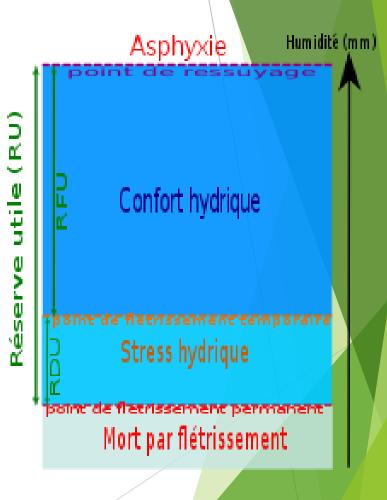
Irrigation

Jacques Thériault, M.Sc., Agr. Dany Boudreault T.P.

- The different kinds of water in the soil
 - Free water (gravitational): Water that flows by gravity following a heavy rain
 - Located in areas where the pores are too large (macroporosity) to create a capillary action effect
 - The water will give way to air by draining.
 - After drainage, field saturation is reached.
 - Capillary water (matric force): Water that is primarily held by the forces of cohesion between water molecules. This takes place in the smaller pores (microporosity) and constitutes the water available for plants. This is referred to as available water capacity (AWC).
 - Bound water: Water held firmly by soil particles (hygroscopic). This water is too strongly held to be accessible to plants. It is bound water.
 - Water of constitution: Water retained by solid chemical bonds (e.g., Epsom salts)

https://dorossinet.blogspot.com/2016/11/cours-svt-tronc-commun-bac_21.html

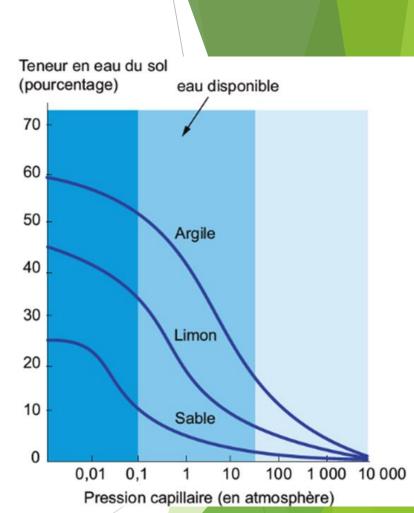
de l'eau libre


eau capillaire

eau de constitutio

eau liée

eau libre


- Available water capacity (AWC)
 - Available water: Hydric comfort zone
 - Slightly available water: Temporary wilting zone

https://fr.wikipedia.org/wiki/R%C3%A9serve_utile_en_eau_d%27un_sol

- Available water capacity (AWC)
 - Available water: Hydric comfort zone = available water
 - Slightly available water: Temporary wilting zone (before the point of permanent wilting)

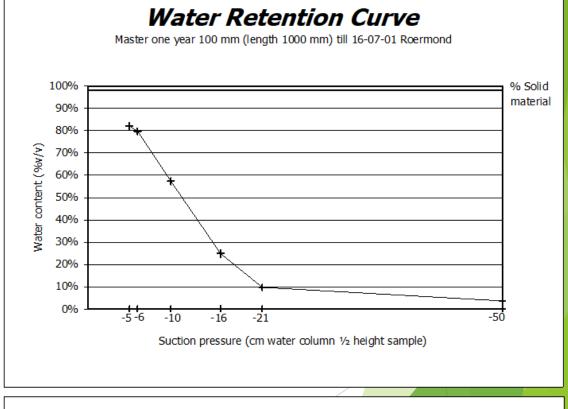
capacité de rétention d'eau d'un sol (mm/cm)					
Texture	Capacité de terrain	Point de flétrissement	Eau disponible		
Sable grossier	0,6	0,2	0,4		
Sable fin	1,0	0,4	0,6		
Sable limoneux	1.4	0,6	0,8		
loam sableux	2.0	0,8	1.2		
Loam sablo-argileux léger	2.3	1,0	1.3		
Terreau	2.7	1.2	1.5		
Limon argilo-sableux	2.8	1.3	1.5		
Terreau d'argile	3.2	1.4	1,8		
Argile	4.0	2.5	1.5		
Argile auto-mulching	4.5	2.5	2.0		

https://fr.wikipedia.org/wiki/R%C3%A9serve_utile_en_eau_d%27un_sol

www.aquaportail.com

- Available water capacity (AWC)
 - Available water: Hydric comfort zone
 - Slightly available water: Temporary wilting zone

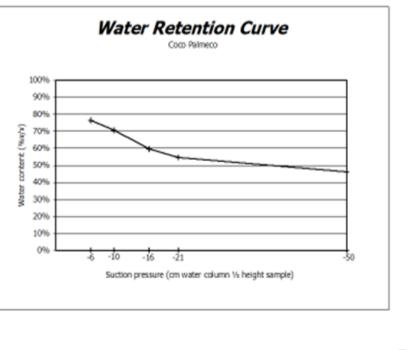
capacité	de	rétention	d'eau	d'un	sol
----------	----	-----------	-------	------	-----


Texture	Capacité de terrain	Point de flétrissement	Eau disponible
Sable grossier	0,6	0,2	0,4
Sable fin	1,0	0,4	0,6
Sable limoneux	1.4	0,6	0,8
loam sableux	2.0	0,8	1.2
Loam sablo-argileux léger	2.3	1,0	1.3
Terreau	2.7	1.2	1.5
Limon argilo-sableux	2.8	1.3	1.5
Terreau d'argile	3.2	1.4	1,8
Argile	4.0	2.5	1.5
Argile auto-mulching	4.5	2.5	2.0

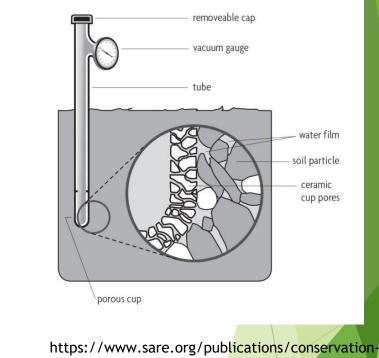
I Tourbe peu aérée	<u>II</u> Tourbe bien aérée	<u>III</u> Laine de roche
81/1	plant	e and the second
Air	Air	Air
15%		20%
	25%	12001
Eau		1000
Réserve	Eau RFU	Eau
Facilement		R.F.
utilisable	25%	U.
35%		70%
Réserve 5%	Réserve 5%	
Eau	Eau	
Non	Non	
Disponible	Disponible	
- Solo Sol	(N.D.)	
30 %	30%	
	3070	
Solide	Solide	5.0/
15 %	15 %	5% 5%

Source: Climax Conseils

- Rock wool
 - Almost nil matric force
 - Required perfect levelling
 - ▶ High available water (70%)
 - Good macroporosity (20%)
 - Very precise microporosity (large diameter)


Water Distribution over slab Height at 50%

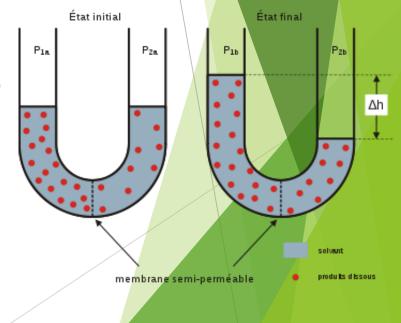
Master one year 100 mm (length 1000 mm) till 16-07-01 Roermond


- Coconut fibre
 - Strong matric force
 - Required moderate levelling
 - Low available water (30%)
- Good macroporosity (25%)
- Good microporosity but variable diameter

Courbe de tension Coco

grodan 🛛

- > Measurement by tensiometer
 - Measurement of tension by capillary force of porous ceramic
 - The force (tension) measured is what is balanced between the capillary force of the soil and that of the ceramic
 - > It is measured in kPa (kilopascal)
 - > 1 kPa = 10 cm What does that mean?
 - > Typically desired maximum tension
 - ▹ Field soil: 10 kPa
 - > Greenhouse soil: 6.5 kPa
 - > Hydroponic substrate: 4.5 kPa



https://www.sare.org/publications/conservationtillage-systems-in-the-southeast/chapter-14-watermanagement/monitoring-soil-water/ 1- Understanding the availability of water crops: practical case

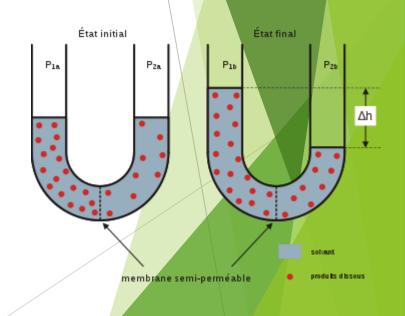
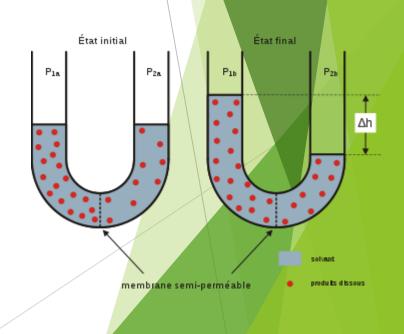

Sequence of substrates: Observing capillary action

	Table ²	1: From wettest to	o driest	
	Planting	Subculture	Seedling	Siphon
S	Rock wool	Rock wool	Rock wool	No
u b	Sawdust	Rock wool	Rock wool	No
S	Peaty mix	Peaty mix	Peaty mix	No
t r		Rock wool	Rock wool	Yes
a t	Coconut fibre	Rock wool	Rock wool	Yes
e	Soil	?	?	Yes/No


- Salinity: Osmotic effect
 - The root is a semi-permeable membrane
 - Lets the water through but not the minerals
 - The water will seek to balance the concentration of the two sides of the membrane
 - The water will stop when the water buoyancy (cm of water column) is equal to the osmotic force Δh = the water column pressure
 - The salts in the root therefore compete with the salts in the root environment to attract water.

- Salinity: Osmotic effect
 - ► How is it measured?
 - It is hard to measure this pressure in production conditions
 - Indirect measurement using the conductive properties of the salts = Electrical conductivity
 - Caution, only measures what has positive and negative loads (salts)
 - ▶ Urea is a neutral element; it is not measured but has osmotic effect
 - ▶ A measured value is only valid when the mineral content is fairly well known.
 - Osmosis is created by the number of atoms and molecules, not electric loads.

- Salinity: Osmotic effect
 - ► How is it interpreted?
 - 1 mS/cm = 33.3 kPa = 333 cm of water column = 4.78 psi; it is high!!!
 - ▶ 6 mS/cm = 200 kPa = 2,000 cm of water column = 28.68 psi; it is heavy
 - > Your plant has to fight against it for water uptake

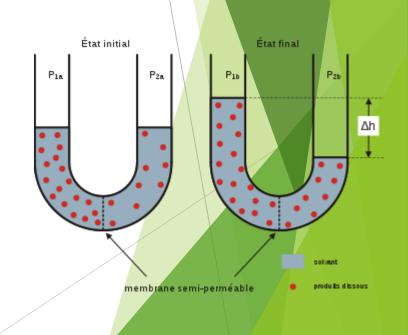
1- Understanding the availability of water crops ^{Soil}

- Hydroponic
 - Matric tension
 - Day: -1 kPa
 - Night: -4.5 kPa
 - Osmotic tension
 - Electrical conductivity (EC)
 - Tomato in the summer =
 - Night: 4.5 mS/cm = -150 kPa
 - Day: 2.5 mS/cm = -83 kPa
 - Increases quickly
 - Plant adaptation
- The osmotic effect dominates

- Field crops: Matric tension
 - ▶ -10 kPa
 - Low EC
 - The tension dominates
- Greenhouse
 - Matric tension
 - Day: -1.5 to -6 kPa (field capacity)
 - ▶ Night: -3.5 to -6.5 kPa
 - Osmotic tension
 - ► EC (SSE)
 - Tomato: 2.5 mS/cm = -83 kPa
 - Plant adaptation
 - Fertility to be maintained
 - The osmotic effect dominates

Nutrient film technique (NFT)

When osmotic potential is your only tool!!!

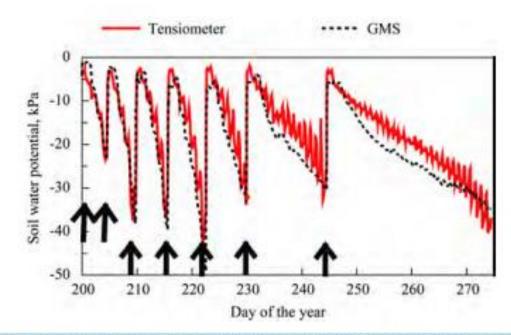
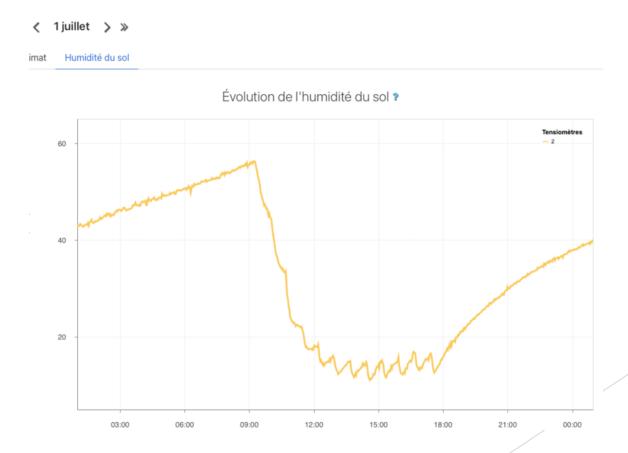


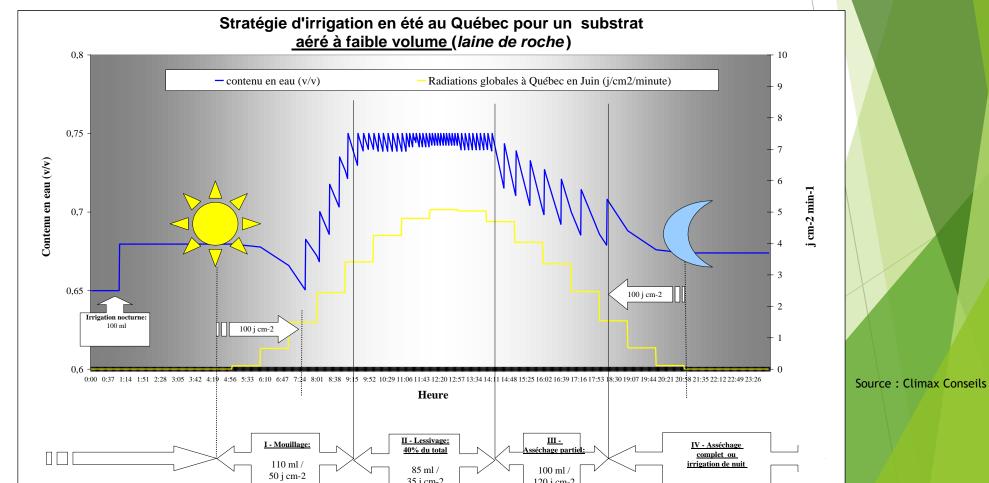
Growing produce on mobile floats

- If salinity is so important, why measure tension in a greenhouse?
 - ► To monitor water content
 - Drier = equals more saline (salt concentration effect)
 - Aeration
 - A good greenhouse soil is well aerated at saturation
 - Ideally loam and coarser

Measuring osmotic effect = Electrical conductivity meter

Irrigation in field soil: Camel type - approximately 1 X every 6 days

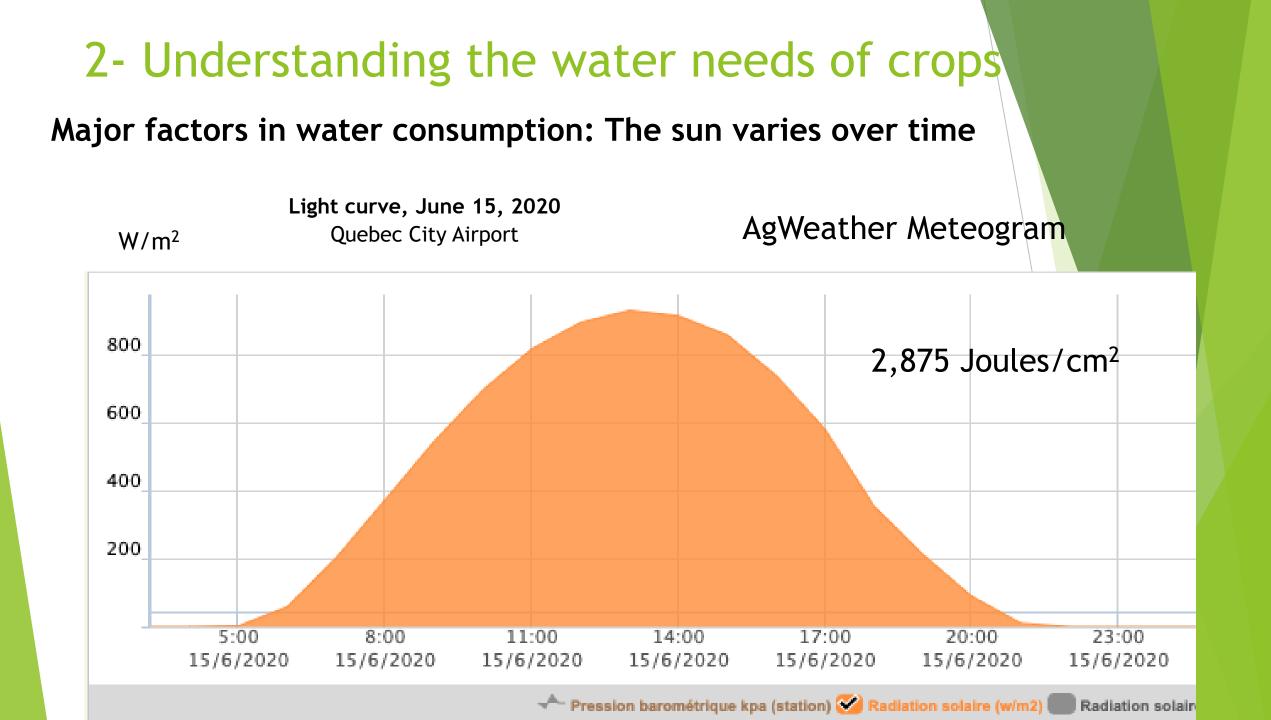

Figure 7. Soil water potential over time for tensiometers with transducers and granular matrix sensors in Experiment 3. Arrows denote furrow irrigations with 75 mm of water applied. Malheur Experiment Station, Oregon State University, Ontario, OR, 2004.

Shock et al. 2016 Journal of Water Resource and Protection, 2016, 8, 154-167

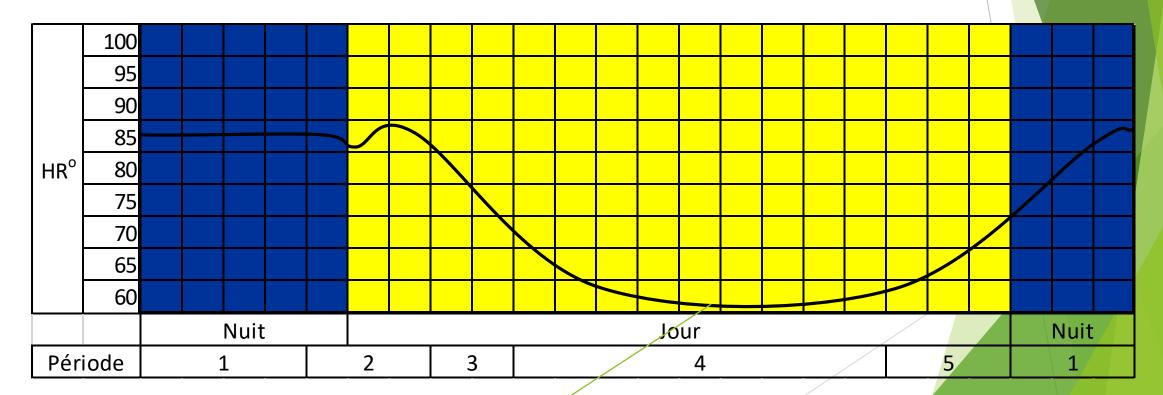
Irrigation in greenhouse soil: Tension curve - Sandy soil (mb=0.1 kPa) 11 waterings

Irrigation in hydroponics for greenhouse vegetables: Marathon-style - up 25-30 waterings/day

A plant is also a living thing that must face several factors:


- Thin leaves: dry very fast
- Sun of up to nearly 1,000 W/m² in the summer = 1 hair dryer / m^2
- If it cannot cool quickly, it will burn

The primary reason for watering in the summer is to allow the plant to COOL DOWN


(TOUCH THE FOLIAGE IN THE SUMMER)

A plant is also a living thing that must face several factors:

- In summer: 16 hours of endurance = Marathon = staying on the hydration line:
 - Hydroponic: Marathon waterings
 - Soil: Marathon not watering for the soil, but for the plant
 - But there are structural constraints:
 - Soil water retention X large volume: Hard to dry (aerate) quickly
 - Irrigation system: drip tape vs. uniformity = requires long irrigations
 - Buffer effect: Provides benefits in the event of equipment failure or technological limitations (it is almost possible start watering manually)

Major factors in water consumption: Daily summer relative humidity (humidity deficit increased from 3 to 15 g/m³)

1000 W/m² . 28°C, DH = between 13 and 15^{4} g/m³

Purpose of irrigation management

- Maintain a balanced tension (marathon = just in time) between the plant and its environment:
 - Meet the cooling needs of foliage
 - Turgidity for cell growth
 - Mineral input
 - Maintain vegetative/reproductive balance, fruit quality and root aeration

This balance is known as water balance: Soil-plant-environment continuum

Availability of water

Soil tension

EC (electrical conductivity) = saline effect

Evapotranspiration

Sunshine (variable from 0 to 1000 W/m²)

- ► VPD, HD, RH^o X T^o = Drying effect
- Boundary layer (air movement)

Irrigation issues:

Aeration

Availability of water: Tension, salinity, capillary movements

Aeration

- % of air at saturation:
 - ► Technical substrate: 25% of air on the entire substrate
 - > 20% in rock wool is good (very good gas diffusion and piston effect of irrigations)
 - Soil:
 - Minor issue in fields
 - Significant issue in greenhouses in heavy soil, clayish and finer loams rejected
- % air in soil drainage (ensure aeration of deep roots at night)
 - Technical substrate: Bottom of bag effect (25% of air in the bottom of the bag in the morning)
 - > Difficult to create a difference in soil aeration (too high volume); aeration must be structural

The purpose of irrigation management is therefore to:

- 1- Ensure water availability
- 2- Ensure good root aeration

We must therefore learn to: 1- Water 2 - Let dry (restore aeration)

I water, I dry, I water, I dry, I water, I dry, I water, I dry, I water, I dry

4- How much time is needed to dry the root environment?

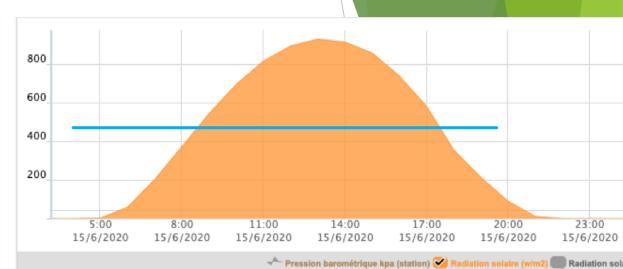
Speed of water uptake vs. Substrate characteristics

4- How long does it take to dry?

- Speed of water uptake:
 - Intensity of the sun (W/m²)
 - Stage of the crop (m² leaves / m² soil)
- Speed of drying (aeration)
 - Determines the watering intervals
 - Speed of consumption
 - Substrate volume (soil) (Litres/m²)
 - Available water

Speed of water uptake

How is light measured?

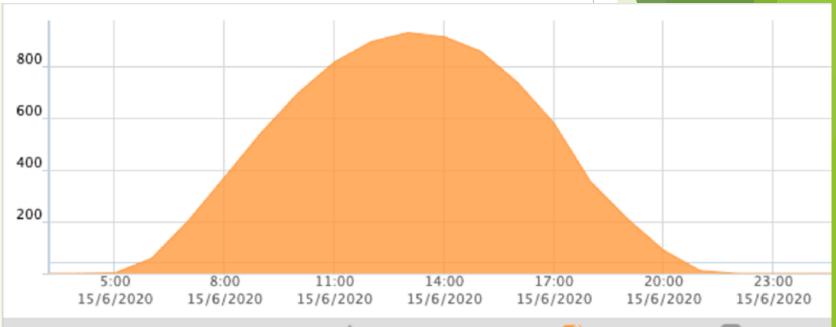

- Formula: Joules/cm² or J/cm²
 - Intensity = Watt/m²
 - Watt = Joule/second
 - Intensity on June 21 at noon: 1,000 W/m²
 - Cumulative:
 - 1,000 W/m² X 60 minutes/hr X 60 seconds/min =

 $10,000 \text{ cm}^2/\text{m}^2$

▶ <u>360 J/cm²</u>

▶ <u>2,822 J/cm²</u>

490 W/m² X 60 min/hr X 60 sec/min X 16 hours/10,000 cm²/m² =

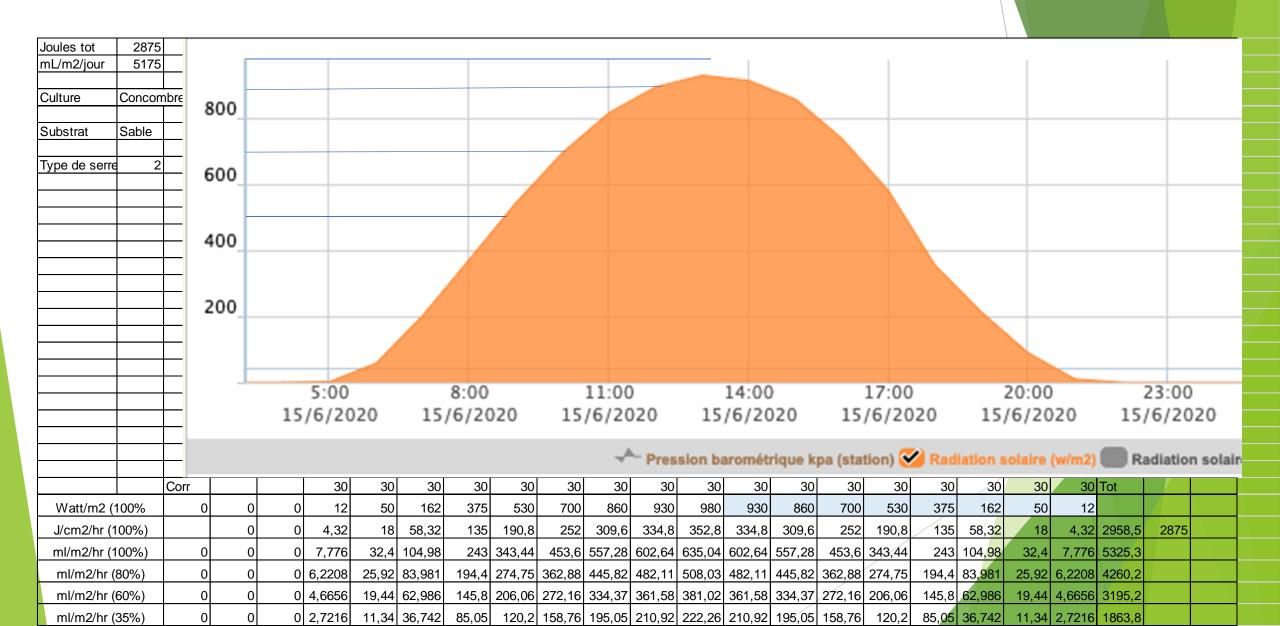


Speed water uptake

- Total daily consumption
 - Type of greenhouse:
 - ▶ 1-2: 1.8 mL/joule X 2,822 j/cm² = 5,080 mL/m²
 - ▶ 3: 1.4 mL/joule X 2,822 j/cm² = 3,951 mL/m²
 - ▶ 4: 1.25 mL/joule X 2,822 j/cm² = 3,527 mL/m²
 - If you have 1,000 W/m² in a type 2 greenhouse, how many mL/m² are consumed in one hour?
 - > Do the calculation for 100 to 1,000 W/m^2 in increments of 100 W.

360 joules X 1.8 mL/joule = 648 mL

- ▶ 100 W = 64.8
- Each hour could be calculated but!!!

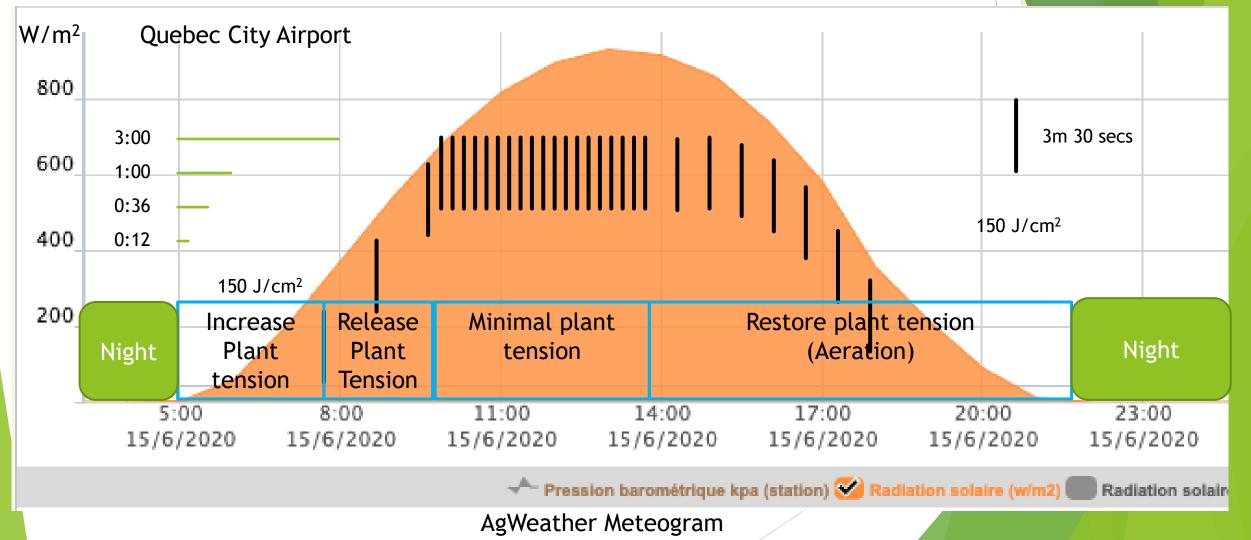

📌 Pression barométrique kpa (station) 🧭 Radiation solaire (w/m2) 🌑 Radiation solair

Speed of water uptake

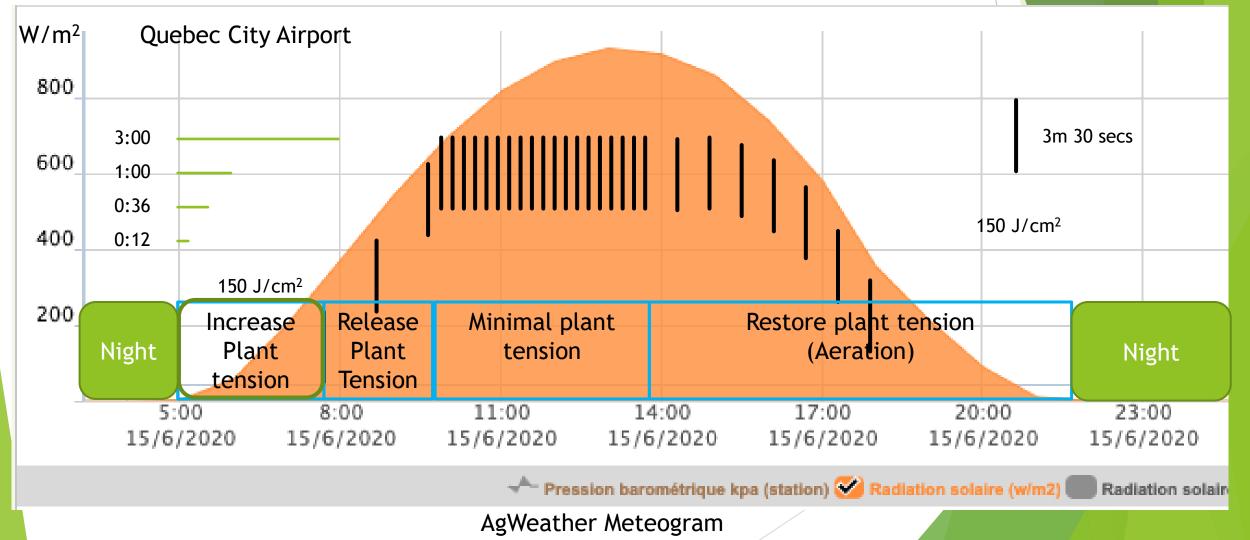
Month	Brightness (j/cm2/day)			Consumption (mL/m2/day)	
	Nice day	Average ¹	Cloudy ²	Average ¹	Cloudy ²
January	500-800	400	200	720	360
February	1,200 - 1,500	650	325	1,170	585
March	1,800	1,000	500	1,800	900
April	2,500 - 2,800	1,450	725	2,610	1,305
May	2,500 - 2,900	1,700	850	3,060	1,530
June	2,500 - 2,900	1,850	925	3,330	1,665
July	2,800 - 2,500	1,920	960	3,456	1,728
August	2,400 - 2,000	1,750	875	3,150	1,575
September	1,700 - 1,200	1,196	598	2,152.8	1,076.4
October	1,200 - 1,100	806	403	1,450.8	725.4
November	800 - 700	453	226.5	815.4	407.7
December	600 - 500	419	209.5	754.2	377.1

Can vary considerably by region
Estimated at 50% of average

Sample calculation (for patient people)



5- The basics of irrigation:a- Ensure water availabilityb- Ensure good root aeration


How to do it?

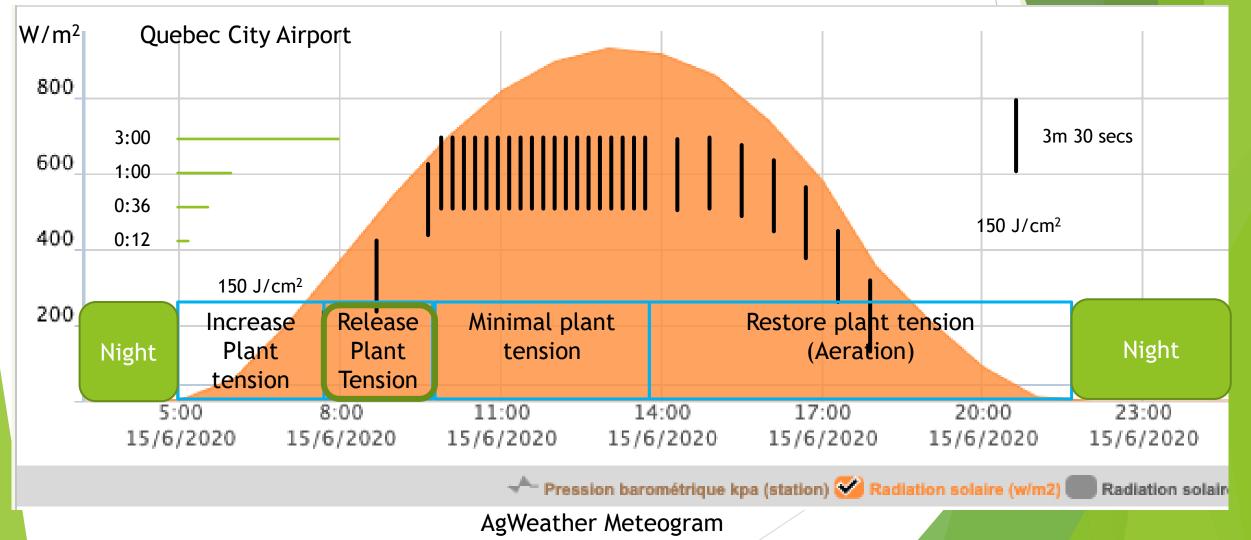
5- The basics of irrigation: The 5 stages

Light curve, June 15, 2020 (week 25)

Light curve, June 15, 2020 (week 25)

Stage 1: Increase plant tension = no watering

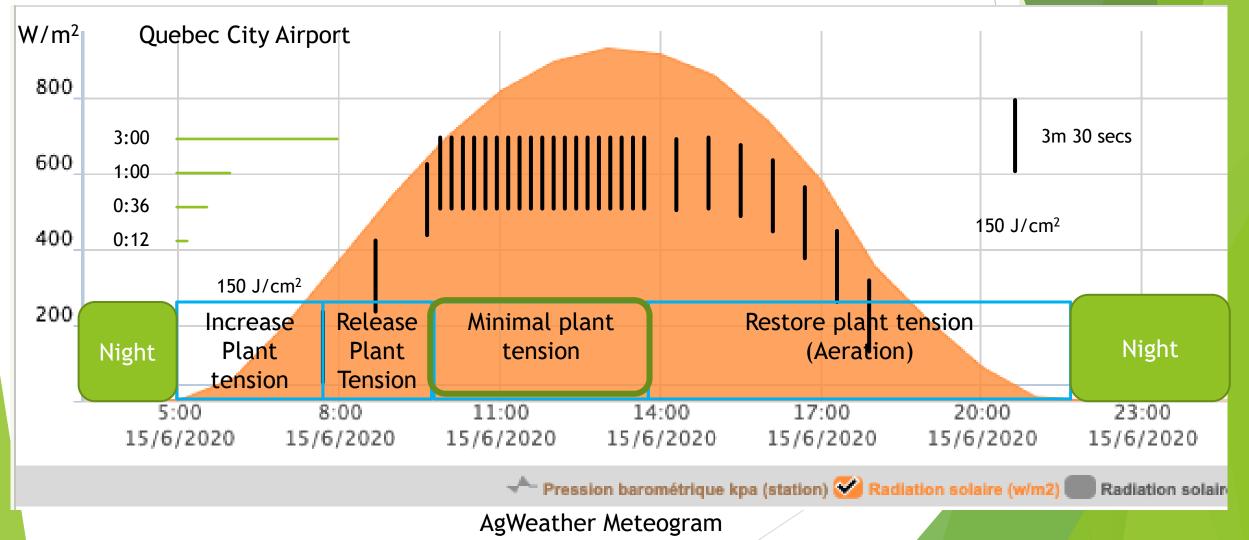
- Let the plant be thirsty
 - Water buffer effect of the plant, greenhouse 1-2 (Build the continuum air-plant-substrate)
 - Beef tomato loaded: 2.5 hours in summer
 - Cucumber and cherry tomato: 1.5 hours in summer
 - Pepper: 1 hour in summer
 - Time to build tension in the substrate = activation of roots
 - ▶ 0.5 hour


Time: start watering based on joules = End of increase plant tension stage

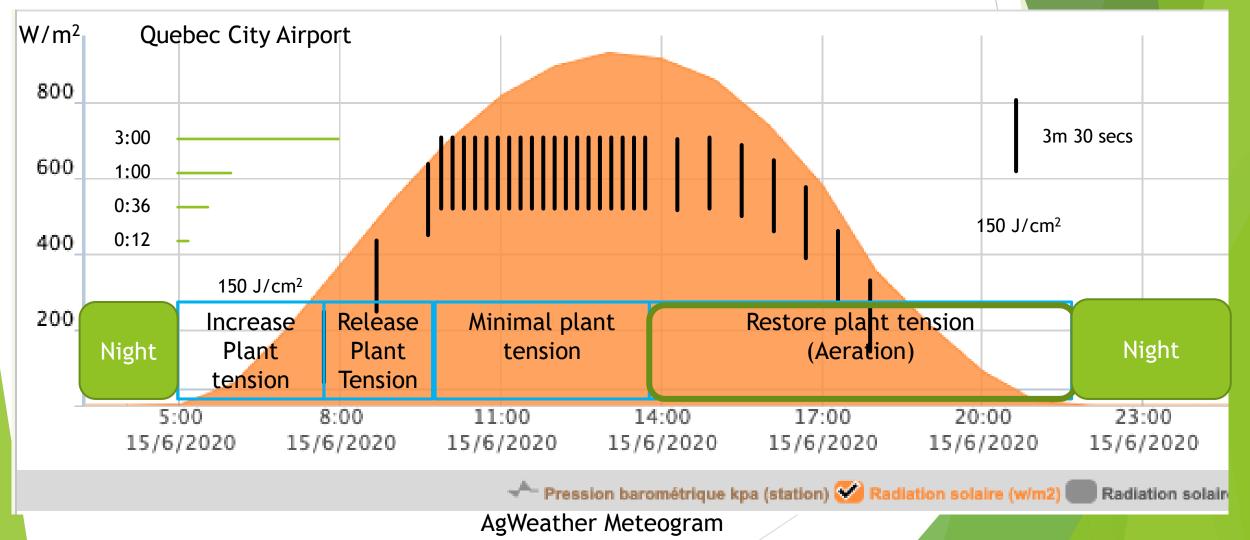
Effect	of type of gree	enhouse on ir	rigation	Effect of type of greenhouse on irrigation							
Toma	ato	Week: 2		Cucun	nber		Week: 25				
Туре	1 or 2 100%	3 78,6%	4 68,8%	Туре	1 or 2 100%	3 78,6%	4 68,8%				
Actions				Actions							
Start of watering	150 J/cm ²	191 J/cm ²	218 J/cm ²	Start of watering	100 J/cm ²	127 J/cm ²	145 J/cm ²				
No. hours AS	3:00	3:15	3:22	No. hours AS	2:00	2:20	2:30				
Actual time	7:50 a.m.	8:05 a.m.	8:12 a.m.	Actual time	6:50 a.m.	7:10 a.m.	7:20 a.m.				

Tension increasing period is independent of the substrate but dependent on the crop

Source : Climax Conseils


Light curve, June 15, 2020 (week 25)

Stage 2: Release plant tension = Moistening


- Monitor the transpiration demand of the climate until minimum tension
- Total volume = mL/joule X (joules at end of day + joules before minimum plant tension)
 - About 10% of the volume of the substrate in hydroponics
 - Transition from the granular stage to the saturated soil stage (when possible)
 - ► -4 kPa (Dorais, et al., 2009)
 - -6.3 kPa (Sonneveld and Voogt, 2009)

Light curve, June 15, 2020 (week 25)

- Stage 3: Minimal plant tension = Peak cooling requirement period
 - Meet the maximum transpiration demand of the climate
 - Hydroponics: Leaching period
 - Soil: Maximum moistening; low tension is maintained

Light curve, June 15, 2020 (week 25)

Stage 4: Restore plant tension - Night drying

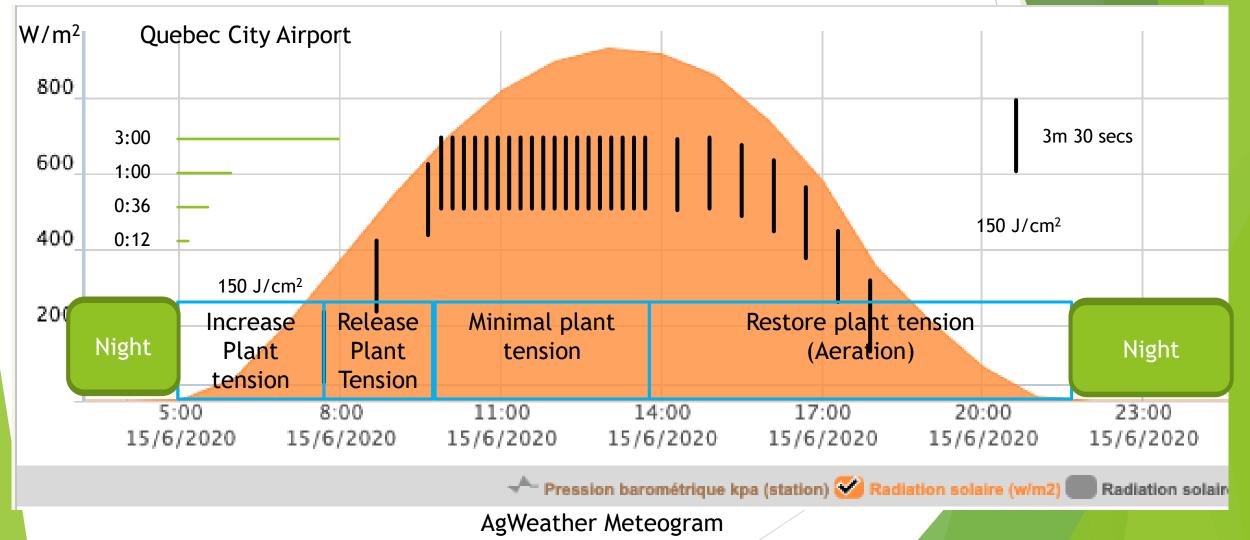
- Restore tension for the night (the climate continues to be monitored); water if drying is too fast
- Ensure aeration of roots at night
- Slowing of consumption by joule received
 - Water buffer effect
 - Beef tomato: Water uptake slows quickly but continues for a long time (night irrigation in hydroponics)
 - Other: Water uptake slows one hour later but remains fairly close to climate demand from the sun

- Stage 4: Tension restored = Night drying
 - Low volume substrate or sand
 - One hour after the zenith in the summer for beef tomatoes (2 hours in heat waves), one hour later for other crops
 - Summer: 2:00 p.m. beef tomatoes and 3:00 p.m. cucumbers in the summer
 - ► Heat wave: 3:00 p.m. tomatoes and 4:00 p.m. cucumbers in a heat wave
 - You give water only to slow down the water content decreasing
 - High volume substrate (other soils)
 - Can be confused with Stage 5: Tension restored (aeration at night)

5- The basics of irrigation: Stage 4 End of watering based on the type of greenhouse (joules)

Effect	Effect of the type of greenhouse on irrigation Conventional crop									
Tom	iato	Week: 25								
Туре	1 or 2 100%	3 78.6%	4 68.8%							
Actions										
End watering	150 J/cm ²	191 J/cm ²	218 J/cm ²							
No. hours BS	3:00	3:15	3:22							
Actual time	5:41 p.m.	5:26 p.m.	5:19 p.m.							

Actual time	5:41 p.m.	5:26 p.m. 5:19 p.m.									
Effect of the type of greenhouse on irrigation Crop in soil (sandy loam)											
Tom	ato	Week: 25									
Туре	1 or 2 100%	3 78.6%	4 68.8%								
Actions											
End watering	1,200 J/cm ²	1,527 J/cm ²	1,744 J/cm ²								
No. hours BS	6:40	7:30	8:10								
Actual time	2:01 p.m.	1:11 p.m.	12:31 p.m.								

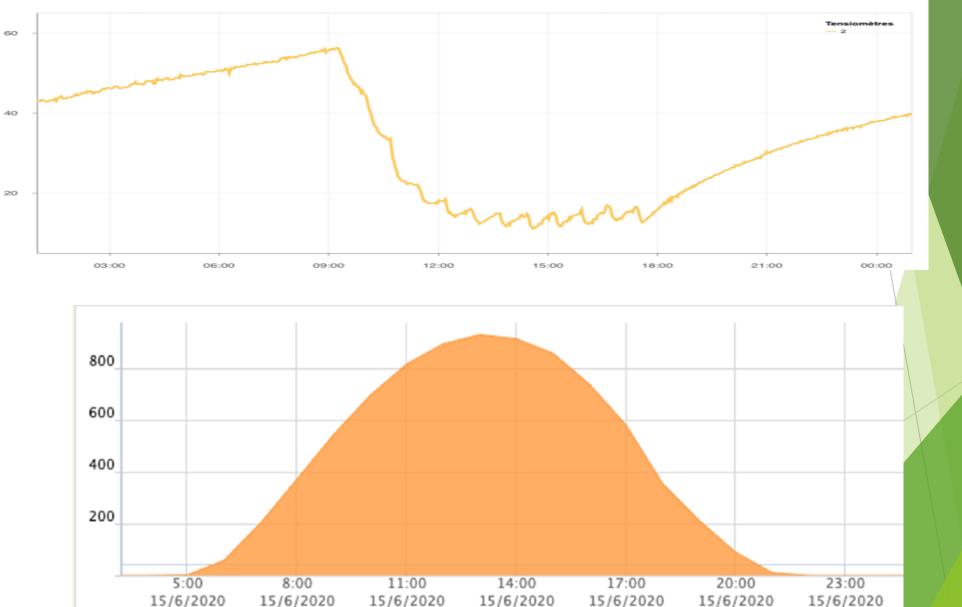

Effect of the type of greenhouse on irrigation Conventional crop									
Cucui	mber	Week: 25							
Туре	1 or 2 100%	3 78.6%	4 68.8%						
Actions									
End watering	100 J/cm ²	127 J/cm ²	145 J/cm ²						
No. hours BS	2:00	2:20	2:30						
Actual time	6:41 p.m.	6:21 p.m.	6:11 p.m.						

Effect	of the type of gre Crop in soil (s	-	ation
Cucu	mber	Wee	ek: 25
Туре	1 or 2 100%	3 78.6%	4 68.8%
Actions			
End watering	1,000 J/cm ²	1272 J/cm ²	1453 J/cm ²
No. hours BS	6:10	6:55	7:30
Actual time	2:31 p.m.	1:46 p.m.	1:11 p.m.

Source : Climax Conseils

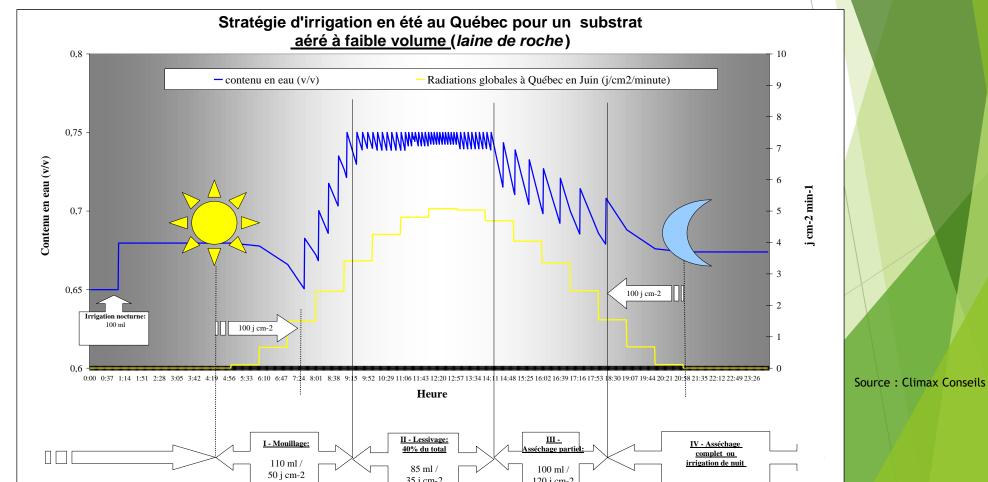
2 substrates X 2 crops X 3 types of greenhouse = 12 strategies

Light curve, June 15, 2020 (week 25)



- Stage 5: Good night
 - Night is the longest period in watering management
 - Summer
 - Hydroponics = 12-14 hrs.
 - Watch for heat waves
 - Tomato: Consider watering 250 to 500 mL/m² at night following a heat wave
 - ► Half for cucumbers
 - Soil = 18 hrs or more
 - ► Winter
 - ► Hydroponics = 22 hrs.

A good night is the first commandment of irrigation management. Valid water content of the substrate every morning before watering.


Understanding the water needs of crops

Évolution de l'humidité du sol ?

Understanding the water needs of crops

Irrigation in hydroponics for greenhouse vegetables: Marathon-style - up t 25-30 waterings/day

Now that you know the speed of water uptake, you need to know how long it takes to dry (aeration).

- ▶ For a substrate, we examine two different volumes
 - ▶ 10 L/m² vs. 20 L/m²
 - You want to dry (aerate) 3% between two waterings in peak periods.
 - ▶3% X 10 L = 300 mL
 - ▶ 3% X 20 L = 600 mL
 - If you have summer sun (1,000 w/m²) with a type 2 greenhouse and a mature crop, what would your watering interval be?
 - ►10 L:
 - ►20 L:

Now that you know the speed of water uptake, you need to know how long it takes to dry (aeration).

- ► For a substrate, we examine two different volumes
 - ▶ 10 L/m² vs. 20 L/m²
 - You want to dry (aerate) 3% between two waterings in peak periods.
 - ▶3% X 10 L = 300 mL
 - ▶ 3% X 20 L = 600 mL
 - If you have summer sun (1,000 w/m²) with a type 2 greenhouse and a mature crop, what would your watering interval be?
 - ▶10 L: 10 minutes
 - ► 20 L: 10 minutes

Irrigation

- Available water vs. interval and volume strategy (the biggest day of the year):
- The more water that is available, the less often we water (the more we let dry between two waterings)

Ir	rigation interv	al in peak p	period c	onsumpti	on (1,000) mL/m ²	²/hr)			
	Substrate		Irrigation interval							
Volume/m ²	Available	water	dripper/m ²							
	100 %	5%	1							
(L)	(L)	(mL)	2	2.2	2.4	2.6	2.8	3		
9	3.0	149	9	9	9	9	9	9		
10	3.3	165	10	10	10	10	10	10		
11	3.6	182	11	11	11	11	11	11		
12	4.0	198	12	12	12	12	12	12		
13	4.3	215	13	13	13	13	13	13		
14	4.6	231	14	14	14	14	14	14		
15	5.0	248	15	15	15	15	15	15		
16	5.3	264	16	16	16	16	16	16		

Volume/ irrigation/ trickler in peak period consumption (1,000 mL/m²/hr)

	Substrate			I	rrigation	interva	al				
Volume/m ²	Availa	ble water	Dripper/m ²								
	100 %	5%	1								
(L)	(L)	(mL)	2	2.2	2.4	2.6	2.8				
9	3.0	149	149	135	124	114	106				
10	3.3	165	165	150	138	127	118	1			
11	3.6	182	182	165	151	140	130	1			
12	4.0	198	198	180	165	152	141	1			
13	4.3	215	215	195	179	165	153	1			
14	4.6	231	231	210	193	178	165	1			
15	5.0	248	248	225	206	190	177	1			
16	5.3	264	264	240	220	203	189	1			

Now that you know the speed of water uptake, you need to know how long it takes to dry (aeration).

▶ For a substrate, we examine two different volumes

- ▶ 10 L/m² vs. 20 L/m²
- You want to dry (aerate) 10% of the volume of the substrate at night.
 - ▶ 10% X 10 L = 1,000 mL
 - ▶ 10% X 20 L = 2,000 mL
- In a type 2 greenhouse with a mature crop, how many joules will you need between your last watering of the day and your first watering the next day?
 - ► 10 L:

Now that you know the speed of water uptake, you need to know how long it takes to dry (aeration).

For a substrate, we examine two different volumes

- ▶ 10 L/m² vs. 20 L/m²
- You want to dry (aerate) 10% of the volume of the substrate at night.
 - ▶ 10% X 10 L = 1,000 mL
 - ▶ 10% X 20 L = 2,000 mL
- In a type 2 greenhouse with a mature crop, how many joules will you need between your last watering of the day and your first watering the next day?
 - ► 10 L:
 - ► 20 L:

Tomato 300 J/cm² Cucumber 200 J/cm² Tomato 300 J/cm² Cucumber 200 J/cm² Now that you know the speed of consumption, you need to know how long it takes to dry (aeration).

How many joules will you need between your last watering and sunset?

►10 L:

►20 L:

Estimate what time you should do your last watering. (see light graph)

►10 L:

►20 L:

Now that you know the speed of consumption, you need to know how long it takes to dry (aeration).

- How many joules will you need between your last watering and sunset?
 - ► 10 L: Tomato 150 J/cm² Cucumber 150 J/cm²
 - ► 20 L: Tomato 150 J/cm² Cucumber 150 J/cm²
- Estimate what time you should do your last watering. (see light graph)
 - ► 10 L: Tomato 5:41 pm Cucur
 - ► 20 L: Tomato 5:41 pm

Cucumber 6:41 pm Cucumber 6:41 pm

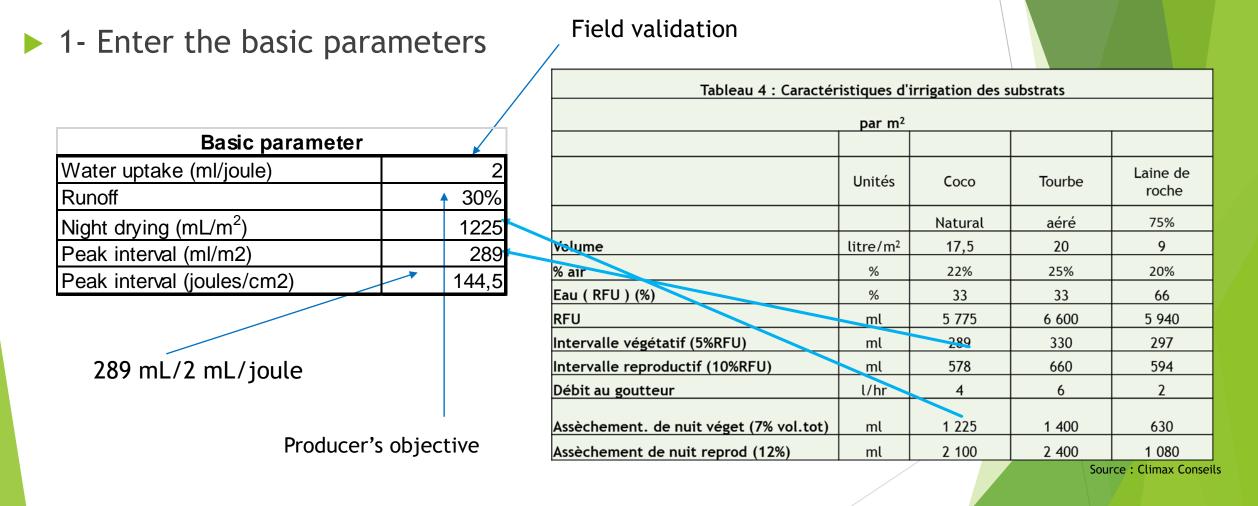
What to remember

- Light is the main determiner for speed of water uptake
 - Stop thinking like clocks, start thinking like lights.
- ► The characteristics of the substrate determine the speed of drying (aeration).
- Substrate X light = drying intervals
 - Think as much to dry than to water

Very important

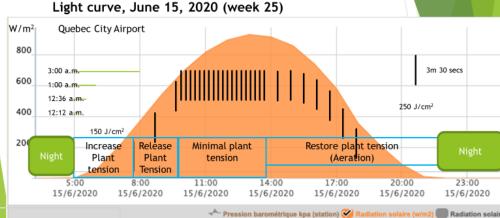
- > Each volume of substrate must support the same light load = Uniformity
 - > Spacing of wires
 - > Spacing of heads
 - Volume of substrate/m² constant
 - > 30% adjustment on the south, east and west rows
 - Adjustment to the number of drippers at the ends of the rows in hydroponics

6- Substrates characteristic and watering strate


Water uptake before having 25% air

Impossible water uptake

	Table 1	: Caracte	eristics of	f substra	ite water	manage	ement		
	Pe	at	Rock	Rock wool		ut fiber		Soil ¹	
	Wet	Aerated	75%	65%	Aerated	Wet	Sand	Sandy loam	Clay
Volume/m2 (liter)	20	20	9	9	13	15,6	60	70	80
% air à water holding capacity	15%	25%	20%	30%	30%	25%	25%	24%	9%
Air deficit at water holding capacity (%)	10%	0%	0%	0%	0%	0%	0%	1%	14%
Air deficit to restore (ml)	2000						0	700	11200
Water available (WA) (%)	35	25	35	30	27	33	4	10	13
Water available (WA) (mL)	7000	5000	3150	2700	3510	5148	2400	7000	10400
Vegetative interval (ml/m2) (5%WA)	350	250	157,5	135	175,5	257,4	240	700	1040
Generative interval (ml/m2) (10% WA)	700	500	315	270	351	514,8	480	1400	2080
Drip flow(L/hr)	6	4	4	2	3	4			
Peak flow (L/hr/m2) ²	15	10	10	5	7,5	10			
Minimal water gift (min)	2	2	2	2	2	2	4	4	4
Minimal water gift (ml/m2) ²	500	333	333	167	250	333			
Vegetative nigth drying (mL/m2) (7%)	1400	1400	630	630	910	1092	630	2000	?
Generative night drying (mL/m2) (12%)	2400	2400	1080	1080	1560	1872	1080	4000	?
1- Always generative interval because ve	y low salt o	concentratio	on effect						
2- Estimated with 2.5 drippers/m2									


Normal objective

6- Substrates characteristic and watering strategy Breakdown of watering volumes by period

- 2- Establish water uptake for the crop by period based on your graphical analysis
 - Joules/m²/period X mL/m²/joule
 - Add runoff for the peak period

The basics of irrigation: Stage 5

AgWeather Meteogram

Source : Climax Conseils

Water	uptake			
Period	Light	water uptake	Runoff	Total
F ellod	(Joule/cm2)	(mL/m2)	(mL/m2)	(mL/m2)
Total	2875	5750		5750
Total night drying (1 + 4 + night)		-1225		-1225
Release plant tension (2)	326	652		652
Minimal plant tension (3)	1584	3168	2464,29	5632,29
End of minimal plant tension till end of watering (4)	800	1600		1600
End of watering till night (4)	150	300		300
Night		0		0
Increase plant tension (1)	150	300		300
Total	3010	6020		
(Number = irrigation stage)				

- 3- Determine the input volumes by period
 - I- Manage drying at night (line A) : Total uptake between the end of minimal plant tension stage and the end of increase plant tension stage (stage 4-5-1, lines D-E-F-G) - total night drying (line A)

Period	Total					Waterin	g strategy			
T enou	(mL/m2)					Water git	t per period			
Total	5750		А	В	С	D	E	F	G	Total
Total night drying (1 + 4 + night)	-1225	A								0
Release plant tension (2)	652	В	1225	652						1877
Minimal plant tension (3)	<u>5632,2</u> 9	Ĉ			5632,28571					56 32,285 71
End of minimal plant tension till end of watering (4)	1600	D	-1225			1600	300		300	975
End of watering till night (4)	300	E								0
Night	0	F						0		0
Increase plant tension (1)	300	G								0
Total										8484,28571
									Runoff	2464,28571
(Number = irrigation stage)									Waterruptakienax	Conseils 6020

3- Determine the input volumes by period

- Manage release plant tension
 - Water uptake during release plant tension (stage 2, line B) + total night drying (we dried, now we must moisten)

Period	Total					Waterin	g strategy			
Feillod	(mL/m2)					Water gif	t per period			
Total	5750		А	В	С	D	E	F	G	Total
Total night drying (1 + 4 + night)	-1225	А								0
Release plant tension (2)	652	В	1225	652						1877
Minimal plant tension (3)	5632,29	С			5632,28571					5632,28571
End of minimal plant tension till end of watering (4)	1600	D	-1225			1600	300		300	975
End of watering till night (4)	300	Е								0
Night	0	F						С		0
Increase plant tension (1)	300	G								0
<mark>To</mark> tal										8484,28571
									Runoff	2464,28571
(Number = irrigation stage)									Water uptake	6020

- ▶ 3- Determine the input volumes
 - Manage the minimal plant tension (stage 3 = line C)
 - Provide water uptake + Runoff

Period	Total					Waterin	g strategy			
r enou	(mL/m2)									
Total	5750		А	В	С	D	E	F	G	Total
Total night drying (1 + 4 + night)	-1225	А								0
Release plant tension (2)	652	В	1225	652						1877
Minimal plant tension (3)	5632,29	С			5632,28571					56 32,28571
End of minimal plant tension till end of watering (4)	1600	D	-1225			1600	300		300	975
End of watering till night (4)	300	Е								0
Night	0	F						0		0
Increase plant tension (1)	300	G								0
Total										8484,28571
									Runoff	2464,28571
(Number = irrigation stage)									Water uptake	6020

Check that it balances

4- Determine the intervals and volumes by watering

Release plant tension (stage 2, line B)

3 waterings in 2 hr = 60 minutes interval

Equal distribution of volumes by watering

Water uptake											
Period	Total		Watering strategy								
Fellod	(mL/m2)		ter gift per pe	Inte	erval	Nb watering	Vol/gift				
Total	5750		Total	Minutes	Joules		(mL/m2)				
Total night drying (1 + 4 + night)	-1225	Α	0								
Release plant tension (2)	652	В	1877	60		3	625,666667				
Minimal plant tension (3)	5632,29	С	5632,28571		144,5	10,96	513,803842				
End of minimal plant tension till end of watering (4)	1600	D	975		237,128205	3,373702422	289				
End of watering till night (4)	300	Е	0								
Night	0	F	0								
Increase plant tension (1)	300	G	0								
Total			8484,28571								
			2464,28571								
(Number = irrigation stage)			6020								

- 4- Determine the intervals and volumes by watering
 - Minimal plant tension (Peak period) (stage 3, line C)
 - Indicate your peak interval (joules/cm²)

Basic parameter							
Water uptake (ml/joule)		2					
Runoff		30%					
Night drying (mL/m ²)		1225					
Peak interval (ml/m2)		289					
Peak interval (joules/cm2)		144,5					

Water uptake											
Period	Total		Watering strategy								
	(mL/m2)		ter gift per per	Interval		Nb watering	Voi/gift				
Total	5750		Total	Minutes	Joules		(mL/m2)				
Total night drying (1 + 4 + night)	-1225	А	0								
Release plant tension (2)	652	В	1877	60		3	625,666667				
Minimal plant tension (3)	5632,29	С	5632,28571		144,5	10,96	513,803842				
End of minimal plant tension till end of watering (4)	1600	D	975		237,128205	3,373702422	289				
End of watering till night (4)	300	Е	0								
Night	0	F	0								
Increase plant tension (1)	300	G	0								
Total			8484,28571								
			2464,28571								
(Number = irrigation stage)			6020								

- 4- Determine the intervals and volumes by watering
 - Minimum plant tension
 - Determine the number of waterings: total joules/peak interval = 1,584/144,5 = 10.96
 - Determine your volume of watering by irrigation: 5,632/10.96 = 513.8 mL

Water uptake										
Period	Light		Watering strategy							
Fenod	(Joule/cm2)		ter gift per pe	Interval		Nb watering	Vol/gift			
Total	2875		Total	Minutes	Joules	7	(mL/m <mark>2)</mark>			
Total night drying (1 + 4 + night)		А	0							
Release plant tension (2)	326	В	1877	60		3	625,666667			
Minimal plant tension (3)	1584	С	5632,28571		144,5	10,96	513,803842			
End of minimal plant tension till end of watering (4)	800	D	975		237,128205	3,373702422	289			
End of watering till night (4)	150	Е	0							
Night		F	0							
Increase plant tension (1)	150	G	0							
Total	3010		8484,28571							
			2464,28571							
(Number = irrigation stage)			6020							

- 4- Determine the intervals and volumes by watering
 - End of peak at end of watering
 - > Determine your interval in joules aiming for regular drying; extend the interval
 - Water uptake/water gift X peak interval

= 1,600/975 X 144.5 = 237.13 joules

Water uptake										
Period	Light	water uptake		Watering strategy						
T enou	(Joule/cm2)	(mL/m2)		ter gift per pe	Inte	rval	Nb watering	Vol/gift		
Total	2875	5750		Total	Minutes	Joules		(mL/m2)		
Total night drying (1 + 4 + night)		-1225	А	0						
Release plant tension (2)	326	652	В	1877	60		3	625,666667		
Minimal plant tension (3)	1584	3168	С	5632,28571		144,5	10,96	513,8038 <mark>42</mark>		
End of minimal plant tension till end of watering (4)	800	1600	D	975		237,128205	3,373702422	289		
End of watering till night (4)	150	300	Е	0						
Night		0	F	0						
Increase plant tension (1)	150	300	G	0						
Total	3010	6020		8484,28571						
				2464,28571						
(Number = irrigation stage)				6020						

4- Determine the intervals and volumes by watering

- Restore plant tension (stage 4, line D)
 - Determine your volumes by watering
 - Total volume/number of waterings = 975 mL/3.37 = 289 mL

Water uptake										
Period	Light	water uptake		Watering strategy						
F enou	(Joule/cm2)	(mL/m2)		ter gift per pe Inte		erval	Nb watering	Vol/gift		
Total	2875	5750		Total	Minutes	Joules		(mL/m2)		
Total night drying (1 + 4 + night)		-1225	А	0						
Release plant tension (2)	326	652	В	1877	60		3	625,66666 <mark>7</mark>		
Minimal plant tension (3)	1584	3168	С	5632,28571		144,5	10,96	513,8038 <mark>42</mark>		
End of minimal plant tension till end of watering (4)	800	1600	D	975		237,128205	3,373702422	289		
End of watering till night (4)	150	300	Е	0						
Night		0	F	0						
Increase plant tension (1)	150	300	G	0						
Total	3010	6020		8484,28571						
				2464,28571						
(Number = irrigation stage)				6020						

What happens if you have a cloudy day (35%)?

1- Enter	' your	new	light	data	and	your
leaching	g.					\leq
~ ~ ~						

2- Check that you do not obtain negative data in the volumes to gift, in which case you should be joules from previous periods. 280 - 65/2 = 247.5.

С

1331,55556

В

228

А

1225

-1225

		Basic parameter										
		Water upta	ake (ml/joule)			2						
		Runoff			10%							
_		Night dryir	ng (mL/m ²)			1225						
a and yo	our	Peak inter	val (ml/m2)			289						
-		Peak inter	val (joules/cm2)			144,5						
otain												
es to be			Period		L	ight	wa	ter uptake	Runoff		Total	
		Feilou				e/cm2)		(mL/m2)	(mL/m2)	(mL/m2)	
la dom	d borrow				1006		2012			2012		
s.			drying (1 + 4 + r	night)				1225			1225	
		Release pl	lant tension (2)		114		228				228	
			ant tension (3)			554		1108	223,555556		31,55556	
			nimal plant tensio					560			560	
End of watering till night (4)				150		300			300			
		Night						0			0	
			lant tension (1)		150		300				300	
		Total				1248		2496		27	19,55556	
											X	
		(Number =	irrigation stage)									
Water gift	per period				Í		Inte	rval	Nb watering		Vol/gi <mark>ft</mark>	
D	E	F	G	Tota	al	Minute	es	Joules	-		(mL/m2)	
					0							
					14 <mark>5</mark> 3		60			3	484,333333	
				1331,5	5556		144,			,83	347,310068	
560	300	0	300		-65			-1244,92308	-0,2249134	195	289	
					0							
		0			0					\angle		
					0							
				2719,5								
			Runoff	223,55								
			Water uptake		2496							
								/				

Source : Climax Conseils

6- Substrates characteristic and watering strategy Management of water volumes in soil

▶ 1- Proceed at first as with hydroponics.

Basic parameter	Comments			
Water uptake (ml/joule)	2	Fied validation		
Runoff	5%	Related to CE an	d uniformity	
Night drying (mL/m ²)	2400	Maximum tensior	n between 4 ar	nd 6 kPa
Peak interval (ml/m2)	1200	5 à 10% WA		
Peak interval (joules/cm2)	600			
	Water up	otake		
Period	Light	water uptake	Runoff	Total
Felloa	(Joule/cm2)	(mL/m2)	(mL/m2)	(mL/m2)
Total	2875	5750		5750
Total night drying (1 + 4 + night)		2400		2400
Release plant tension (2)	326	652		652
Minimal plant tension (3)	1584	3168	302,631579	3470,63158
End of minimal plant tension till end	800	1600		1600
End of watering till night (4)	150	300		300
Night		0		0
Increase plant tension (1)	150	300		300
Total	3010	6020		
(Number = irrigation stage)				

6- Substrates characteristic and watering strategy Management of water volumes in soil

2- We monitor the negative values and borrow from previous periods (e.g., sunny day).

> 200 mL must therefore be deducted from period C (stage 3)

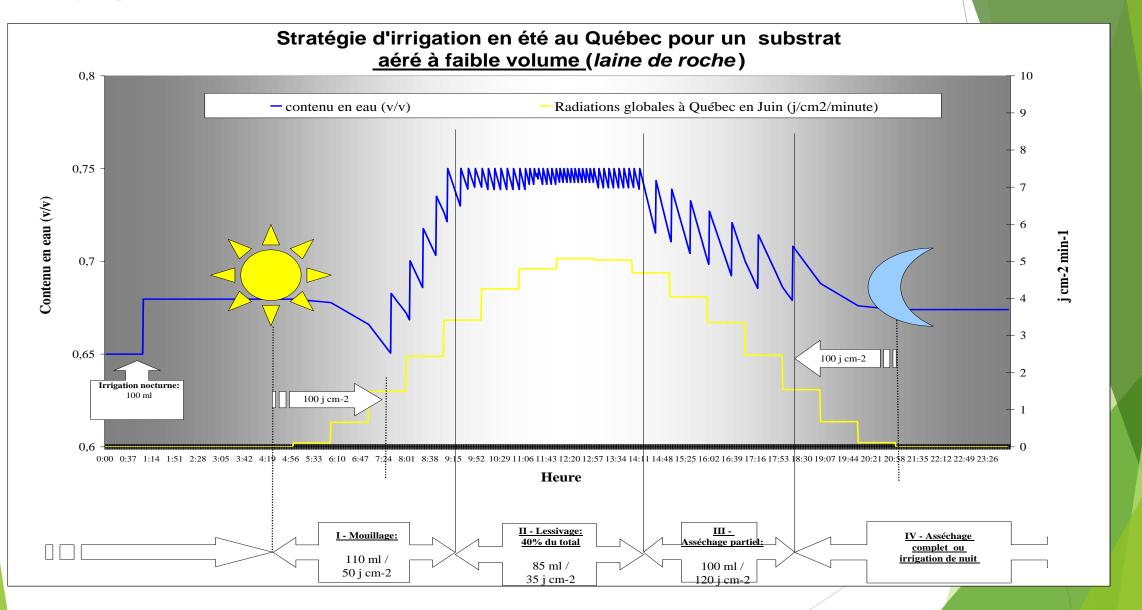
					Wateri	ng strategy					
	Water gift per period						Interval		Nb watering	Vol/gift	
А	В	С	D	E	F	G	Total	Minutes	Joules		(mL/ <mark>m2)</mark>
							0				
2400	652						3052	60		3	1017 <mark>,33333</mark>
		3470,63158					3470,63158		600	2,64	1314, <mark>63317</mark>
-2400			1600	300	0	300	-200		-4800	-0,166666667	1200
							0				
					0		0				
							0				
							6322,63158				
						Runoff	302,631579				
						Water uptake	6020				

6- Substrates characteristic and watering strategy Management of water volumes in soil

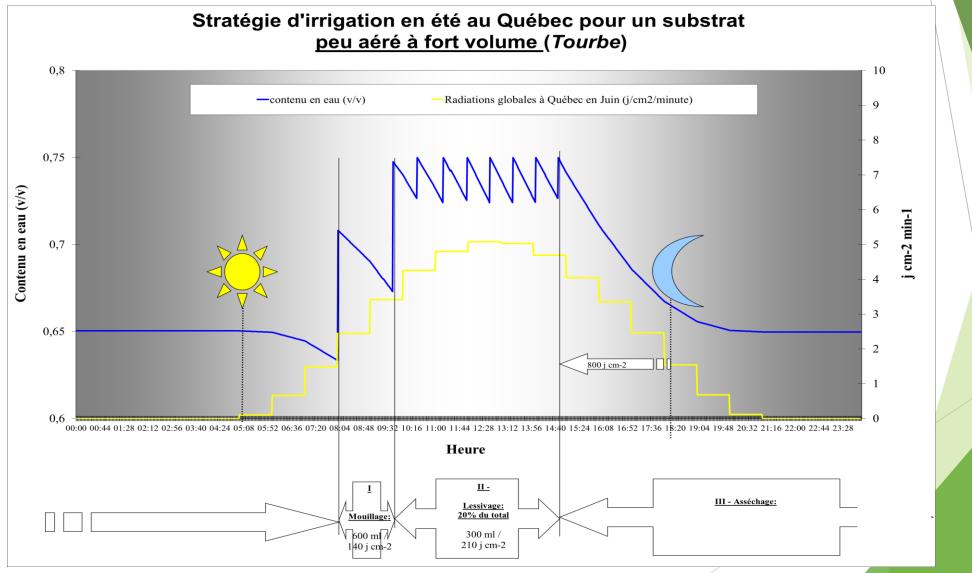
- We monitor the negative values and borrow from previous periods (e.g., cloudy day = 35%).
- The peak period (stage 3 line C) must even be completely eliminated and part of the release plant tension (stage 2 line B) must be deducted to result in only 2,496 mL.

	Watering strategy											
	Water gift per period						Inte	erval	Nb wa	tering	Vol/gift	
A	В	С	D	E	F	G	Total	Minutes	Joules			(mL/m2)
							0					
2400	228						2628	60			3	876
		1108					1108		600		0,92	1200
-2400			560	300	0	300	-1240		-270,967742	-1,03	333 <mark>3333</mark>	1200
							0					
					0		0					
							0					
							2496					
						Run off	0					
						Water uptake	2496					

Most important


Ensure drying at night.

THE BEST IRRIGATION MANAGER IS ONE WHO GETS HIS OR HER HANDS DIRTY EVERY MORNING BEFORE THE FIRST WATERING.



7- Some examples of watering strategies.

Daily profile: Rock wool water content

Daily profile: Wet peat water content

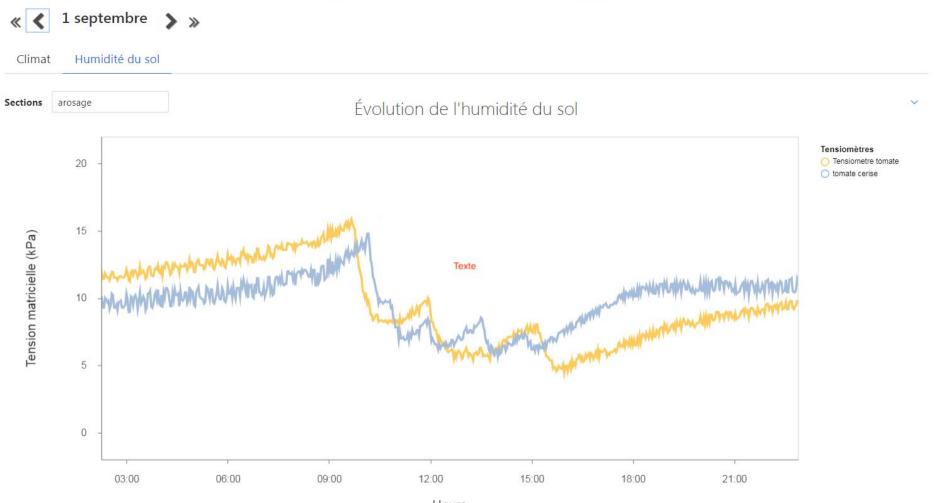
Full soil

Example of an irrigation system in sandy soil

Eau à donner en terme de minutes						
$\overset{\diamond}{\sim}$	**	\$.)	Ľ	$\langle \mathbf{j} \rangle$		
Heure	Durée	Heure	Durée	Heure	Durée	
08:00	4					
08:45	4	08:45	4	08:45	4	
09:30	4	09:30	4			
10:15	4	10:15	4	10:15	4	
10:45	4	10:45	4			
11:15	4					
11:45	4	11:45	4	11:45	4	
12:15	4	12:15	4			
12:45	4					
13:15	4	13:15	4	13:15	4	
14:45	4	14:45	4			
17:30	4					
Total	48	Total	32	Total	16	

Programmation

Combinaisons


А	в	с
A+B+C	B+C	с

Tension curve - Sandy soil (mb=0.1 kPa)

1 juillet > >>

Humidité du sol imat Évolution de l'humidité du sol ? Tensiomètres - 2 60 40 20 03:00 12:00 18:00 21:00 06:00 09:00 15:00 00:00

Tension curve

Heure

Thank You

AAX

SEILS

¢