 1              | $59.3 \pm 0.0$                        |
| Р               | Clematis occidentalis                           | Purple Clematis               |         |      |                 | S3               | 4 Secure             | 23             | 7.1 ± 0.0                             |
| P               | Ranunculus gmelinii                             | Gmelin's Water Buttercup      |         |      |                 | S3               | 4 Secure             | 13             | 83.5 ± 0.0                            |
| Р               | Thalictrum venulosum                            | Northern Meadow-rue           |         |      |                 | S3               | 4 Secure             | 29             | 19.1 ± 0.0                            |
| Р               | Agrimonia gryposepala                           | Hooked Agrimony               |         |      |                 | S3               | 4 Secure             | 29             | 15.6 ± 0.0                            |
| Р               | Amelanchier canadensis                          | Canada Serviceberry           |         |      |                 | S3               | 4 Secure             | 12             | 1.7 ± 1.0                             |
| Р               | Rosa palustris                                  | Swamp Rose                    |         |      |                 | S3               | 4 Secure             | 38             | $10.0 \pm 1.0$                        |
| Р               | Rubus chamaemorus                               | Cloudberry                    |         |      |                 | S3               | 4 Secure             | 51             | $33.0 \pm 1.0$                        |
| Р               | Rubus occidentalis                              | Black Raspberry               |         |      |                 | S3               | 4 Secure             | 18             | $42.9 \pm 0.0$                        |
| Р               | Salix interior                                  | Sandbar Willow                |         |      |                 | S3               | 4 Secure             | 22             | $42.5 \pm 0.0$<br>86.5 ± 1.0          |
| P               | Salix nigra                                     | Black Willow                  |         |      |                 | S3               | 3 Sensitive          | 12             | $66.2 \pm 0.0$                        |
|                 |                                                 |                               |         |      |                 | S3               |                      | 33             | $13.4 \pm 5.0$                        |
|                 | Salix pedicellaris                              | Bog Willow                    |         |      |                 |                  | 4 Secure             |                |                                       |
| ۲<br>-          | Geocaulon lividum                               | Northern Comandra             |         |      |                 | S3               | 4 Secure             | 9              | 47.2 ± 0.0                            |
| P               | Parnassia glauca                                | Fen Grass-of-Parnassus        |         |      |                 | S3               | 4 Secure             | 1              | 77.4 ± 10.0                           |
| -               |                                                 |                               |         |      |                 |                  |                      |                |                                       |
| P               | Limosella australis                             | Southern Mudwort              |         |      |                 | S3               | 4 Secure             | 10             | 7.3 ± 5.0                             |
| P<br>P<br>P     |                                                 |                               |         |      |                 | S3<br>S3<br>S3   | 4 Secure<br>4 Secure | 10<br>2<br>135 | 7.3 ± 5.0<br>81.7 ± 10.0<br>7.7 ± 0.0 |

| Taxonomic Group | Scientific Name                            | Common Name                 | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank | # recs | Distance (km)  |
|-----------------|--------------------------------------------|-----------------------------|---------|------|-----------------|------------------|--------------|--------|----------------|
| Р               | Pilea pumila                               | Dwarf Clearweed             |         |      |                 | S3               | 4 Secure     | 9      | 77.6 ± 5.0     |
| Р               | Viola adunca                               | Hooked Violet               |         |      |                 | S3               | 4 Secure     | 4      | 28.0 ± 1.0     |
| Р               | Viola nephrophylla                         | Northern Bog Violet         |         |      |                 | S3               | 4 Secure     | 8      | 84.3 ± 0.0     |
| P               | Carex arcta                                | Northern Clustered Sedge    |         |      |                 | S3               | 4 Secure     | 14     | $23.5 \pm 0.0$ |
| Р               | Carex atratiformis                         | Scabrous Black Sedge        |         |      |                 | S3               | 4 Secure     | 1      | 88.2 ± 0.0     |
| Р               | Carex capillaris                           | Hairlike Sedge              |         |      |                 | S3               | 4 Secure     | 2      | 88.2 ± 2.0     |
| Р               | Carex chordorrhiza                         | Creeping Sedge              |         |      |                 | S3               | 4 Secure     | 10     | 24.2 ± 0.0     |
| Р               | Carex conoidea                             | Field Sedge                 |         |      |                 | S3               | 4 Secure     | 14     | 8.1 ± 0.0      |
| Р               | Carex exilis                               | Coastal Sedge               |         |      |                 | S3               | 4 Secure     | 88     | 48.1 ± 0.0     |
| Р               | Carex garberi                              | Garber's Sedge              |         |      |                 | S3               | 3 Sensitive  | 1      | 61.6 ± 1.0     |
| Р               | Carex haydenii                             | Hayden's Sedge              |         |      |                 | S3               | 4 Secure     | 13     | 19.1 ± 1.0     |
| Р               | Carex lupulina                             | Hop Sedge                   |         |      |                 | S3               | 4 Secure     | 50     | 8.1 ± 1.0      |
| Р               | Carex michauxiana                          | Michaux's Sedge             |         |      |                 | S3               | 4 Secure     | 53     | 10.1 ± 0.0     |
| Р               | Carex ormostachya                          | Necklace Spike Sedge        |         |      |                 | S3               | 4 Secure     | 7      | 24.7 ± 0.0     |
| Р               | Carex rosea                                | Rosy Sedge                  |         |      |                 | S3               | 4 Secure     | 10     | 81.1 ± 1.0     |
| Р               | Carex tenera                               | Tender Sedge                |         |      |                 | S3               | 4 Secure     | 15     | 15.4 ± 0.0     |
| Р               | Carex tuckermanii                          | Tuckerman's Sedge           |         |      |                 | S3               | 4 Secure     | 22     | 10.2 ± 0.0     |
| Р               | Carex vaginata                             | Sheathed Sedge              |         |      |                 | S3               | 3 Sensitive  | 10     | 9.3 ± 6.0      |
| Р               | Carex wiegandii                            | Wiegand's Sedge             |         |      |                 | S3               | 4 Secure     | 32     | 31.1 ± 0.0     |
| Р               | Carex recta                                | Estuary Sedge               |         |      |                 | S3               | 4 Secure     | 6      | 13.4 ± 0.0     |
| Р               | Cyperus dentatus                           | Toothed Flatsedge           |         |      |                 | S3               | 4 Secure     | 35     | 8.6 ± 0.0      |
| Р               | Cyperus esculentus                         | Perennial Yellow Nutsedge   |         |      |                 | S3               | 4 Secure     | 10     | 83.6 ± 1.0     |
| Р               | Eleocharis intermedia                      | Matted Spikerush            |         |      |                 | S3               | 4 Secure     | 3      | 20.6 ± 0.0     |
| Р               | Eleocharis guingueflora                    | Few-flowered Spikerush      |         |      |                 | S3               | 4 Secure     | 4      | 78.3 ± 1.0     |
| Р               | Eriophorum chamissonis                     | Russet Cotton-Grass         |         |      |                 | S3               | 4 Secure     | 1      | 79.5 ± 1.0     |
| Р               | Rhynchospora capitellata                   | Small-headed Beakrush       |         |      |                 | S3               | 4 Secure     | 7      | 62.9 ± 0.0     |
| Р               | Rhynchospora fusca                         | Brown Beakrush              |         |      |                 | S3               | 4 Secure     | 36     | 10.1 ± 1.0     |
| Р               | Trichophorum clintonii                     | Clinton's Clubrush          |         |      |                 | S3               | 4 Secure     | 14     | 14.7 ± 10.0    |
| Р               | Schoenoplectus fluviatilis                 | River Bulrush               |         |      |                 | S3               | 3 Sensitive  | 15     | 76.9 ± 1.0     |
| Р               | Schoenoplectus torreyi                     | Torrey's Bulrush            |         |      |                 | S3               | 4 Secure     | 19     | 21.1 ± 0.0     |
| Р               | Triglochin gaspensis                       | Gasp ⊢⊢ Arrowgrass          |         |      |                 | S3               | 4 Secure     | 13     | $13.4 \pm 1.0$ |
| Р               | Triantha glutinosa                         | Sticky False-Asphodel       |         |      |                 | S3               | 4 Secure     | 6      | 76.6 ± 5.0     |
| Р               | Cypripedium reginae                        | Showy Lady's-Slipper        |         |      |                 | S3               | 3 Sensitive  | 27     | 20.0 ± 1.0     |
| Р               | Liparis loeselii                           | Loesel's Twayblade          |         |      |                 | S3               | 4 Secure     | 20     | 16.1 ± 0.0     |
| Р               | Platanthera blephariglottis                | White Fringed Orchid        |         |      |                 | S3               | 4 Secure     | 16     | 16.1 ± 1.0     |
| Р               | Platanthera grandiflora                    | Large Purple Fringed Orchid |         |      |                 | S3               | 3 Sensitive  | 31     | $7.5 \pm 0.0$  |
| Р               | Bromus latiglumis                          | Broad-Glumed Brome          |         |      |                 | S3               | 3 Sensitive  | 2      | 66.1 ± 0.0     |
| Р               | Calamagrostis pickeringii                  | Pickering's Reed Grass      |         |      |                 | S3               | 4 Secure     | 103    | 48.1 ± 0.0     |
| Р               | Dichanthelium depauperatum                 | Starved Panic Grass         |         |      |                 | S3               | 4 Secure     | 2      | 66.7 ± 0.0     |
| Р               | Muhlenbergia richardsonis                  | Mat Muhly                   |         |      |                 | S3               | 4 Secure     | 9      | 87.7 ± 0.0     |
| Р               | Heteranthera dubia                         | Water Stargrass             |         |      |                 | S3               | 4 Secure     | 28     | 84.0 ± 0.0     |
| Р               | Potamogeton obtusifolius                   | Blunt-leaved Pondweed       |         |      |                 | S3               | 4 Secure     | 19     | $9.4 \pm 0.0$  |
| Р               | Xyris montana                              | Northern Yellow-Eyed-Grass  |         |      |                 | S3               | 4 Secure     | 25     | 6.8 ± 6.0      |
| Р               | Zannichellia palustris                     | Horned Pondweed             |         |      |                 | S3               | 4 Secure     | 5      | 79.3 ± 0.0     |
| Р               | Adiantum pedatum                           | Northern Maidenhair Fern    |         |      |                 | S3               | 4 Secure     | 13     | 72.0 ± 0.0     |
| Р               | Asplenium trichomanes-ramosum              | Green Spleenwort            |         |      |                 | S3               | 4 Secure     | 14     | 80.7 ± 1.0     |
| Р               | ,<br>Dryopteris fragrans var. remotiuscula | Fragrant Wood Fern          |         |      |                 | S3               | 4 Secure     | 3      | 84.2 ± 0.0     |
| Р               | Dryopteris goldiana                        | Goldie's Woodfern           |         |      |                 | S3               | 3 Sensitive  | 16     | 72.0 ± 0.0     |
| Р               | Equisetum palustre                         | Marsh Horsetail             |         |      |                 | S3               | 4 Secure     | 6      | 89.1 ± 0.0     |
| P               | Isoetes tuckermanii                        | Tuckerman's Quillwort       |         |      |                 | S3               | 4 Secure     | 17     | $11.3 \pm 1.0$ |
| Р               | Lycopodium sabinifolium                    | Ground-Fir                  |         |      |                 | S3               | 4 Secure     | 5      | 21.1 ± 1.0     |
| Р               | Huperzia appalachiana                      | Appalachian Fir-Clubmoss    |         |      |                 | S3               | 3 Sensitive  | 1      | 89.3 ± 1.0     |
| P               | Botrychium dissectum                       | Cut-leaved Moonwort         |         |      |                 | S3               | 4 Secure     | 17     | $31.2 \pm 5.0$ |
| P               | Botrychium lanceolatum var.                |                             |         |      |                 |                  |              |        |                |
| ۲               | angustisegmentum                           | Lance-Leaf Grape-Fern       |         |      |                 | S3               | 3 Sensitive  | 13     | $48.9 \pm 0.0$ |
| Р               | Botrychium simplex                         | Least Moonwort              |         |      |                 | S3               | 4 Secure     | 10     | 31.2 ± 0.0     |
| Р               | Polypodium appalachianum                   | Appalachian Polypody        |         |      |                 | S3               | 4 Secure     | 18     | $29.3 \pm 0.0$ |
| Р               | Utricularia resupinata                     | Inverted Bladderwort        |         |      |                 | S3?              | 4 Secure     | 16     | $42.5 \pm 0.0$ |
|                 |                                            |                             |         |      |                 |                  |              | -      | -              |

| Taxonomic Group | Scientific Name        | Common Name            | COSEWIC | SARA | Prov Legal Prot | Prov Rarity Rank | Prov GS Rank     | # recs | Distance (km) |
|-----------------|------------------------|------------------------|---------|------|-----------------|------------------|------------------|--------|---------------|
| Р               | Crataegus submollis    | Quebec Hawthorn        |         |      |                 | S3?              | 3 Sensitive      | 11     | 9.8 ± 1.0     |
| Р               | Lobelia kalmii         | Brook Lobelia          |         |      |                 | S3S4             | 4 Secure         | 21     | 18.9 ± 0.0    |
| Р               | Suaeda calceoliformis  | Horned Sea-blite       |         |      |                 | S3S4             | 4 Secure         | 4      | 18.4 ± 5.0    |
| Р               | Utricularia gibba      | Humped Bladderwort     |         |      |                 | S3S4             | 4 Secure         | 37     | 12.6 ± 0.0    |
| Р               | Rumex maritimus        | Sea-Side Dock          |         |      |                 | S3S4             | 4 Secure         | 2      | 30.2 ± 1.0    |
| Р               | Potentilla arguta      | Tall Cinquefoil        |         |      |                 | S3S4             | 4 Secure         | 36     | 28.0 ± 1.0    |
| Р               | Cladium mariscoides    | Smooth Twigrush        |         |      |                 | S3S4             | 4 Secure         | 43     | 10.1 ± 0.0    |
| Р               | Spirodela polyrrhiza   | Great Duckweed         |         |      |                 | S3S4             | 4 Secure         | 12     | 12.9 ± 0.0    |
| Р               | Corallorhiza maculata  | Spotted Coralroot      |         |      |                 | S3S4             | 3 Sensitive      | 6      | 30.7 ± 0.0    |
| Р               | Potamogeton oakesianus | Oakes' Pondweed        |         |      |                 | S3S4             | 4 Secure         | 36     | $9.3 \pm 0.0$ |
| Р               | Stuckenia pectinata    | Sago Pondweed          |         |      |                 | S3S4             | 4 Secure         | 55     | 12.8 ± 0.0    |
| Р               | Montia fontana         | Water Blinks           |         |      |                 | SH               | 2 May Be At Risk | 1      | 46.8 ± 1.0    |
| Р               | Solidago caesia        | Blue-stemmed Goldenrod |         |      |                 | SX               | 0.1 Extirpated   | 2      | 90.5 ± 1.0    |
| Р               | Celastrus scandens     | Climbing Bittersweet   |         |      |                 | SX               | 0.1 Extirpated   | 3      | 78.0 ± 100.0  |
| Р               | Carex swanii           | Swan's Sedge           |         |      |                 | SX               | 0.1 Extirpated   | 2      | 70.7 ± 1.0    |

## 5.1 SOURCE BIBLIOGRAPHY (100 km)

The recipient of these data shall acknowledge the ACCDC and the data sources listed below in any documents, reports, publications or presentations, in which this dataset makes a significant contribution.

| # recs | CITATION                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3165   | Lepage, D. 2014. Maritime Breeding Bird Atlas Database. Bird Studies Canada, Sackville NB, 407,838 recs.                                                         |
| 1930   | Erskine, A.J. 1992. Maritime Breeding Bird Atlas Database. NS Museum & Nimbus Publ., Halifax, 82,125 recs.                                                       |
| 1139   | Morrison, Guy. 2011. Maritime Shorebird Survey (MSS) database. Canadian Wildlife Service, Ottawa, 15939 surveys. 86171 recs.                                     |
| 1010   | Blaney, C.S. & Mazerolle, D.M. 2011. NB WTF Fieldwork on Magaguadavic & Lower St Croix Rivers. Atlantic Canada Conservation Data Centre, 4585 recs.              |
| 553    | Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2003.                                                                           |
| 376    | Clayden, S.R. 1998. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 19759 recs.                                         |
| 353    | Brunelle, PM. (compiler). 2009. ADIP/MDDS Odonata Database: data to 2006 inclusive. Atlantic Dragonfly Inventory Program (ADIP), 24200 recs.                     |
| 337    | Hicks, Andrew. 2009. Coastal Waterfowl Surveys Database, 2000-08. Canadian Wildlife Service, Sackville, 46488 recs (11149 non-zero).                             |
| 334    | Sollows, M.C,. 2008. NBM Science Collections databases: mammals. New Brunswick Museum, Saint John NB, download Jan. 2008, 4983 recs.                             |
| 325    | Blaney, C.S.; Mazerolle, D.M.; Klymko, J; Spicer, C.D. 2006. Fieldwork 2006. Atlantic Canada Conservation Data Centre. Sackville NB, 8399 recs.                  |
| 310    | Tims, J. & Craig, N. 1995. Environmentally Significant Areas in New Brunswick (NBESA). NB Dept of Environment & Nature Trust of New Brunswick Inc, 6042 recs.    |
| 302    | Benedict, B. Connell Herbarium Specimens (Data) . University New Brunswick, Fredericton. 2003.                                                                   |
| 263    | Goltz, J.P. 2012. Field Notes, 1989-2005. , 1091 recs.                                                                                                           |
| 220    | Hinds, H.R. 1986. Notes on New Brunswick plant collections. Connell Memorial Herbarium, unpubl, 739 recs.                                                        |
| 210    | Blaney, C.S. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 1042 recs.                                                            |
| 188    | Blaney, C.S.; Mazerolle, D.M. 2009. Fieldwork 2009. Atlantic Canada Conservation Data Centre. Sackville NB, 13395 recs.                                          |
| 188    | Sollows, M.C. 2008. NBM Science Collections databases: herpetiles. New Brunswick Museum, Saint John NB, download Jan. 2008, 8636 recs.                           |
| 184    | Blaney, C.S. & Mazerolle, D.M. 2011. Field data from NCC properties at Musquash Harbour NB & Goose Lake NS. Atlantic Canada Conservation Data Centre, 1739 recs. |
| 149    | Boyne, A.W. 2000. Tern Surveys. Canadian Wildlife Service, Sackville, unpublished data. 168 recs.                                                                |
| 141    | Blaney, C.S.; Mazerolle, D.M. 2012. Fieldwork 2012. Atlantic Canada Conservation Data Centre, 13,278 recs.                                                       |
| 137    | Bateman, M.C. 2001. Coastal Waterfowl Surveys Database, 1965-2001. Canadian Wildlife Service, Sackville, 667 recs.                                               |
| 136    | Clayden, S.R. 2007. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, download Mar. 2007, 6914 recs.                      |
| 123    | Wilhelm, S.I. et al. 2011. Colonial Waterbird Database. Canadian Wildlife Service, Sackville, 2698 sites, 9718 recs (8192 obs).                                  |
| 116    | Blaney, C.S.; Mazerolle, D.M.; Belliveau, A.B. 2014. Atlantic Canada Conservation Data Centre Fieldwork 2014. Atlantic Canada Conservation Data Centre, # recs.  |
| 108    | Benedict, B. Connell Herbarium Specimen Database Download 2004. Connell Memorial Herbarium, University of New Brunswick. 2004.                                   |
| 104    | Blaney, C.S. 2000. Fieldwork 2000. Atlantic Canada Conservation Data Centre. Sackville NB, 1265 recs.                                                            |
| 98     | Blaney, C.S.; Mazerolle, D.M. 2008. Fieldwork 2008. Atlantic Canada Conservation Data Centre. Sackville NB, 13343 recs.                                          |
| 81     | Erskine, A.J. 1999. Maritime Nest Records Scheme (MNRS) 1937-1999. Canadian Wildlife Service, Sackville, 313 recs.                                               |
| 80     | Belland, R.J. Maritimes moss records from various herbarium databases. 2014.                                                                                     |
| 77     | Speers, L. 2008. Butterflies of Canada database: New Brunswick 1897-1999. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 2048 recs.       |
| 76     | Bagnell, B.A. 2001. New Brunswick Bryophyte Occurrences. B&B Botanical, Sussex, 478 recs.                                                                        |
| 74     | Blaney, C.S.; Spicer, C.D.; Mazerolle, D.M. 2005. Fieldwork 2005. Atlantic Canada Conservation Data Centre. Sackville NB, 2333 recs.                             |
| 70     | Cowie, Faye. 2007. Surveyed Lakes in New Brunswick. Canadian Rivers Institute, 781 recs.                                                                         |
| 63     | Blaney, C.S.; Spicer, C.D. 2001. Fieldwork 2001. Atlantic Canada Conservation Data Centre. Sackville NB, 981 recs.                                               |
| 62     | Blaney, C.S.; Spicer, C.D.; Popma, T.M.; Hanel, C. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 2252 recs.                      |
|        |                                                                                                                                                                  |

| # recs CITATION |
|-----------------|

- 59 Sollows, M.C., 2009. NBM Science Collections databases: molluscs. New Brunswick Museum, Saint John NB, download Jan. 2009, 6951 recs (2957 in Atlantic Canada)
- 55 Klymko, J.J.D. 2014. Maritimes Butterfly Atlas, 2012 submissions. Atlantic Canada Conservation Data Centre, 8552 records.
- 53 McAlpine, D.F. 1998. NBM Science Collections databases to 1998. New Brunswick Museum, Saint John NB, 241 recs.
- 46 Stewart, J.I. 2010. Peregrine Falcon Surveys in New Brunswick, 2002-09. Canadian Wildlife Service, Sackville, 58 recs.
- 44 Blaney, C.S.; Spicer, C.D.; Rothfels, C. 2004. Fieldwork 2004. Atlantic Canada Conservation Data Centre. Sackville NB, 1343 recs.
- 41 Sabine, D.L. 2005. 2001 Freshwater Mussel Surveys. New Brunswick Dept of Natural Resources & Energy, 590 recs.
- 39 Scott, Fred W. 1998. Updated Status Report on the Cougar (Puma Concolor couguar) [Eastern population]. Committee on the Status of Endangered Wildlife in Canada, 298 recs.
- 33 Clayden, S.R. 2012. NBM Science Collections databases: vascular plants. New Brunswick Museum, Saint John NB, 57 recs.
- 33 McAlpine, D.F. 1998. NBM Science Collections: Wood Turtle records. New Brunswick Museum, Saint John NB, 329 recs.
- 29 Tingley, S. (compiler). 2001. Butterflies of New Brunswick. , Web site: www.geocities.com/Yosemite/8425/buttrfly. 142 recs.
- 26 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2009. New Brunswick Dept Natural Resources, 19 recs (14 active).
- 22 Hinds, H.R. 1999. Connell Herbarium Database. University New Brunswick, Fredericton, 131 recs.
- 22 Pike, E., Tingley, S. & Christie, D.S. 2000. Nature NB Listserve. University of New Brunswick, listserv.unb.ca/archives/naturenb. 68 recs.
- 21 Cronin, P. & Ayer, C.; Dubee, B.; Hooper, W.C.; LeBlanc, E.; Madden, A.; Pettigrew, T.; Seymour, P. 1998. Fish Species Management Plans (draft). NB DNRE Internal Report. Fredericton, 164pp.
- 20 Klymko, J.J.D. 2012. Maritimes Butterfly Atlas, 2010 and 2011 records. Atlantic Canada Conservation Data Centre, 6318 recs.
- 19 Doucet, D.A. & Edsall, J.; Brunelle, P.-M. 2007. Miramichi Watershed Rare Odonata Survey. New Brunswick ETF & WTF Report, 1211 recs.
- 18 Edsall, J. 2001. Lepidopteran records in New Brunswick, 1997-99. , Pers. comm. to K.A. Bredin. 91 recs.
- 17 McAlpine, D.F., Fletcher, T.J., Gorham, S.W. & Gorham, I.T. 1991. Distribution & habitat of the Tetraploid Gray Treefrog, Hyla versicolor, in New Brunswick & Eastern Maine. Can. Field-Nat., 105 (4): 526-529. 17 recs.
- 17 Mills, E. Connell Herbarium Specimens, 1957-2009. University New Brunswick, Fredericton. 2012.
- 17 Speers, L. 2001. Butterflies of Canada database. Agriculture & Agri-Food Canada, Biological Resources Program, Ottawa, 190 recs.
- 16 Benedict, B. Connell Herbarium Specimens, Digital photos. University New Brunswick, Fredericton. 2005.
- Bateman, M.C. 2000. Waterfowl Brood Surveys Database, 1990-2000
- 15 . Canadian Wildlife Service, Sackville, unpublished data. 149 recs.
- 15 Doucet, D.A. 2008. Fieldwork 2008: Odonata. ACCDC Staff, 625 recs.
- 15 Houston, J.J. 1990. Status of the Redbreast Sunfish (Lepomis auritus) in Canada. Can. Field-Nat., 104:64-68. 15 recs.
- 14 Blaney, C.S.; Mazerolle, D.M. 2010. Fieldwork 2010. Atlantic Canada Conservation Data Centre. Sackville NB, 15508 recs.
- 14 Spicer, C.D. 2001. Powerline Corridor Botanical Surveys, Charlotte & Saint John Counties. A M E C International, 1269 recs.
- 13 Benedict, B. Connell Herbarium Specimens. University New Brunswick, Fredericton. 2000.
- 13 Blaney, C.S.; Mazerolle, D.M.; Oberndorfer, E. 2007. Fieldwork 2007. Atlantic Canada Conservation Data Centre. Sackville NB, 13770 recs.
- 10 Clayden, S.R. 2005. Confidential supplement to Status Report on Ghost Antler Lichen (Pseudevernia cladonia). Committee on the Status of Endangered Wildlife in Canada, 27 recs.
- 10 Noseworthy, J. 2013. Van Brunt's Jacob's-ladder observations along tributary of Dipper Harbour Ck. Nature Conservancy of Canada, 10 recs.
- 9 Edsall, J. 2007. Personal Butterfly Collection: specimens collected in the Canadian Maritimes, 1961-2007. J. Edsall, unpubl. report, 137 recs.
- 7 Christie, D.S. 2000. Christmas Bird Count Data, 1997-2000. Nature NB, 54 recs.
- 7 Doucet, D.A. 2007. Lepidopteran Records, 1988-2006. Doucet, 700 recs.
- 7 Goltz, J.P. & Bishop, G. 2005. Confidential supplement to Status Report on Prototype Quillwort (Isoetes prototypus). Committee on the Status of Endangered Wildlife in Canada, 111 recs.
- 7 Goltz, J.P. 1994. In the Footsteps of Our Ancestors. NB Naturalists, 21 (2-4): 20. 8 recs.
- 7 Kennedy, Joseph. 2010. New Brunswick Peregrine records, 2010. New Brunswick Dept Natural Resources, 16 recs (11 active).
- 7 Munro, Marian K. Nova Scotia Provincial Museum of Natural History Herbarium Database. Nova Scotia Provincial Museum of Natural History, Halifax, Nova Scotia. 2013.
- 6 Brunelle, P.-M. (compiler). 2010. ADIP/MDDS Odonata Database: NB, NS Update 1900-09. Atlantic Dragonfly Inventory Program (ADIP), 935 recs.
- 6 McAlpine, D.F. 1983. Status & Conservation of Solution Caves in New Brunswick. New Brunswick Museum, Publications in Natural Science, no. 1, 28pp.
- 6 Popma, T.M. 2003. Fieldwork 2003. Atlantic Canada Conservation Data Centre. Sackville NB, 113 recs.
- 5 Boyne, A.W. 2000. Harlequin Duck Surveys. Canadian Wildlife Service, Sackville, unpublished data. 5 recs.
- 5 Whittam, R.M. 1999. Status Report on the Roseate Tern (update) in Canada. Committee on the Status of Endangered Wildlife in Canada, 36 recs.
- 4 Bredin, K.A. 2003. NB Freshwater Mussel Fieldwork. Atlantic Canada Conservation Data Centere, 20 recs.
- 4 Clayden, S.R. 2003. NS lichen ranks, locations. Pers. comm to C.S. Blaney. 1p, 5 recs, 5 recs.
- Klymko, J.J.D. 2012. Odonata specimens & observations, 2010. Atlantic Canada Conservation Data Centre, 425 recs.
- 4 Sabine, D.L. 2011. Dorcas Copper records from 2001 Fieldwork. New Brunswick Dept of Natural Resources, 4 recs.
- 4 Spicer, C.D. 2002. Fieldwork 2002. Atlantic Canada Conservation Data Centre. Sackville NB, 211 recs.
- 3 Bishop, G., Bagnell, B.A. 2004. Site Assessment of Musquash Harbour, Nature Conservancy of Canada Property Preliminary Botanical Survey. B&B Botanical, 12pp.
- 3 Blaney, C.S.; Mazerolle, D.M. 2011. Fieldwork 2011. Atlantic Canada Conservation Data Centre. Sackville NB.
- 3 Clayden, S.R. 2006. Pseudevernia cladonia records. NB Museum. Pers. comm. to S. Blaney, Dec, 4 recs.
- 3 Layberry, R.A. 2012. Lepidopteran records for the Maritimes, 1974-2008. Layberry Collection, 1060 recs.
- 3 Marshall, L. 1998. Atlantic Salmon: Southwest New Brunswick outer-Fundy SFA 23. Dept of Fisheries & Oceans, Atlantic Region, Science. Stock Status Report D3-13. 6 recs.
- 3 Sollows, M.C., 2009. NBM Science Collections databases: Coccinellid & Cerambycid Beetles. New Brunswick Museum, Saint John NB, download Feb. 2009, 569 recs.
- 2 Amirault, D.L. & Stewart, J. 2007. Piping Plover Database 1894-2006. Canadian Wildlife Service, Sackville, 3344 recs, 1228 new.
- 2 Bishop, G. 2012. Field data from September 2012 Anticosti Aster collection trip., 135 rec.
- 2 Brunelle, P.-M. 2005. Wood Turtle observations. Pers. comm. to S.H. Gerriets, 21 Sep. 3 recs, 3 recs.
- 2 Chaput, G. 2002. Atlantic Salmon: Maritime Provinces Overview for 2001. Dept of Fisheries & Oceans, Atlantic Region, Science Stock Status Report D3-14. 39 recs.

#### # recs CITATION

- 2 Cowie, F. 2007. Electrofishing Population Estimates 1979-98. Canadian Rivers Institute, 2698 recs.
- 2 Downes, C. 1998-2000. Breeding Bird Survey Data. Canadian Wildlife Service, Ottawa, 111 recs.
- 2 Goltz, J.P. 2002. Botany Ramblings: 1 July to 30 September, 2002. N.B. Naturalist, 29 (3):84-92. 7 recs.
- 2 Hay, G.U. 1883. Botany of the Upper St. John. Bulletin of the Natural History Society of New Brunswick, 2:21-31. 2 recs.
- 2 Hinds, H.R. 1999. A Vascular Plant Survey of the Musquash Estuary in New Brunswick. , 12pp.
- 2 Holder, M. & Kingsley, A.L. 2000. Peatland Insects in NB & NS: Results of surveys in 10 bogs during summer 2000. Atlantic Canada Conservation Data Centre, Sackville, 118 recs.
- 2 Klymko, J.J.D. 2012. Insect field work & submissions. Atlantic Canada Conservation Data Centre, 852 recs.
- 2 MacDougall, A.; Bishop, G.; et al. 1998. 1997 Appalachian Hardwood Field Data. Nature Trust of New Brunswick, 4473 recs.
- 2 Marx, M. & Kenney, R.D. 2001. North Atlantic Right Whale Database. University of Rhode Island, 4 recs.
- 2 McAlpine, D.F. 2001. Lepomis auritus, 2 sites in Saint John County. New Brunswick Museum, Pers. comm. to K.A. Bredin. 2 recs.
- 2 Newell, R.E. 2000. E.C. Smith Herbarium Database. Acadia University, Wolfville NS, 7139 recs.
- 2 Sabine, D.L. 2013. Dwaine Sabine butterfly records, 2009 and earlier.
- 2 Walker, E.M. 1942. Additions to the List of Odonates of the Maritime Provinces. Proc. Nova Scotian Inst. Sci., 20. 4: 159-176. 2 recs.
- 1 Amirault, D.L. 1997-2000. Unpublished files. Canadian Wildlife Service, Sackville, 470 recs.
- 1 Benedict, B. 2006. Argus annotation: Salix pedicellaris. Pers. comm to C.S. Blaney, June 21, 1 rec.
- 1 Benedict, B. Agalinis neoscotica specimen from Grand Manan. 2009.
- 1 Brunton, D. F. & McIntosh, K. L. Agalinis neoscotica herbarium record from D. F. Brunton Herbarium. D.F. Brunton Herbarium, Ottawa. 2005.
- 1 Clayden, S.R. 2007. NBM Science Collections. Pers. comm. to D. Mazerolle, 1 rec.
- 1 Dadswell, M.J. 1979. Status Report on Shortnose Sturgeon (Acipenser brevirostrum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 15 pp.
- 1 Dept of Fisheries & Oceans. 1999. Status of Wild Striped Bass, & Interaction between Wild & Cultured Striped Bass in the Maritime Provinces., Science Stock Status Report D3-22. 13 recs.
- 1 Edsall, J. 1992. Summer 1992 Report. New Brunswick Bird Info Line, 2 recs.
- 1 Edsall, J. 1993. Spring 1993 Report. New Brunswick Bird Info Line, 3 recs.
- 1 Goltz, J.P. 2001. Botany Ramblings April 29-June 30, 2001. N.B. Naturalist, 28 (2): 51-2. 8 recs.
- 1 Hicklin, P.W. 1990. Shorebird Concentration Sites (unpubl. data). Canadian Wildlife Service, Sackville, 296 sites, 30 spp.
- 1 Hicklin, P.W. 1999. The Maritime Shorebird Survey Newsletter. Calidris, No. 7. 6 recs.
- 1 Hinds, H.R. 2000. Flora of New Brunswick (2nd Ed.). University New Brunswick, 694 pp.
- 1 Jessop, B. 2004. Acipenser oxyrinchus locations. Dept of Fisheries & Oceans, Atlantic Region, Pers. comm. to K. Bredin. 1 rec.
- 1 Jolicoeur, G. 2008. Anticosti Aster at Chapel Bar, St John River. QC DOE? Pers. comm. to D.M. Mazerolle, 1 rec.
- 1 Litvak, M.K. 2001. Shortnose Sturgeon records in four NB rivers. UNB Saint John NB. Pers. comm. to K. Bredin, 6 recs.
- 1 Maass, W.S.G. & Yetman, D. 2002. Assessment and status report on the boreal felt lichen (Erioderma pedicellatum) in Canada. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
- 1 McAlpine, D.F. & Cox, S.L., McCabe, D.A., Schnare, J.-L. 2004. Occurrence of the Long-tailed Shrew (Sorex dispar) in the Nerepis Hills NB. Northeastern Naturalist, vol 11 (4) 383-386. 1 rec.
- 1 Sabine, D.L. & Goltz, J.P. 2006. Discovery of Utricularia resupinata at Little Otter Lake, CFB Gagetown. Pers. comm. to D.M. Mazerolle, 1 rec.
- 1 Sabine, D.L. 2004. Specimen data: Whittaker Lake & Marysville NB. Pers. comm. to C.S. Blaney, 2pp, 4 recs.
- 1 Sabine, D.L. 2012. Bronze Copper records, 2003-06. New Brunswick Dept of Natural Resources, 5 recs.
- 1 Sheppard, M. 2000. Annual Report
- . Nature Trust of New Brunswick, September 2000. 1 rec.
- 1 Taylor, Eric B. 1997. Status of the Sympatric Smelt (genus Osmerus) Populations of Lake Utopia, New Brunswick. Committee on the Status of Endangered Wildlife in Canada, 1 rec.
- 1 Toner, M. 2001. Lynx Records 1973-2000. NB Dept of Natural Resources, 29 recs.
- 1 Toner, M. 2009. Wood Turtle Sightings. NB Dept of Natural Resources. Pers. comm. to S. Gerriets, Jul 13 & Sep 2, 2 recs.
- 1 Toner, M. 2011. Wood Turtle sighting. NB Dept of Natural Resources. Pers. com. to S. Gerriets, Sep 2, photo, 1 rec.
- 1 Torenvliet, Ed. 2010. Wood Turtle roadkill. NB Dept of Transport. Pers. com. to R. Lautenschlager, Aug. 20, photos, 1 rec.
- 1 Webster, R.P. & Edsall, J. 2007. 2005 New Brunswick Rare Butterfly Survey. Environmental Trust Fund, unpublished report, 232 recs.