

Selection of Structures and Equipment

Climax Conseils and Gobeil Dion & Associés Training Course

Choosing a greenhouse is like choosing a home; along with the many possibilities come just as many needs and financial capabilities.

Part 1: Structures and Equipment

SELECT YOUR STRUCTURE

Gothic-arch gutterconnected greenhouse

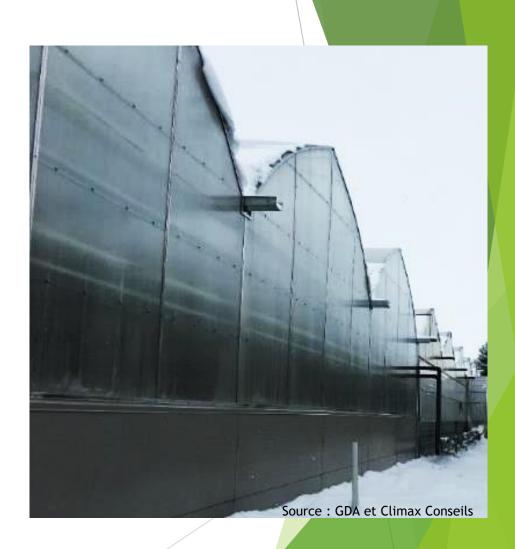
Tunnel greenhouse

Gothic-arch individual greenhouse

Venlo greenhouse

Area in production and installation type

Installation type	Size
Individual greenhouse	\pm 300 m ²
Gutter-connected greenhouse	800-3,000 m ²
Greenhouse complex	10,000 m ²
Large complex	50,000 m²


> Individual greenhouse

Gutter-connected greenhouse

> Greenhouse complex

> Large complex

Production in a controlled environment How to choose:

- > Capital investment
- > Target market
 - > Retail
 - > Retailer
 - > Wholesaler or sales channel
- Growing season
- Crop selection

Capital investment vs. installation costs

Installation type	m²	\$/m ^{2**}	\$
Individual greenhouse	300	\$200	\$60,000
Gutter-connected greenhouse	800	\$400	\$320,000
Greenhouse complex	10,000	\$650	\$6,500,000
Large complex	50,000	\$350	\$17,500,000

**Additions possible

Adapted from Gobeil Dion & Associés and Climax Conseils

Capital investment vs. installation costs

Greenhouse options
 Add \$50-\$150/m² for biomass
 Add \$100-\$150/m² for HPS
 Add \$200-\$250/m² for LED

Source: Gobeil Dion & Associés

Target market

Installation type	Retail	Retailers	Wholesaler s	Sales channels	Other
Individual greenhouse	X	Х			Х
Gutter-connected greenhouse	Х	Х	Х		Х
Greenhouse complex			Х	Х	Х
Large complex			Х	Х	Х

Production schedule according to structure type

Installation type	Seasonal	Year-round (unlit)	Year-round (lit)
Individual greenhouse	Х	Greens	Lettuce, strawberries
Gutter-connected greenhouse	Х	Х	X
Greenhouse complex		Х	X
Large complex			X

Choosing crops according to structure type

Installation type	Tomatoes	Cucumbers	Peppers	Eggplants	Leafy greens and herbs	Strawbarries
Individual greenhouse	Х	Х	Х	Х	Х	Х
Gutter-connected greenhouse	Х	Х	Х	X	Х	Х
Greenhouse complex	Х	Х	Х		Х	x
Large complex	Х	Х	Х		Х	X

Choosing structures according to operational and functional needs

Technology	Criteria	Jan.	•	Fe	b.	Ma	nr.	Ар	or.	M	ay	Ju	ine	Ju	ly	Au	g.	Se	p.	0	ct.	No	ov.	De	c.
	Heating																								
Gutter-connected	Labour																								
greenhouse 800 m ² ?	Management																								
	Yield																								
	Artificial light																								
	Heating																								
Low-crop individual greenhouse	Labour																								
greenhouse	Management																								
	Yield																								
	Artificial light																								
	Heating																								
High crop individual	Labour																								
High-crop individual greenhouse	Management																								
5	Yield																								
	Number of installations																								
	Separation																								

Excellent, good, ok, unwise, to avoid

Structure: Height

Why is height important?

- What it helps with:
 - Maintaining better thermal stability
 - The use of certain technologies (e.g. lighting, air circulators, etc.)
 - Labour cost savings
 - Creating a buffer between the crops and cold winter air; and
 - Keeping the crops on the cool end of the temperature gradient during the summer.
 - Greenhouses in warmer regions (Leamington) are taller than greenhouses in colder regions (Quebec)

Structure: Height

Different greenhouse heights (from ground to gutter)

Height required by crop

- Peppers: 6' to 27'
- Cucumbers: 7' to 21'
- Tomatoes: 10' to 21'
- Lettuce: 12' to 18'
- Temperature at the crop canopy
 Light uniformity

Structure: Height

According to crop type

- Crop height
 - Low: lettuce, strawberries, vining cucumbers, peppers (short season)
 - High: tomato, vining cucumbers, peppers (long season)
 - What height do you need according to your equipment?
 - Do you need electric trolleys for working at heights?

Minimum height clearance under the trust related to crop and technology (12 months)								
Height	Tomato	Pepper	Cucu	mber	Lettuce strawberry			
(feet)			Umbrella	High wire				
25								
24								
23				1				
22		Screen						
21								
20	Screen			Screen				
19								
18		Plants + HPS						
17								
16	HPS			HPS				
15								
14			Screen					
13								
12	Layering			Layering	Screen			
11								
10			HPS					
9								
8	Plants	Plants		Plants	HPS			
7								
6								
5								
4			Plants		Plants			
3	Work at the		1 10/100	Work at the	Growing			
2	base of the			base of the	gutter			
1	plant			plant				
			Sourc	e : Climax Co	nseils			

Cover types: Factors

Parameter	Double poly	Polycarbonate single layer (8 mm)	Polycarbonate twin-wall (16 mm)	Glass
Light transmission (%)	80%	83%	75%	90%
Heat loss (W/m ² * K)	4,0	3,3	1,9	5,7
Insulation R-value	1,5	1,7	2,5	0,2
Average cost (\$/pi ²)	0,35\$	2,25 \$	4,00 \$	1,10 - 1,50 \$
Energy saving (%)	50% more than single polyethylene	20% more than double poly	30% more than polycarbonate single layer	

 \star The higher the R-value, the better the material insulates!

Cover types: POLYETHYLENE PLASTIC

- Needs to be replaced every 3 to 4 years
- Double polyethylene
 - Light transmission: 83%
 - Inflatable
 - More insulating that a single layer
 - Good light scattering
- Films
 - ► IR
 - Anti-condensation
 - Bee friendly

Double polyethylene open roofing

Insulation: Insulating walls

Insulated metal panels

Characteristics	Dimensions				
Thickness	2-4 in.				
Depth	1-2 ft.				
Height	3-6 ft. (depending on crop)				

Advantages:

- ► ↑ Insulation and sealing of perimeter
- \blacktriangleright \downarrow Loss of heat from radiant heating pipes

Disadvantages:

- Requires excavation work
- Cost: Norlam 4" = \$5.70/sq. ft

Insulation: North wall – Be sure it's the right north!

Total insulation of the north wall and service area

Insulation: Perimeter

Underground polystyrene boards

Reduces heat loss at perimeter by half

2.5 R-value of insulated perimeter (vs. 1.2 for noninsulated)

Humidity resistant

Insulation: Recap

Remember:

 \blacktriangleright R-value \rightarrow measure of insulation's ability to resist heat

Thermal screens

- Beneficial if the greenhouse can accommodate their installation
- ▶ 20-30% cost savings \rightarrow ROI usually in 1-3 years
- Insulation (walls and exterior)
 - ► Faster ROI with total insulation of north wall
 - Larger impact for smaller areas (ratio of perimeter to total area)
 - ► 5-10% energy savings
 - Crucial for crops in organic soil (when planting before April 1st and for winter crops)

Natural ventilation

- ► Typically, the least expensive option
 - Roof vents
 - Roll-up vents
 - Exposed or sheltered (lee) side
 - Determination of wind direction

Natural roof ventilation

Vent size

- 15-20% vent m²/floor m²
- Exposed vs. sheltered
- Vent position
 - Consistent temperature
 - Snowstorm management

Natural ventilation

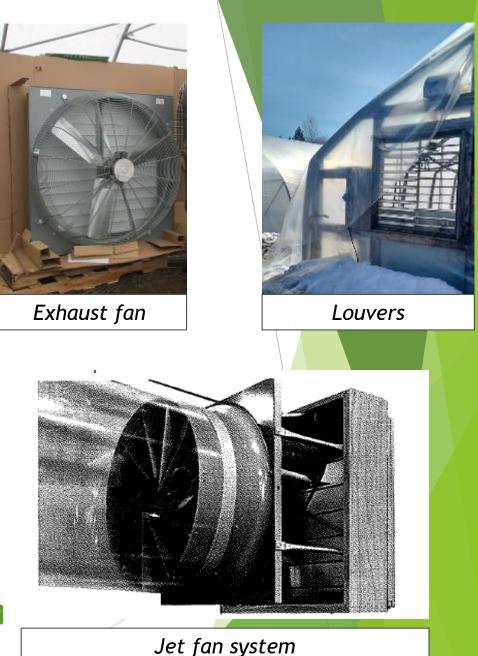
Roll-up vents

- Not adapted for colder conditions
- Ideally have a 25% opening size (opening size/floor size)
 - Must take restrictions imposed by insect screens into account
 - (Roll-up height to be determined)
- Allow wind to pass through (restricted by insect screens)
- Require attention to prevailing winds during warm season
 - Vent restrictions must be compensated for with mechanical ventilation

Natural ventilation

Insect screens

- Required for cucumbers (cucumber beetle)
- Strongly recommended for peppers (lygus bug)
- Used with air-lock entrances
- Reduce ventilation area
- Clogged by dust and pollen



Mechanical ventilation

- More expensive option
 - Purchasing and operating costs
- Necessary for year-round production
 - Positive-pressure ventilation
 - Jet fan system
 - Exhaust ventilation with louvers
 - Avoid combining this type with roll-up vents!

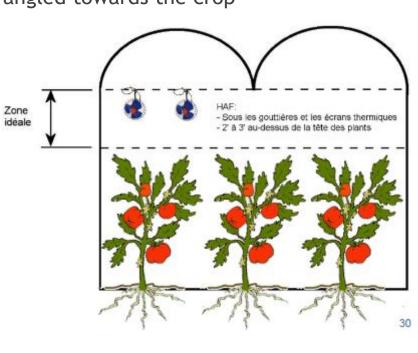
According to type of greenhouse chosen

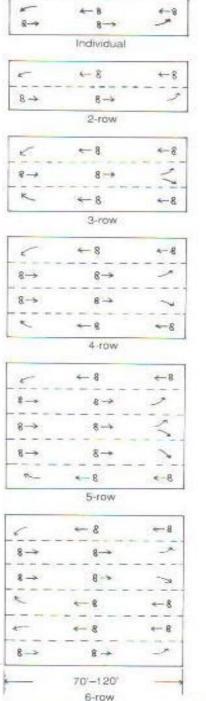
According to your needs:

- Summer heatwave ventilation (3 m³/m²/min)
 - ► Roof

Roll-up

- + Wind limitations (positive-pressure)
- Exhaust fans
- Well-distributed winter daytime ventilation (November 15 to April 1) (0.3 m³/m²/min)
 - ► Roof
 - Snowstorm?
 - Positive-pressure or jet fan
- Winter nighttime ventilation (November 15 to April 1) (0.05 m³/m²/min)
 - ► Roof
 - Positive-pressure or jet fan




Recirculating ventilation

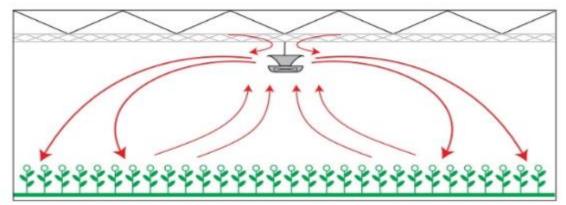
Horizontal air flow (HAF)

- Climate homogeneity
- Needs
 - ▶ -4 CFM per sq. ft. of greenhouse floor
 - ▶ + 50% for lettuce, and must be angled towards the crop

1000	+ P	+ 8
5	< <u>+</u> 8	
6	* 8	← 8
8→	8 ->	
8-3	8 ~ 	~
8 ->	8	>
~	← 8 →	+ 8
5		
~	← 8	<- 8
	7-row	
8->	8 ->	~
~	4- 8	← 8
0	← 8	← 8
8 ->	8 ->	>
8→	β →	×
~	← 8	← 8
2	+ 8	← 8
8-	8 ->	
	8-raw	
8 ~ 8	8 ->	~
£	< <u>+</u> 8	÷- 8
£	8	÷ 8
8->	8 ->	~
8-	8 ->	2
8	8 → 	1
K_	8	4-8
	← 8	4-8
£		
8->	8>	

9-row

Recirculating vents


Vertical Air Flow (VAF)

V-Flo

Eliturbo

Structure: Thermal screen

Double-layer thermal screen

Luxous 1547 D FR

Loss reduction Thermal screens

- Made of plastic or aluminium strips
- Reduce energy consumption by 20-30%
 Types:
- 1. Thermal screens
 - Insulate roof and/or walls overnight
 - Provide shade during intense heat
- 2. Transparent (day) screens
 - Act as thermal layer
 - Provide a high level of light transmission
 - Less condensation on the glass (climate less dry for young pepper and cucumber crop)
- 3. Blackout screens
 - Work for plants that require less light
 - Prevent light pollution

Thermal screens on roof

Double-layer screens on roof

Loss reduction Thermal screens

Approximate cost	Single-layer screens	Double-layer screens
Material only	\$15-\$20/m ²	\$30-\$35/m ²
With installation	\pm \$30/m ²	\pm \$40/m ²
R-value (insulation factor)	2.3	

Loss reduction Thermal screens

Energy requirement	With screens	Without screens	% of savings
Average consumption (12 months)	\pm 650 kWh/m ²	\pm 850 kWh/m ²	\pm 25-35 %
Average consumption (8 months)	\pm 230 kWh/m ²	\pm 300 kWh/m ²	± 15-25 %

	% of reduction due to use of screens	
Energy required (12 months)	↓ 25-35%*	
Energy required (8 months)	↓ 15-25%	

*50% reduction in energy consumption with the use of double-layer screens

Propane or natural gas – forced air

Air heater

Furnace

Source: Gobeil Dion & Associés

Biomass

Boiler (hot water)

Source: Gobeil Dion & Associés

Biomass

Furnace (forced air)

Biomass – wood chips (for year-round large structures)

Boiler house

Wood chip storage

Source: Gobeil Dion & Associés

Biomass — wood pellets (for small structures and/or nine-month production seasons)

Wood pellet storage

Source: Gobeil Dion & Associés

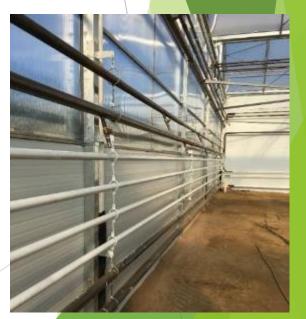
Heating and distribution

Hot water

forced air

Heat distribution Hot water

Advantages:


- Vertical and horizontal temperature homogeneity
- Climate stability
- Compatibility with crops in gutters
- Rails running between rows of crops

X Disadvantages:

- High installation cost
 - Welding, design by engineer, etc.
- Long installation time

Pipes around perimeter

Heat distribution Hot water

Possible heating zones

- ► Floor rails
- Perimeter
- Gutter (for melting snow snow pipe)
- Crop canopy (grow pipe)
- Underground (organic cultivation)

Heat distribution Hot water – thermal energy storage tank

- With hot water system
- Required for CO₂ recovery

Advantages:

- Security (thermal energy storage)
- Heating system optimization (modulation)
- ► CO₂ recovery
- Increased equipment lifespan
 - Reduced boiler on-off cycling.

X Disadvantages:

- High investment cost
- Large space requirement
- Additional inspections
- Experts needed for installation

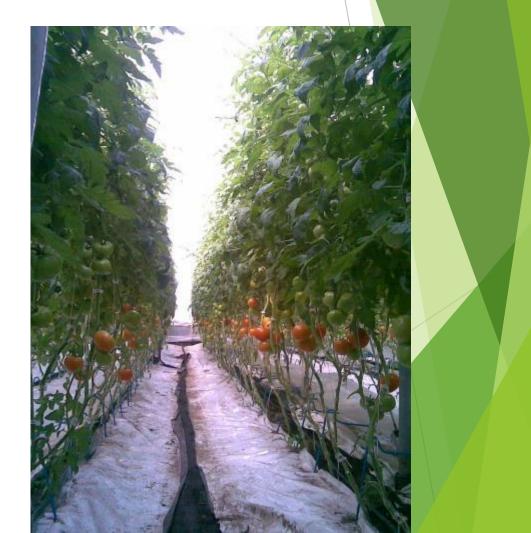
250,000-L thermal energy storage tank

Heat distribution Forced air

- The basics:
 - ► One per row
 - Located behind the shoot turning

Heat distribution Forced air

Off-centered



CO₂ supplementation *Natural*

- Ventilation (crucial without injection)
- > Organic matter breakdown

CO₂ supplementation Flue gas

Not CSA approved, but...

CO₂ supplementation Flue gas

Necessary components:

- ► Generator
- Condensing or high-efficiency boiler
 - The condenser cools the gas, allowing for its introduction into the greenhouse
 - Heat is stored in a thermal energy storage tank during the day
 - ► CO₂ is needed during the day (for photosynthesis)
 - Heat is needed mainly overnight

CO₂ supplementation Liquid CO₂

- Components:
 - ► Tank
 - ► Vaporizer
 - Valve manifold
- For large-scale greenhouses

- ► Biomass
- Electric
- When the propane or natural gas condensing boiler is not sufficient
- Tank rented monthly

Vaporizer

CO₂ supplementation Distribution in the greenhouse

- Distribution tube types
 - Hose
 - Rigid pipe
- Designated rate of supplementation (6-30g/m²/hr)
- Maintain pressure in the network of tubes
 - Separation of the rate of supplementation and the distribution volume.

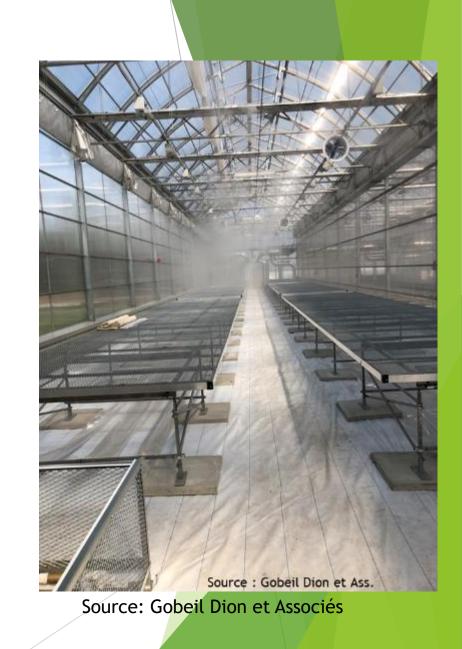
 $\rm CO_2$ distribution via hose

CO2 distribution via rigid pipe

Photosynthesis lighting

HPS

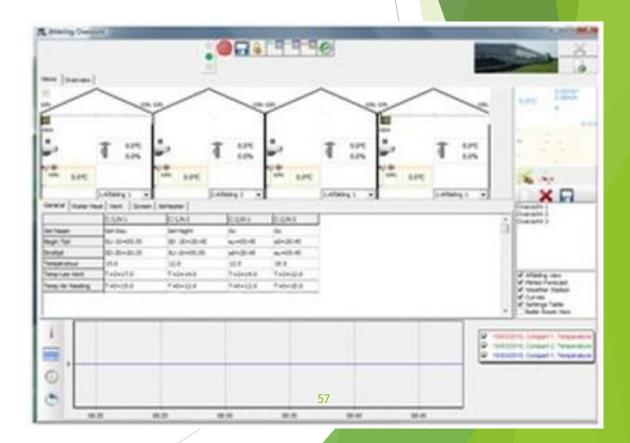
- Energy efficiency: 1.6 µmol/J
- Affordable price
- Source of heat
 - Heat produced by thermal energy accounts for 30% of electric energy consumption.
 - Recuperation of up to 50% of heat with thermal screens

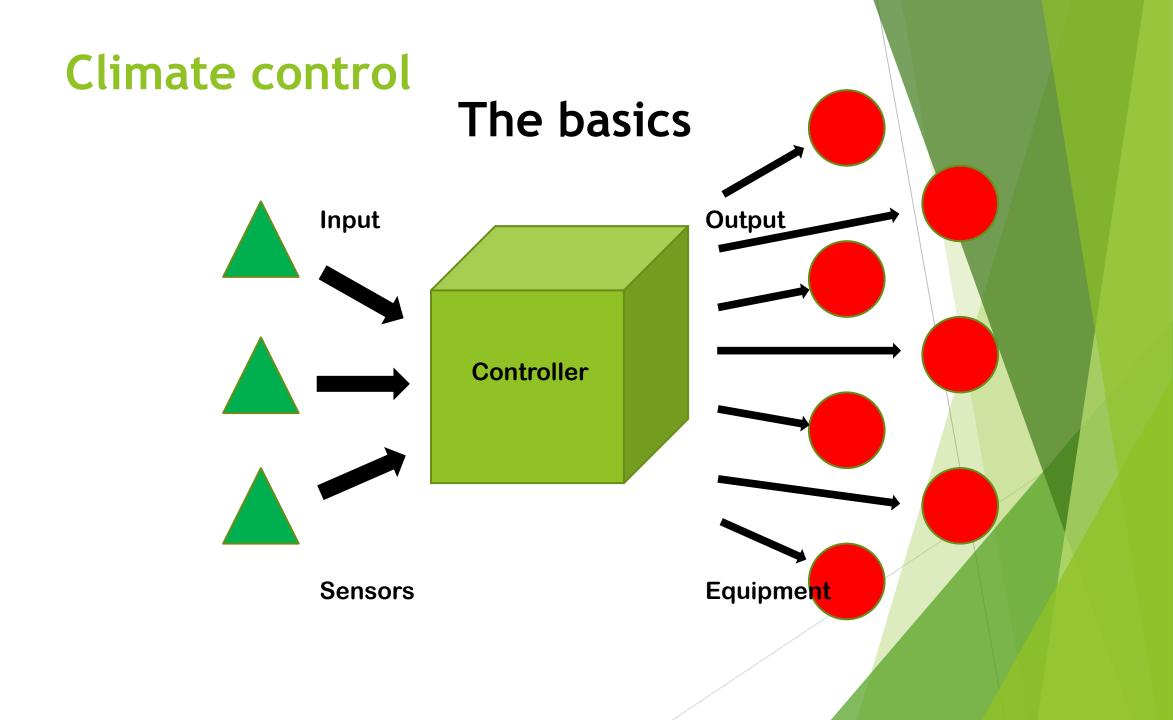

LED (many hobbyists)

- Energy efficiency: 3 µmol/J
- Consumes less energy (20-30% less)
- Production optimization:
- Variable lighting spectrum
- Adjustment needed
- Expensive but fast-growing technology lower prices to come
- Wide variety of products

Cucumber misting

- Spider mite control
 - Reduces pest activity
 - Supports predatory mite activity (especially *Phytoseiulus persimilis*)
- ► Typically, low pressure

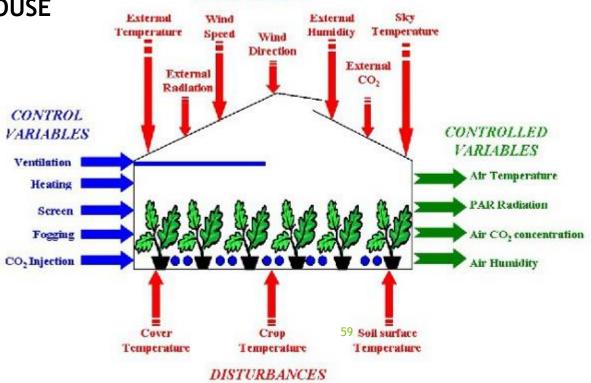



Climate Control

Climate Control

WHAT CAN YOU CONTROL?

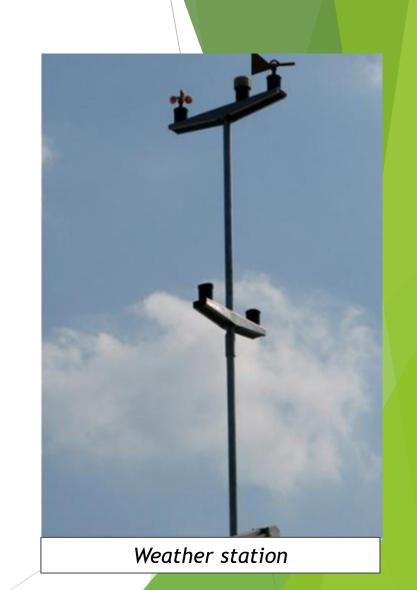
- TEMPERATURE
 - HEATING
 - VENTILATION
 - THERMAL SCREEN
- MOISTURE
 - MISTING
- LIGHTING
- CO₂
- IRRIGATION



Climate control

WHAT DOES A CLIMATE CONTROLLER DO?

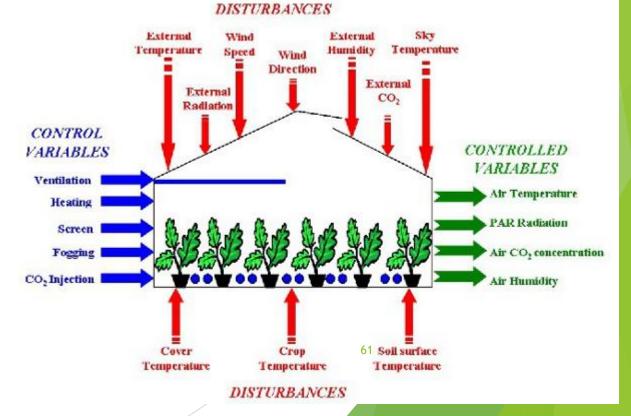
- INPUT (INFORMATION)
- WEATHER:
 - TEMPERATURE OUTSIDE GREENHOUSE
 - LIGHT INTENSITY
 - WIND DIRECTION
 - WIND SPEED
 - RAIN
 - RELATIVE HUMIDITY



DISTURBANCES

Weather station

Weather station


- Outdoor temperature
- Outdoor humidity
- ► Pyranometer
- Wind speed and direction
- Rain and snow detection

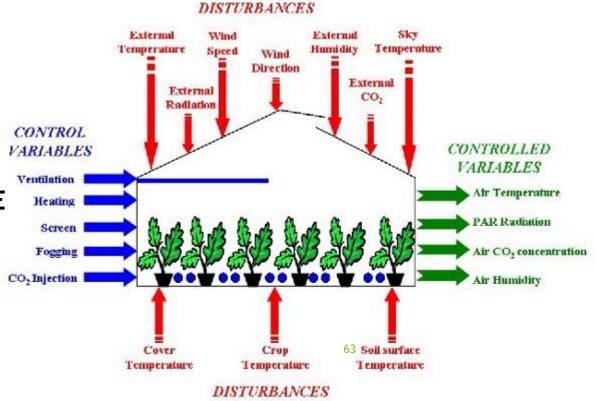
Climate Control

WHAT DOES A CLIMATE CONTROLLER DO??


- INPUT (INFORMATION)
 - TEMPERATURE INSIDE GREENHOUSE
 - RH OR VPD
 - GROUND TEMPERATURE
 - CO2
 - EC
 - pH
 - WATER FLOW
 - TENSION

Climate Control

WHAT DOES A CLIMATE CONTROLLER DO?


- OUTPUT
 - HEATING
 - FURNACES
 - PUMP
 - HAF VENTILATORS
 - POSITIVE PRESSURE VENTILATION
 - EXHAUST FAN VENTILATION
 - MOTORIZED ROOFS
 - ROLL-UP VENTS
 - MISTING VALVES AND PUMPS

Climate control

WHAT DOES A CLIMATE CONTROLLER DO?

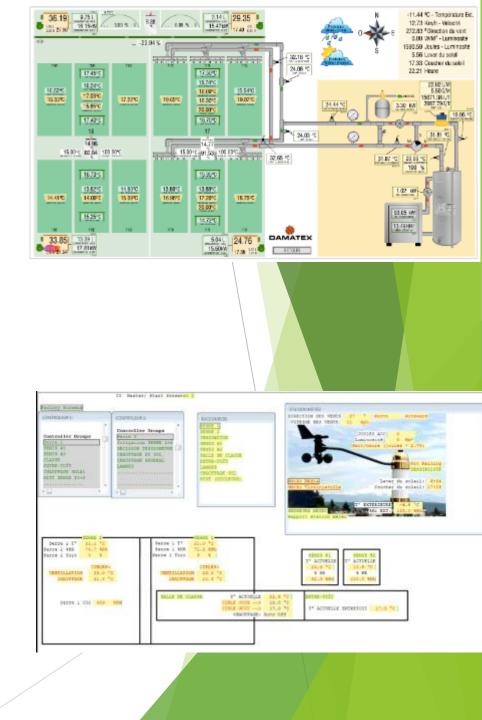
- OUTPUT
 - GROUND HEATING
 - IRRIGATION PUMP
 - VALVES
 - ACID PUMP
 - STOCK SOLUTION PUMP
 - CO₂ SUPPLEMENTATION VALVE
 - ETC.

Climate control: From simple to complex

Climate management

- Basic:
- Thermostat
- Timer

Low-end climate management


- Main suppliers:
 - Link4 Corporation (iGrow 800 or 400)
 - > Orisha
 - > Otomate (Arduino)
 - > Maximus

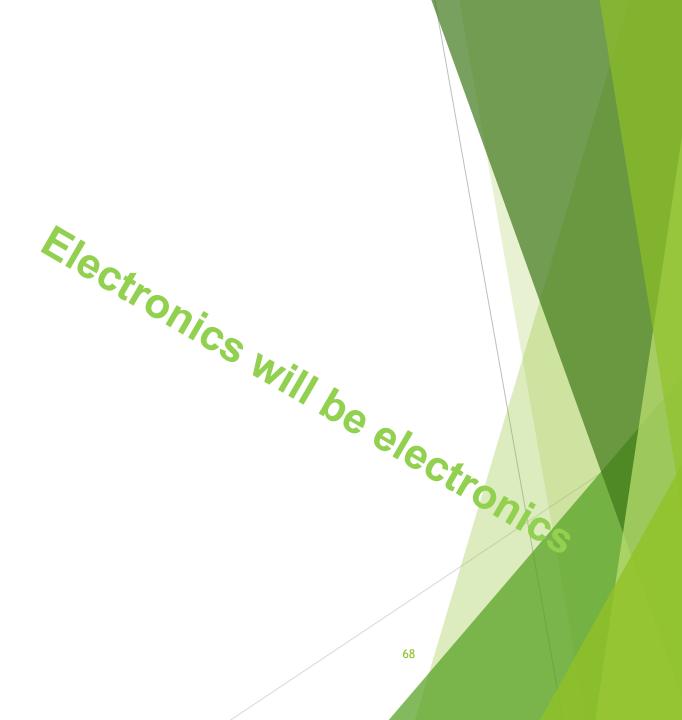
- Characteristics:
 - Data collection
 - > Possible graphic display
 - Remote access

Mid-range climate management

- Suppliers
 - > Damatex
 - > Argus
 - Priva (Priva Compass)
 - Hoogendoorn (ISII and ISII compact)
- > Characteristics
 - > Advanced management model
 - > Highly effective graphic displays, in general
 - Many functions
 - Strong technical knowledge needed (agronomy, engineering, automation)

Top-end climate management

- Suppliers
 - Hoogendoorn (IIVO)
 - Ridder
 - Priva (Priva Connext)
 - European companies
 - Highly intelligent, powerful design
 - Constraints management
 - System capacity
 - Energy supply



Climate control

Essential components

- Backup
- Alarms
 - ► Bells
 - ►Telephone
- Remote access
 - ► LogMeIn
 - ▶ Team Viewer
 - ► VPN

Communication

- Sensaphone
- > AcuRite

Source: Climax Conseils

Growing medium *Types of cultivation environments*

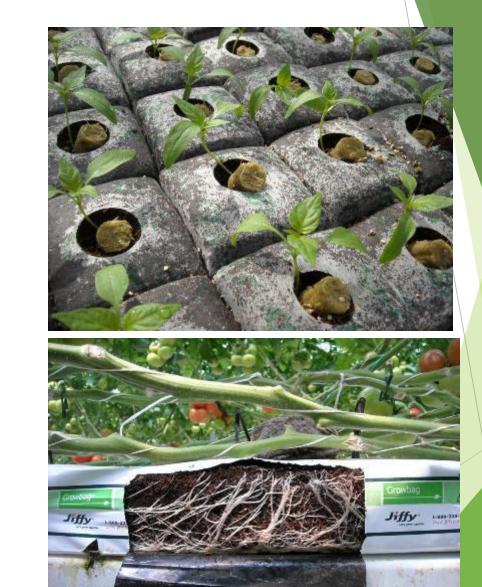
Hydroponic

- With substrates
 - On the ground, or in insulation or gutters
 - In bags, pots or grow beds
 - Coconut fiber
 - Rockwool
 - Peat mix

Rockwool (grow bag)

Many variations available Six different products available through Grodan

https://www.grodan.com/learning/ng2-0-technology/



Coconut fibre

Jiffy Preforma

Growing medium *Types of cultivation environments*

Hydroponic

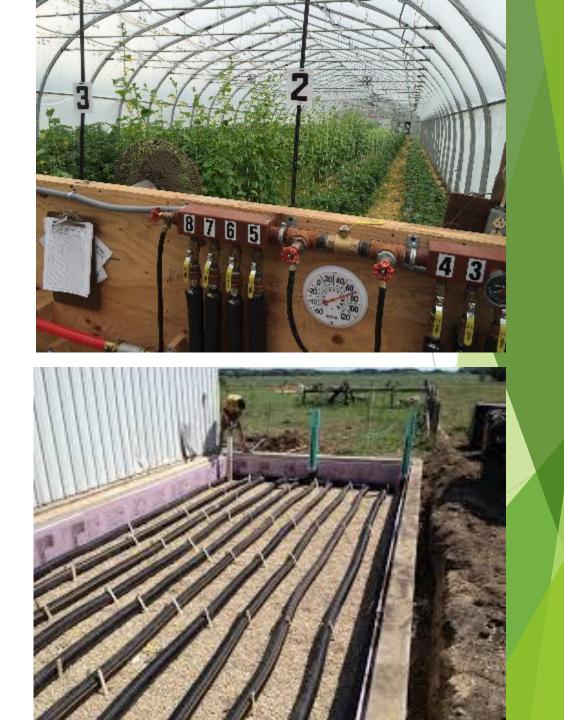
- Without substrates
 - NFT in gutters or channels
 - Crops in floating trays
 - Aeroponics

Growing medium

Several types of cultivation envionments

Organic

- In the earth
- In containers
- Organic mix in grow beds



Growing medium

Different climate needs for different root zones

Hydroponic or organic

- Heating the root zone
 - Ground (organic)
 - NFT channels and grow beds
- Insulation
- Heating or tempering of irrigation water
- White poly pipe (summer planting)
- Ground cover (moisture conservation)
- Drainage
- Styrofoam under grow bags (hydroponics)

Available water source

Artesian well

Watch out for salt content (water from the ocean) and mineral concentration

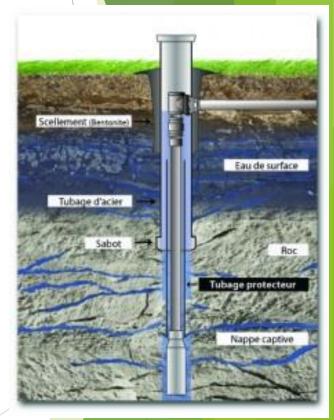
Surface well

- Heightened risk of contaminants
- Pond, lake or river
 - Very high risk of contaminants

City water

Good for humans, not good for plants, but risk of contaminants is low

Rainwater


For air purification and greenhouse cleaning. Chance of acid rain. Not always clean.

Recirculated water

Must be filtered and disinfected, and nutrients must be readjusted

Water is never as clean as it seems. Always test it!

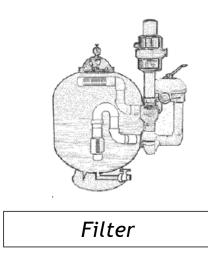
Artesian well

Water supply systems

- Daily needs
 - ▶ Hydroponic: 10 L/m²/d
 - Organic: 6 L/m²/d

Peak-hour needs

- Hydroponic: 1.5 L/m²/h
- Organic: 0.75 L/m²/h



System elements

- Fertilization station
 - Fertilizer tanks
- 24-hour supply
- Water heater
- Filters

Injector

Blended solution output

Concentra te intake

Injector

Clean

water intake

Water heater

Water tank

24-hour supply

According to size and water needs

Water heater

- Tank capacity
- Flue gas evacuation

Energy sources

- Electric
- Oil
- Natural gas or propane
- Biomass
- Plate heat exchanger

Water tempered to the room's temperature

Filters

Material to be remove	Mesh	Microns
Leaves	30	500
Gravel	10	1600
Coarse sand	70	200
Fine sand	600	200
Algae	2000	7,5
	2000	7,3 F
Silt	3000	5

Fertilization

► Hydroponic

Stock solution example

And the	A A			
			ri	
		- Statement	A CONTRACT	

Institut de technologi agro-alimentaire de Saint-Hyacinthe
--

Par Jacques Thériault

Climax Conseils

agr.

Tomato F6-H2

<u>Solution A</u>	Liters: Concentr:	4500 200				# de gramm	е	kg	Lbs
Calcium nitrate	Nitrate: Ammonium:	14,5 % 1.0 %	Cal ci um	19, 0	%	717754, 5	-	717, 75 0, 00	1579,06 0,00
Cal ci um chl or i de	Chlorure	53 , 0 %	Cal ci um	29, 9	%	0, 0		0, 00 0, 00	0,00
Potassium nitrate	Nitrate:	13, 8 %	Potassi um	38, 2	%	373032, 7	g.	373, 03	820, 67
Fe-DTPA 11%	Fer:	11,0 %				8181, 8	g.	8, 18	18,00
Ammonium nitrate	Nitrate:	17,0 %	Ammonium:	17,0	%	0,0	g.	0,00	0,00

Solution B	Liters: Concentr:	4500 200					# de gram	me	kg	Lbs
	concontri.	200					" do gran		Ng	200
Potassi um nitrate	Nitrate:	13, 8	%	Pot assi um	38, 3	%	373032, 7	g.	373, 03	820, 67
Monopot assi um Phosphat e	Phosphor e:	22, 7	%	Pot assi um	28, 3	%	130681, 3	g.	130, 68	287, 50
Pot assi um sul f at e	Sul f at e:	18, 0	%	Pot assi um	41, 7	%	163146, 3	g.	163, 15	358, 92
Pot assi um chl or i de	Chlorure	45, 0	%	Pot assi um	49, 8	%	0,0		0,00	0,00
Magnesium nitrate	Nitrate:	11, 0	%	Magnesium:	9, 9	%	0,0	g.	0,00	0,00
Sulf.or oxy. Magnésium	sulfate:	13, 0	%	Magnesium:	9, 9	%	464141, 8	g.	464, 14	1021, 11
I nt r oduce	90, 2	Litres	de	solution C				-		

Micronutrients

<u>Solution C</u>	Liters 90 Concentr: 10000	# de gramme
	Sul f at e Copper25, 0Sul f at e Manganese:29, 5Sul f at e Zi nc:35, 0Sodi um Mbl ybdat e:46, 0Aci d Bor on17, 5	180,0 g. 1678,0 g. 848,6 g. 97,8 g. 1491,1 g.

Solution D	Liters in 🖡 0,00	Nitric Acid 67%	21, 0
	Litters in ⁷ 30,64	Phosphoric acid 75%	39, 7

Fertlizer tanks

A, B, acid, utility; or a single tank for organic

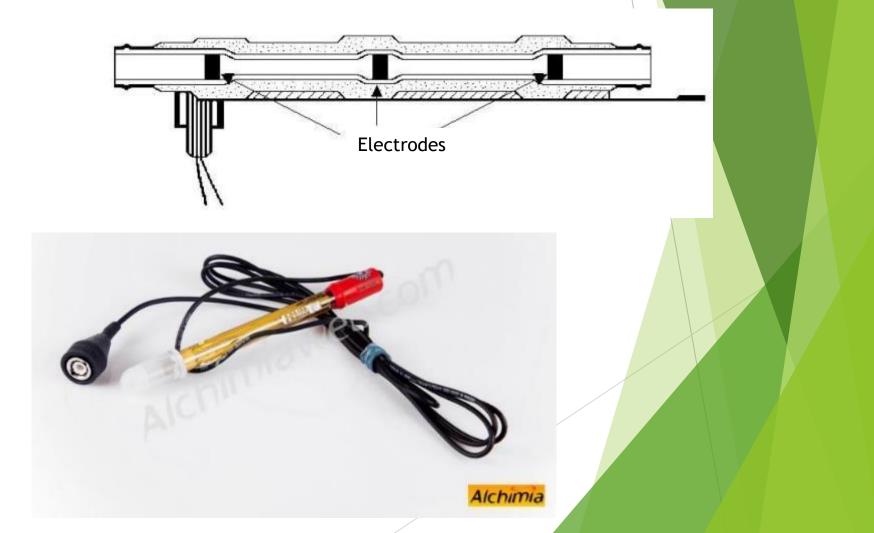
Fertilization

Organic

- Manure used for greenhouse vegetables
 - Basic fertilizer
 - Soluble nutrients (K, Mg)
 - Micronutrients
 - Manures (organic)
 - Compost (organic)
 - Microfauna (organic)

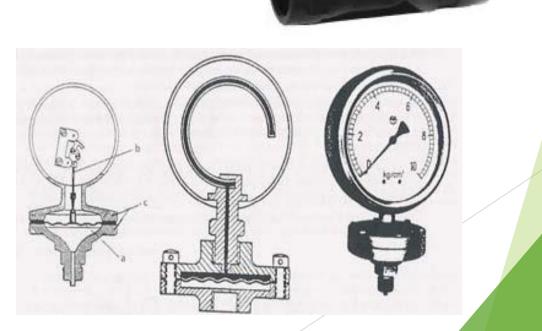
Injector

- Proportioner
- Pumps



Sensors

Automated system security


- Double EC sensors
- Double pH sensors

Distribution within greenhouses

- Electric valves
- ► Manometer
- Pressure regulator
- Emitters

Irrigation and fertilization *Distribution within greenhouses*

Emitters:

- Compensating
- Non-compensating
- Sustainable from season to season
- Flow rate of 2-4 L/h, verify scheduling and substrate needs

Uniformity

Minimal difference between emitters

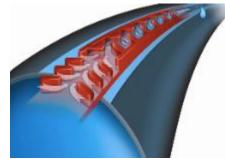
Difference between emitters = Difference for plants = Difference in yield

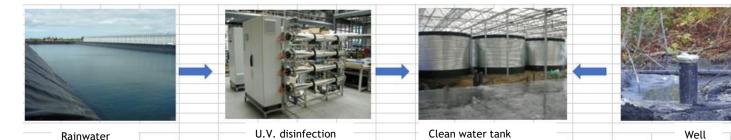
Spaghetti emitter

Distribution within greenhouses

Drip tape:

- Slope
- Tape thickness
- Uniformity
- Number of lines (4 lines per row)




Drip tape

Flow Rates Available in 4, 5, 6, 8, 10, 12 & 15 mil Tape

Part Number	Outlet Spacing		al Emitter ite (gph)		100 (100 ft.)	Filtratio Requirem	
	(in.)	@ 8 psi	@ 10 psi	@ 8 psi	@ 10 psi	Mesh	
0.07 Emitter		gph/I	mitter	gpm/	100 ft.	200	
EAXxx0817	8	.07	.08	.17	.20		
EAXxx1608	16	.07	.08	.08	.10		
0.09 Emitter		gph/E	mitter	gpm/	100 ft.	200	
EAXxx0822	8	.09	.10	.22	.25		
0.13 Emitter		gph/E	mitter	gpm/	'100 ft.	140	NE
EAXxx0467	4	.13	.15	.67	.75		
EAXxx0834	8	.13	.15	.34	.37		
EAXxx1222	12	.13	.15	.22	.25		
EAXxx1617	16	.13	.15	.17	.19		
EAXxx2411	24	.13	.15	.11	.12		
0.15 Emitter		gph/Emitter		gpm/100 ft.		140	NE
EAXxx0650	6	.15	.17	.50	.56		-
EAXxx1225	12	.15	.17	.25	.28		
0.20 Emitter		gph/E	mitter	gpm/	'100 ft.	140	NE
EAXxx04100	4	.20	.23	1.00	1.12		
EAXxx0667	6	.20	.23	.67	.75		
EAXxx0850	8	.20	.23	.50	.56		
EAXxx1234	12	.20	.23	.34	.38		
EAXxx1625	16	.20	.23	.25	.28		
EAXxx2417	24	.20	.23	.17	.19		
0.27 Emitter		gph/E	mitter	gpm/	100 ft.	140	NE
EAXxx04134	4	.27	.30	1.34	1.50		
EAXxx0867	8	.27	.30	.67	.75		
EAXxx1245	12	.27	.30	.45	.50		
EAXxx1634	16	.27	.30	.34	.38		
EAXxx2422	24	.27	.30	.22	.25		
0.34 Emitter		gph/E	mitter	gpm/	100 ft.	140	NE
EAXxx0884	8	.34	.37	.84	.94		
EAXxx1256	12	.34	.37	.56	.62		
EAXxx1642	16	.34	.37	.42	.47		
EAXxx2428	24	.34	.37	.28	.31		

NOTE: X - denotes the diameter. 5 for 5/8", 7 for 7/8" and 11 for 1-3/8". xx - denotes mil thickness.

Irrigation and fertilization General diagram with recirculation (largescale project)

Fertilization (stock solutions A and B), acid, base

Irragation and collection of run-off

Disinfected run-off tank

Run-off collection drain

Filtered run-off tank

U.V. disinfection

Membrane filtration

Mixing vat

Water heater

Controller

Function:

- ► Time (low-end)
- Radiation (high-end)
- Tensiometer (mid-range)

Testing (high-end only) EC

- ► pH
- ► Flow Rate
- Temperature

▶ Cost: \$150-\$5,000

Could be a feature on the climate controller

Part 2: Equipment by Greenhouse Type

Points of comparison for installations

- Coverings
- > Thermal screens
- > Management
- Heating:
 - > Fuel
 - > Generation
 - Distribution
- Ventilation
- ➢ CO₂
- Controllers
- Irrigation and fertilization

Coverings

Installation type	Glass	Plastic	Polycarbonate	Other
Individual greenhouse		Х		Х
Gutter-connected greenhouse	?	Х	Х	Х
Greenhouse complex	Х	Х		
Large complex	Х	Х		

Thermal Screens

Installation type	Single-layer	Double-layer
Individual greenhouse		
Gutter-connected greenhouse	Х	
Greenhouse complex	Х	
Large complex		Х

Type of cultivation

Installation type	Conventional	Organic
Individual greenhouse	X	Х
Gutter-connected greenhouse	X	Х
Greenhouse complex	X	?
Large complex	X	

Heating with fuel

Installation type	Propane	Natural gas	Electricity	Biomass	Oil	Other
Individual greenhouse	X	Х	X		Х	
Gutter-connected greenhouse	X	Х	X	X	Х	Geothermal
Greenhouse complex	?	X		Х		Geothermal – thermal discharges
Large complex		Х		Х		Biomethanization

Heat distribution

Installation type	Forced air	Hot water
Individual greenhouse	Х	
Gutter-connected greenhouse	Х	X
Greenhouse complex		X
Large complex		Х

Heat generation

Installation type	Central	Individual
Individual greenhouse		Х
Gutter-connected greenhouse	Х	Х
Greenhouse complex	Х	
Large complex	Х	

Heat ventilation

Installation type	Roof	Roll-up and positive- pressure	Exhaust fan
Individual greenhouse	Х	Х	Х
Gutter-connected greenhouse	Х		Х
Greenhouse complex	Х		
Large complex	Х		

Winter daytime ventilation

Installation type	Roof	Positive- pressure	Jet fan
Individual greenhouse		Х	Х
Gutter-connected greenhouse	Х	Х	
Greenhouse complex	Х		
Large complex	Х		

Cool nighttime ventilation

Installation type	Roof	Positive- pressure	Jet fan
Individual greenhouse		Х	Х
Gutter-connected greenhouse	Х	Х	
Greenhouse complex	Х		
Large complex	Х		

CO₂ source

Installation type	Liquid	Combustion	Natural
Individual greenhouse		Х	Х
Gutter-connected greenhouse	Х	Х	
Greenhouse complex	Х	Х	
Large complex	Х	Х	

Climate controller

Installation type	Basic	Low-end	Weather station	Mid-range	Top-end
Individual greenhouse	Х	Х			
Gutter-connected greenhouse		Х	Х	Х	
Greenhouse complex			Х	Х	
Large complex			Х		Х

Installation type	Water Water		Controller		
installation type	Installation type tank heater	Low-end	Mid-range	Top-end	
Individual greenhouse	X	x	X	x	
Gutter-connected greenhouse	Х	Х		Х	X
Greenhouse complex	Х	Х			Х
Large complex	Х	Х			Х

Installation	Hanging	Desirgulation	Inject	tor
type	gutters	Recirculation	Proportioner	Dosing pumps
Individual greenhouse			Х	
Gutter-connected greenhouse	X		Х	Х
Greenhouse complex	Х	Х		Х
Large complex	Х	X		X Adapted from (

Greenhouse Installation

Dany Boudreault, T.P. Jacques Thériault, M.Sc.(Agr.) Climax Conseils

Experts en production maraïchère sous serre

Agenda

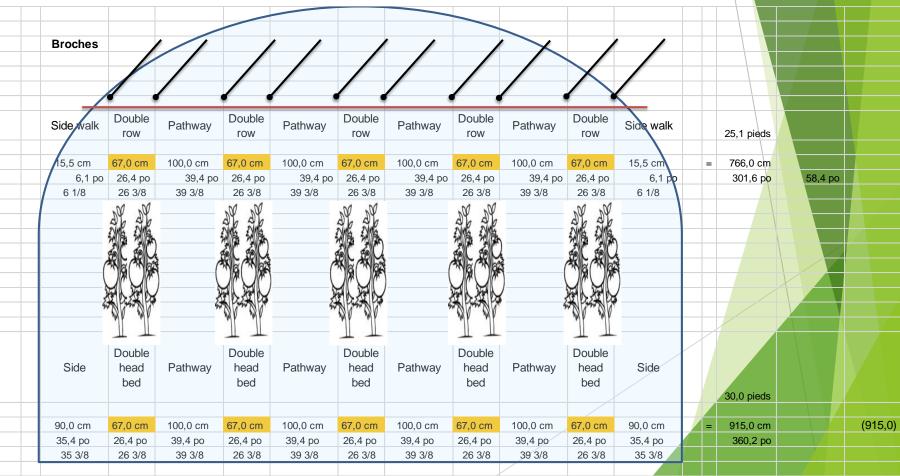
Placement

- Transplants
- Crop supports
- Rows of leafy greens in cold frame greenhouses
- Chemical and physical soil treatment
- Placement
 - Irrigation system
 - Ground cover
 - Stem holders
 - Heat tubes
 - Crop canopies

Transplant placement

- Double row placement
- ▶ 1.6-m rule
- Individual greenhouse:
 - All possibilities
- Gutter-connected greenhouse:
 - 1.6-m rule works well

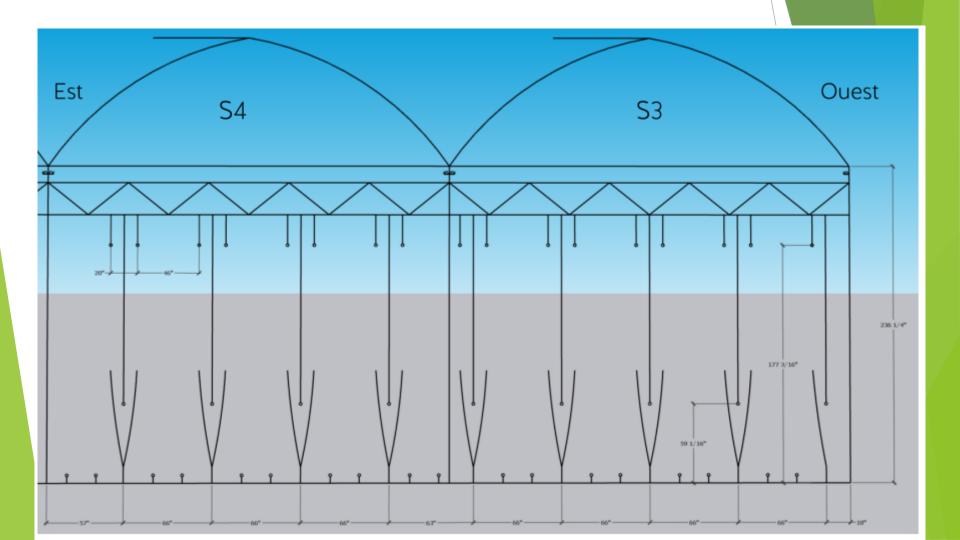
Crop support placement


Purpose

- Supporting the plants
- Wire supports
 - Tomatoes: 9-gauge
 - Cucumbers: 11-gauge
 - Hooks grab/secure to the wire
- Fixing wires to posts/walls
 - Keep some slack

Crop support placement

▶ 60-100-60


Bed

Gutter-connected greenhouse (two arches)

							•		,										
Wire		1			/ /			/			/ /		' /				·		
							X												
			/		/	/	$ \land $		/ /		/		/						
			(,	/ .	/	•••					/	Ζ.	/ .			X			
		Double		Double		Double		Dhuble		Double		Daubla		Daubla		Single			
	Pathway	row	Pathway	row	Pathway	row	Pathway	Double row	Pathway	row	Pathway	Double row	Pathway	Double row	Pathway	row			
									/									Total	
	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm		1 280,0 c	m
	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po		42,0	Feet
	39 3/8	23 5/8	39 3/8	23 5/8	39 3/8	23 5/8	39 3/8	23 5/8	39 3/8	23 5/8	39 3/8	23 5/8	39 3/8	23 5/8	39 3/8	23 5/8			
		Pa Pa		Pa Pa		Pa Pa		80 80		Pa Pa		Pa Pa		Pa Pa		N/			
				and and		AND AND		AND AND		JUL JUL		ANG ANG		AND AND		alle			
						2020		2020				21 20		20 20	3				
	(A B A BA	C		l(The Alexand	ŧ(和高速	(* G * G	(教育教育		AGANG	6				
				AC MC)	MIMI		Jryr)		ar yr		<u> I</u> M		MM		1(*)_	V		
	Ę.	A Print Pr	E.	SPAN P	4	2000	2.2	A BARA	5.	A Press Pro	ž	K BAK			4				
		Mr II		mr mr				Mr Mr		mp mp		MV MV		Mr mr		WP			
		_				-										<u> </u>			
		Daubla		Daubla		Daubla		Daubla		Daubla		Daubla		Daubla		Cinala			
	Pathway	Double head	Pathway	Double head	Pathway	Double head	Pathway	Double head	Pathway	Double head	Pathway	Double head	Pathway	Double head	Pathway	Single head			
		bed	. aannay	bed	. aannay	bed	. aantay	bed	. aannay	bed	. aannay	bed	. admidy	bed	. aanay	bed			
Bed																			
	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm	100,0 cm	60,0 cm		1 280,0 ci	m
	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po	39,4 po	23,6 po		42,0	Feet

Gutter-connected greenhouse with roll-up separators (for diversification

Gutter-connected greenhouse of undefined length

Leafy greens in cold frame greenhouses

General rule

- Rows spaced 4 ft. apart from centre to centre
 - ▶ 12-in. aisles
- Border rows
 - ▶ 2 ft.
 - Easily accessible
- Mix of vegetables and fruits
 - High wire (layering) Double rows
 - 8 ft. from centre to centre
 - Single rows of no layering crop
 - 4 ft. from centre to centre

Soil preparation (chemical)

Standard analysis: medium-term mineral availability

- When: before the start or at the end of the season
- Why: allows you to correct soil fertility as well as organic matter and pH levels.
- Sampling method
 - Use an auger (2.5-cm (1-in.) diameter)
 - From the bed, randomly collect 10 core samples of soil from a depth of 20 cm.
 - Put the samples in a clean bucket, mix the soil gently, and place it in a clearly labelled container or plastic bag.
 - Send it to a specialized lab
 - Never expose soil samples to extreme heat or let them dry out.

Example of a standard analysis

			Résultats	d'analys	es	
	Nu	méro	Γ		-	
Iden	ntificati	on champ	-			
Cult	ture pr	évue				
	L-I- -006	pН	6.9 R	6.9 R	6.3 =	
	L-I- -007	pH tampon	7.0 =	7.0 =	6.3 ⊭	
	L-I- -005	Mat. Org. %	9.5 ™	13.2 ™	5.9 ×	
		Р	724 TR	1 003 ா	361 ™	
_	kg/ha	ĸ	1 419 ™	4 558 ™	393 R	
5	kg	Ca	7 986 ™	9 576 ™	2 870 א	
G.		Mg	767 TR	1 080 TR	157 🛛	
H	ppm	AI	799 ™	687 ч	1 197 🔹	
AEI	ISP	P/AI*	40.5 1	65.1 1	13.5 ±	
03+		Mn	24.4 ™	27.5 TR	27.8 тв	
5		Cu	2.93 ™	3.56 ™	1.71 ™	
S-	ε	Zn	26.79 ™	32.12 ™	4.84 •	
AEL-I-SOL-003+AEL-I-EQP-028	bpm	в	1.34 ∞	1.89 =	0.44 P	
٩		S				
		Fe	121	122	260	
9	6	N total	0.35	0.43	0.21	
		C/N	14.7	16.7	14.9	
pp	m	N-NH₄	11.0	12.0	11.0	
pp	m	N-NO ₃	25.00	87.00	11.00	

TP=Très pauvre, P=Pauvre, M=Moyen, MB=Moyen bon, B=Bon, R =Riche, TR=Très riche

Example of adjustments made as the result of a standard analysis

			kg/ha				
	pH tampon	Ca	Mg	K	CEC	Ρ	(kg/ha)
Calcul CEC/100g	7,1	10460	833	1284	31,5169528		995
% Saturation	11%	74%	10%	5%			
Objectif (kg/ha)		9531	1058,97	1101			300
À corriger (kg/ha)			225,97	-182,67			-69 <mark>5,00</mark>

Aim for 5-10% organic matter

Soil preparation (physical)

Broadfork for hard soil

BCS tractor for looser soil Use to incorporate amendments and fertilizers before the crop installation

Soil preparation (physical and chemical)

Depth:

- 30 cm max (roots need 20 cm, except in sand)
- Pay attention to soil heating

Soil preparation (physical and chemical) Flat or raised beds? For drainage.

Soil preparation (physical and chemical)

SSE soil analysis

- Measures what is available in the soil solution (root zone)
- EC too high, excess sulfate or sodium
 - Leaching

Soil preparation (physical and chemical) Example SSE analysis

Water analysis	Spec min	Spec max		
Alkalinity (ppm)	0	50	↑ 103.20	30.75
Chloride (ppm)	0	50	24.88	31.40
pH	-	-	7.69	5.94
Soluble Salts (mmhos/cm)	0	1	0.29	↑ 1.37
Nitrate Nitrogen (N-NO3) (ppm)	0	5	2.4	106.5
Ammonium Nitrogen (N-NH4) (ppm)	0	5	< 0.2	< 0.2
Phosphorus (ppm)	0	5	< 0.21	42.0
Potassium (ppm)	0	5	2.6	228.4
Calcium (ppm)	0	120	39.4	77.2
Magnesium (ppm)	0	25	1.2	23.8
Sulfate (ppm)	0	100	5.3	104.2
Boron (ppm)	-	-	0.03	0.28
Copper (ppm)	0	0.2	< 0.03	0.21
Iron (ppm)	0	0.5	< 0.05	↑ 2.41
Manganese (ppm)	0	1	< 0.03	0.58
Molybdenum (ppm)	0	0.05	< 0.02	↑ 0.09
Zinc (ppm)	0	0.5	< 0.03	0.33
Aluminum (ppm)	0	0.2	< 0.01	< 0.01
Sodium (ppm)	0	30	13.3	18.7
SAR	-	-	0.57	0.48

mmhos = mS

House EC reading: 1:2 analysis (Sonneveld and Voogt, 2009)

Stir the sample well, and then let it sit for 30 minutes.

Stir it again, and then let it sit for another 5 minutes.

Dip the top end (1/3 length) of the EC meter into the supernatant to take the reading.

Reading x 1.8 = root EC

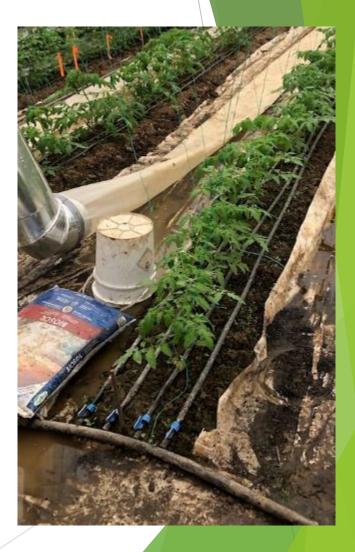
Picture 4.1 Preparation of the specific 1:2 volume extract. Sufficient field-moist soil is added to two parts of water so that the volume is increased with one part

While crops are growing, do not take from the top 1 cm of soil (fertilizer application zone)

Purpose of taking EC reading at the outset

- Greens seedlings: 0.25-0.5 mS/cm
 - Emergence problems
- Transplanted greens: 0.75-1.25 mS/cm
 - Water stress
- Cucumbers: 1-1.5 mS/cm
 - Water stress and Pythium
- Peppers and eggplants: 1.5-2.5 mS/cm
 - Water stress
- Tomatoes: 2.5-3.5 mS/cm
 - Water stress

Soil preparation (physical and chemical)


- Ground temperature:
 - Tomatoes: 18 °C
 - Potassium deficiency
 - Cucumbers: 20 °C
 - Silicon < risk of Pythium</p>

- If planting at the end of April or later, soil heating is usually not necessary.
- Clear mulch:
 - Good for temperature
 - Not good for weeds

Irrigation system placement

- Four drip tapes with manual valves per bed
- Two on each side
 - Sometimes three on one side and one on the other
- Supply
 - Centre: 2 x half row
 - End: 1 x full row

Irrigation system placement

 Four drip tapes per bed
 If they are too far apart...

White over black
 Fabric vs. plastic
 Width

Anchoring pins (U staples)

Purpose

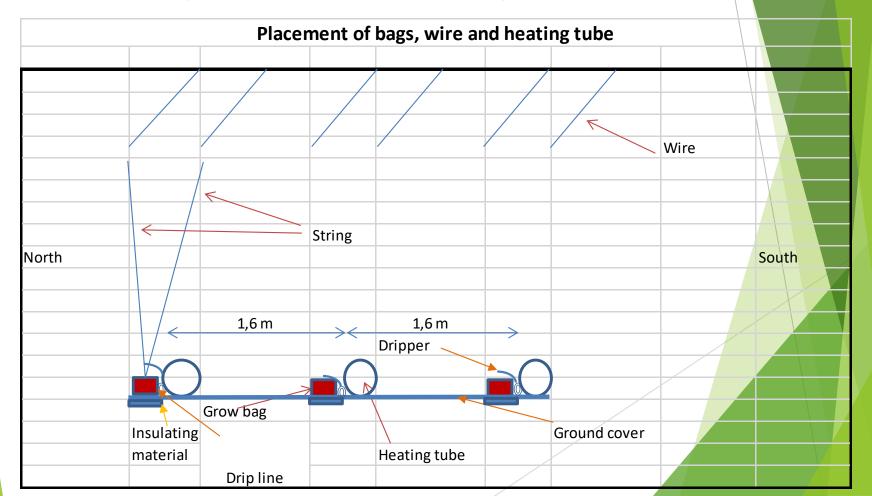
- Avoid soil moisture evaporation
- Avoid growth of weeds
- Avoid thrip pupation
- Promote amendment mineralization

4 ft. apartLarger than wires

Different types
13" x 24"
Beefsteak
Double row

Different types
13" x 16"
Beefsteak
Single row

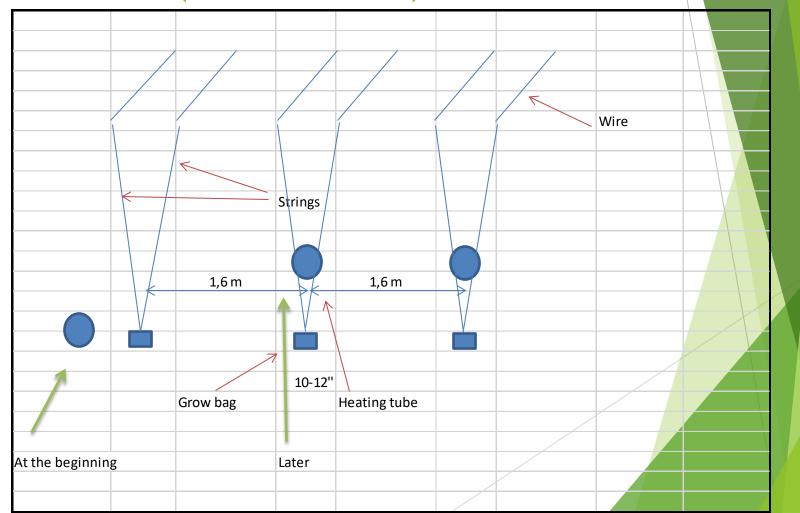
Different Types
16" x 24"
Cherry
Double row


Heat tube placement

The basics:

- One per row
- Drop back to the shoots turning
- Encourages Vshaped canopy

Placement of heat tubes with use of stem holders (off-centered)



Heat tube placement

Off-centered

Placement of heat tubes without use of stem holders (centered)

Canopy placement

Lighting

- Hung on ropes over wire supports
 - Prevention of competition between canopies
 - U-shape of the doublehead base

Crop Planning

Dany Boudreault, T.P. Jacques Thériault Climax Conseils

Program

- How to select a greenhouse vegetable cultivar
- Transplant management planning
- Crop load planning
 - ► Why?
 - Structure and CO₂ effect
 - Planting density
 - Managing fruit load from planting to the hottest period of the summer
 - End-of-season management

How to select a greenhouse vegetable cultivar

- Characteristics sought:
 - Market
 - Taste
 - Yield
- Disease resistance
- Seed merchants
- Hybrid/non-hybrid

How to select a greenhouse vegetable cultivar <u>Resistance</u>

ISF disease resistance

ISF: International Seed Federation

How to select a greenhouse vegetable cultivar <u>Resistance</u>

THE FOLLOWING SEPARATORS WILL BE USED:

- / (slash) to separate pest codes
- : (colon) to separate the species code from the strain/race/pathotype code. The colon is followed by a space
- , (comma) to separate strain/race codes. The comma is followed by a space
- (hyphen) to indicate an uninterrupted series of strain/race numbers
- . (dot) to separate numbers defining a compound strain/race name

How to select a greenhouse vegetable cultivar

Seed merchants

Some large groups
 Bayer/De Ruiter

- 🕨 Enza Zaden
- Gautier
- Rijk Zwaan
- Sakata
- Syngenta

How to select a greenhouse vegetable cultivar

Seed merchants

- Values/Beliefs
- GSPP: Good Seed and Plant Practices
- Biosecurity
 - Packaging and repackaging

How to select a greenhouse vegetable cultivar

- **Hybrids**
 - ► F1
 - Selection
 - ► 🛇 OGM

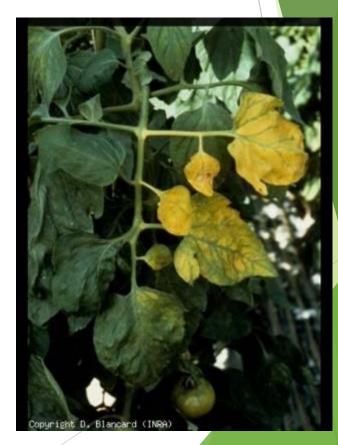
How to select a greenhouse vegetable cultivar

Main soil-borne diseases:

- PL Corky root (tomato)
 - No resistance = rootstock
- FOL: Fusarium wilt (tomato)
- FOR: Fusarium root rot (tomato and cucumber)
 - Resistance not always present = rootstock
- Va Verticillium albo-atrum
- Vd Verticilium dahliae

Nematodes...

Main soil-borne diseases:


PL Corky root

Main soil-borne diseases:

FOL Fusarium wilt

Main soil-borne diseases:

FORL Fusarium crown and root rot

Main soil-borne diseases:

► Va Verticillium albo-atrum

Main soil-borne diseases:

Vd Verticillium dahliae

Main soil-borne diseases

Nematodes...

- ▶ Ma Meloidogyne arenaria
- Mi Meloidogyne incognita
- Mj Meloidogyne javanica

How to select a greenhouse vegetable cultivar

Basic package for greenhouse tomatoes

- ToMV:0-2, Ff:A-E, Fol:1,2, For
 - Tomato Mosaic Virus race 0 to 2
 - Passalora fulva (Pf) race A to E (12 races in all) (formerly Fulvia fulva (Ff)) and Leaf Mold (LM), Cladosporium fulvum (Cf)
 - Fusarium oxysporum f.sp. lycopersici (race 1 and 2)
 - Fusarium oxysporum f.sp. radicislycopersici

How to select a greenhouse vegetable cultivar

Basic package for tomato rootstock

ToMV:0-2/FoI:0,1/For/PI/Va:0/Vd:0 Ma/Mi/Mj

- Pl = Pyrenochaeta lycopersici corky root
- Vd = Verticillium dahliae (race 0) there are 2 races
- Verticillium albo-atrum (race 0)
- Ma/Mi/Mj = Meloidogyne arenaria, incognita and javanica

How to select a greenhouse vegetable cultivar

Cucumber

Table 2. English cucumbers

Seed merchant	Cultivar	Size (cm)	Grov	wing	seas	on	Resistance *	e/tolerance	Crop type		Comments
			w	S p	S u	F	powdery mildew	Cca**	vining	bush	
De Ruiter	Camaro	34-40	х			х	I	х	x		Very popular in winter
	Denali	32-36			х	х	н		х		Trial only, promising
	Eldora	32-38		х	х		н	х	x	x	Trial only, promising
	Dominic a	32-36		х	х	х	I	х	х		Very popular in the spring, summer, and fall
	Logica	34-42		х	х	х	н	х	x		Very long fruit, very productive
	Discover	32-40		Х	Х	Х	Н	Х	Х		The most tolerant of powdery mildew, but with 15-20% lower yield than average
	Annica	32-38	х	х	х	х	н	?		х	For bush cucumbers only
syngenta	Bomber	31-36			х		I	х	Х	х	Rapid and vigorous, trial only
	Monroe	32-36		х		х	I	х	х		Trial only
	Mountie	32-38	х	х	Х	Х	I	х	х	х	Low light tolerant, trial only

How to select a greenhouse vegetable cultivar

Pepper

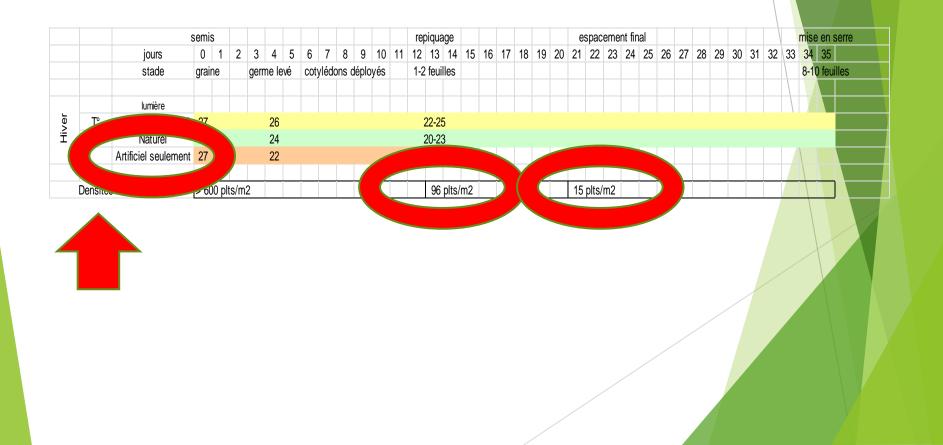
Table 1. Two squares of peppers

Seed merchant	Cultivar	Size (g)	Colour	Seedling gro	wth*		Comments	
				moderate	average	rapid		
De Ruiter	Morraine	200	red		x			
	Fantasy	210-250	red			х		
	Orange Glory	180-200	orange			х	Reference for fruit quality	
	Derby	200-220	yellow			Х		
	Striker	210	yellow	X			Reference for fruit quality but average taste	

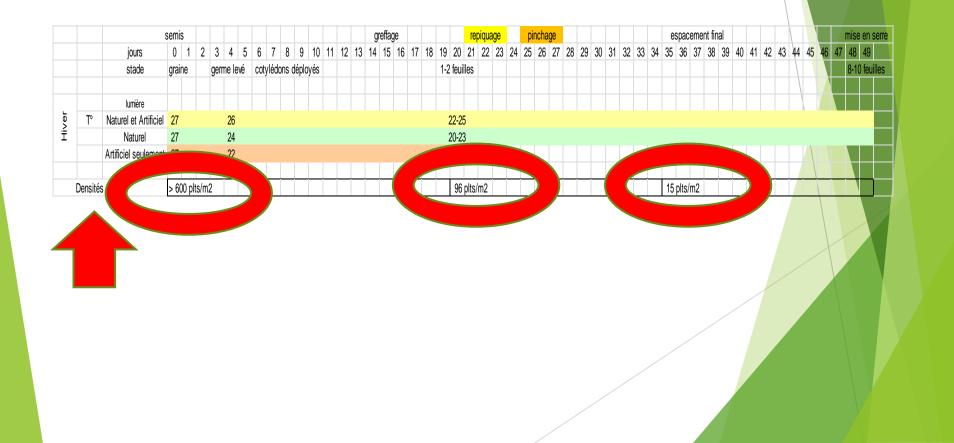
Transplant production schedule

Depending on crop
Time of year
Harvest start date
Various techniques:

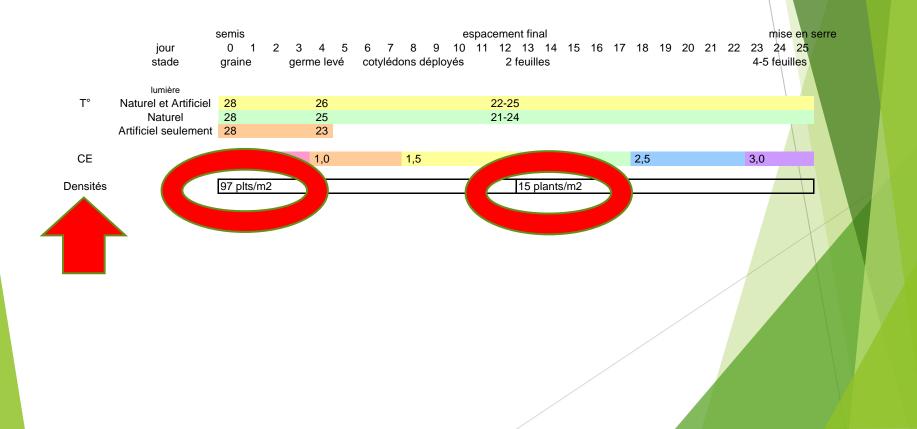
Grafting
Pinching


Schedule in terms of the types of plants to develop:

- Tomatoes 35 days
- Grafted tomatoes
- Cucumbers
- Peppers
- Eggplants


The basics:

- Plants do not touch one another
- Plants double their leaf area every four days
- Take into consideration:
 Usually, you space once.


Non-grafted tomatoes

Grafted/pinched tomatoes

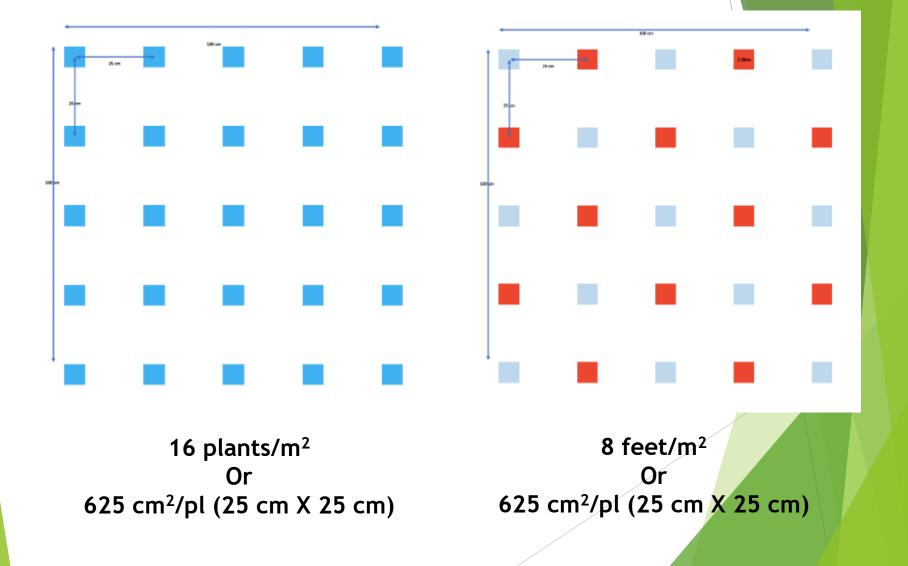
Cucumbers

Peppers

Transplant preparation - Peppers

Stage	Pre-emergence	Post-emergence	Transplanting	Spacing	Placement in greenhouse and planting
Day	1	5	17-18	30	42-53
Stage		Germinated seedlings	First true leaf	As soon as leaves touch	Start of Y (node 0) at a clearly visible Y
Seedling density/m ²	1,000	1,000	100	20	****2.7 - 3.5
Temperature	25-26°C	25°C day – 24°C night	23-25°C day and 21°C night	21-23°C day - 20°C night	*****21-23°C day - °C night

Eggplants

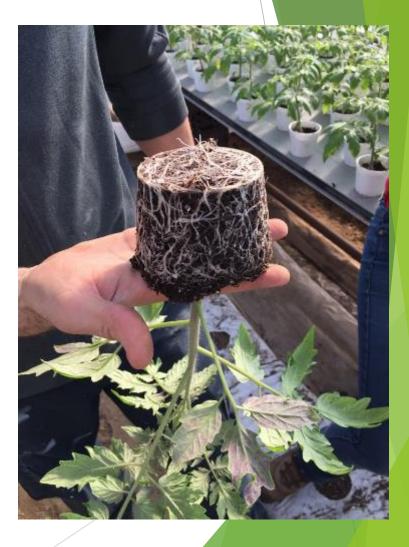


Transplant preparation - Eggplants

Stage	Pre-emergence	Post-emergence	Transplanting		Spacing	Placement in greenhouse and planting	
Day	1	5	Non-grafted: 15 days 22 days	Grafted Non-grafted: 25-27 days Grafted 32.35 days		42-53	
Stage		Seedlings germinated	First true leaf	As soon as	leaves touch	Size: 25 to 30 cm	
Temperature	26-27°C	22°C day, night (little variation)	20-23°C day, night (little variation)	20-23°C day, night (little variation)			Winter: 18-19°C Spring: 22-23°C Little variation- day-night at first
RH (DH)	100%	55-65%	55-65%	65-75%		60-80% (3-7 g/m3)	
CO ²		500-700 ppm	500-700 ppm	500-700 ppm			500-700 ppm
Artificial light (PAR)	ight 35 W/m2 PAR Building (175 umol/m2/s) or 17 W/m ² in greenhouse		35 W/m2 PAR Building (175 umol/m²/s) or 17 W/m² in greenhouse	35 W/m2 in greenho	PAR Building (175 umol/m2/s) o buse		
Need: DLI (mol/m2/day)		10	10	10			

	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ		
Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	
Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	
Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	
Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	1 m
Р	Ρ	Р	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Р	1 metre
Р	Ρ	Р	Ρ	Ρ	Р	Р	Ρ	Ρ	Р	
Р	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Р	
Р	Ρ	Р	Р	Ρ	Р	Р	Ρ	Ρ	Р	
	Р	Ρ	Р	Р	Ρ	Ρ	Ρ	Ρ		•
_				1 m	etre				>	· · · · · · · · · · · · · · · · · · ·

96 plants/m² Or 100 cm²/pl (10cmX10cm)


Plant with one head

Plant with two heads

Great root system!

Fruit load planning - Density

Why:

- A plant is a living thing
 - Can increase in weight
 - Can decrease in weight
 - Distress or burnout

RESPECTING THE PLANT'S PRODUCTION CAPACITY IS THE BEST WAY FOR SUCCESS

Fruit load planning Excessive fruit load

Aborted

Fruit load planning

Excessive fruit load

Aborted

Fruit load planning

Excessive fruit load

Aborted

Low fruit load after excessive fruit load

Russetting

Excessive fruit load

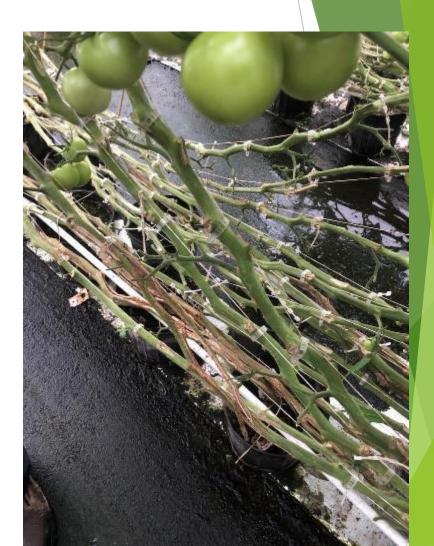
Short fruit

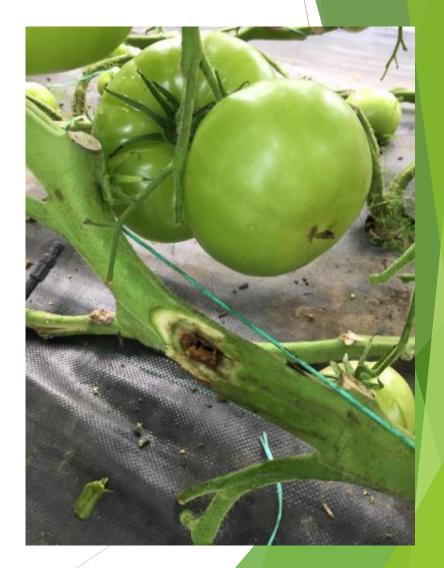
- English cucumber:
 - 280 mm (11 inches)
 - CFIA length requirements

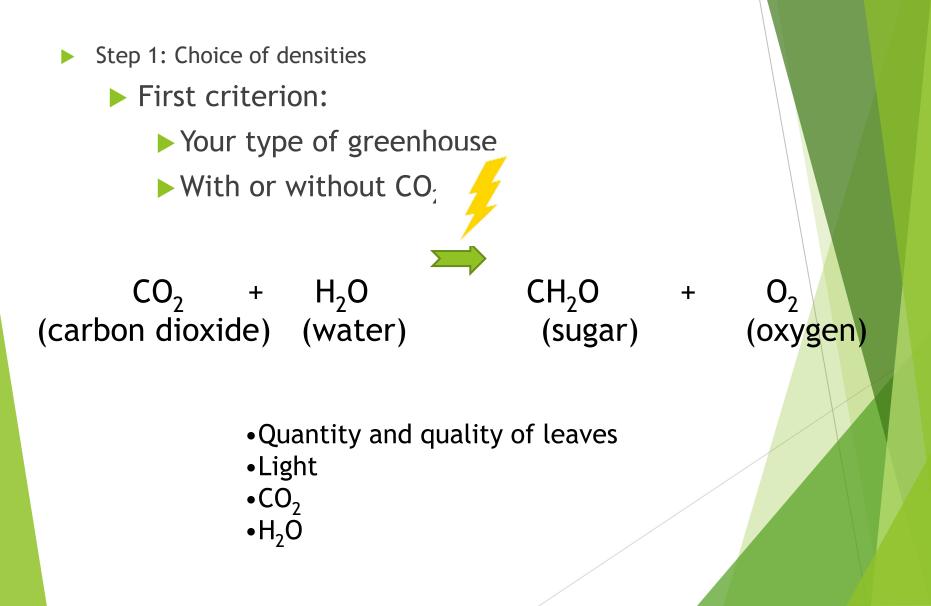
Excessive fruit load

Pointed fruit

Excessive fruit load


Root loss and disease


Excessive fruit load


Burn out and yellow stem

Excessive fruit load

Burn out and Erwinia

Structure and CO₂

- Type 1: Greenhouse with high light level with CO₂ injection
- Type 2: Greenhouse with high light level without CO₂ injection or moderate light level with CO₂ injection.
- Type 3: Greenhouse with moderate light level without CO₂.
- Type 4: Greenhouse with low light level without CO₂.

Types of greenhouses

- Type 1 and 2: Greenhouse with high light level
 - Arches spaced 5 feet or more apart
 - Less structure in the roof (W) (the most common) or reflective structures (white)
 - Quality plastic
 - antidrip
 - transparent (not yellow)
 - Pre-2015 glass
- With CO₂ injection: type 1 greenhouses; can become type 2 in the summer without CO₂ injection
- Now there are type 0.5 greenhouses
 - New glass greenhouses with CO2
 - Polyethylene: Luxuriante (Hol-Ser) and Luminosa (Harnois) with CO₂

Types of greenhouses

- Type 3: Greenhouse with moderate light level without CO₂.
 - Fairly significant encumbrance of roof
 - Poor polyethylene
 - Arches close together (4 feet or less)
 - W and trusses
 - Thermal screens too wide when not in use
 - People take the roof for a technical corridor (dirty tubes, electrical wires, rusty heating tubes, etc.)
 - With CO₂ : Type 2 greenhouse

Types of greenhouses

Type 4: Low light level without CO₂
 Wooden greenhouse
 Very crowded polyethylene greenhouse
 Institutional or demonstration greenhouses

What type of greenhouse do you have? 0.5-1.0-1.5-2-2.5-2.7-2.9-3-3.1-3.3-3.5-3.7-4

Beefsteak tomato yield potential

- Type 0.5 : 72kg = 100%
- Type 1.0 : 60 kg = 83%
- Type 2. 0 : 52 kg = 72%
- Type 3.0 : 45kg = 62.5%
- Type 4: 40 kg = 55%
- Do these figures make you angry?!! Me too.

Beefsteak tomato yield potential

- Type 0. : 72kg = 100%: Winter production greenhouse under lights
- Type 1.0: 60 kg = 83%: Low greenhouse (3-season), tall greenhouse (4-season)
- ► Type 2.0: 52 kg = 72% : 3-season greenhouse
- Type 3.0: 45kg = 62.5%: Training or 2-season greenhouse
- ► Type 4.0: 40 kg = 55%: Training greenhouse

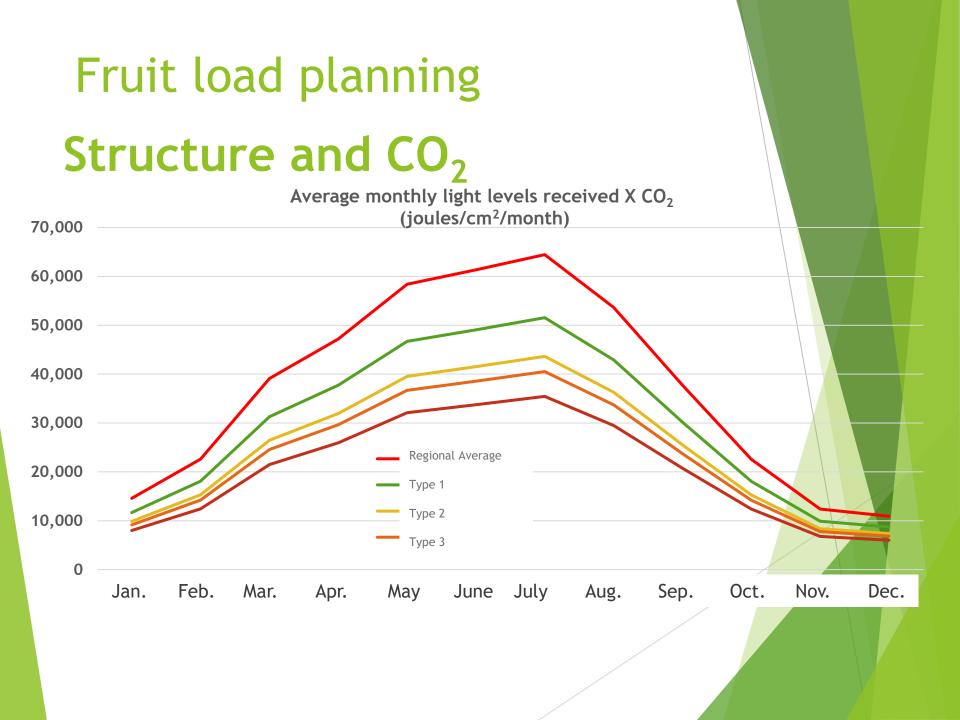
The structure is your best investment and makes the other activities profitable (heating, labour, etc.)

Choice of tomato densities: heads/m²

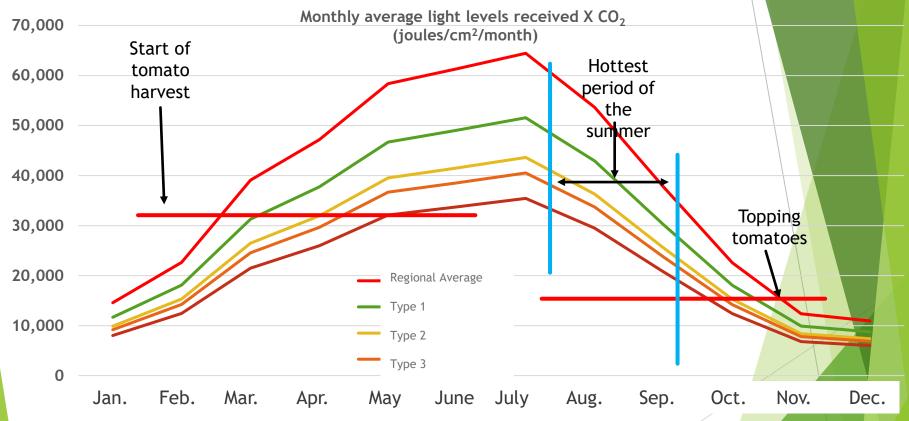
	Tomato								
Type of		Beefsteak Cherr							
greenhouse	Medium								
	190-210g	220-250g	>270g						
1	3.2	2.8	2.5	3.8					
2	2.8	2.4	2.2	3.3					
3	2.4	2.1	1.9	2.9					
4	2.1	1.8	1.7	2.5					

Choice of cucumber densities: heads/m²

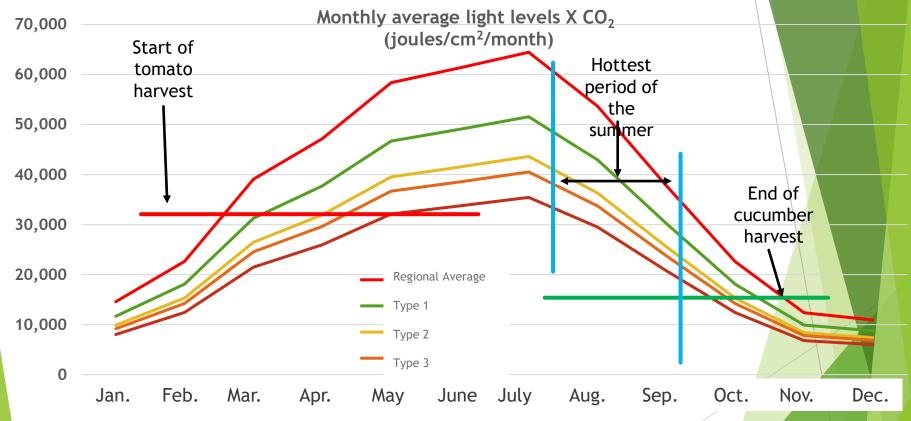
		Cucur	nber	
Type of	Eng	lish	Leba	anese
greenhouse	High wire	Umbrella	High wire	Umbrella
1	2.5	1.8	3.5	2.5
2	2.2	1.6	3.0	2.2
3	1.9	1.4	2.6	1.9
4	1.7	1.2	2.3	1.7


Choice of densities of peppers: heads/m²

	Peppers				
Type of greenhouse	Blocky	Conical			
1	6.5	8.5			
2	5.6	7.3			
3	4.9	6.4			
4	4.3	5.6			


Choice of eggplant densities:

Size (g) X heads/m²


	Eggplant
Type of greenhouse	
	g/stratum
1	2,770
2	2402.9
3	2085.8
4	1835.5

Tomato

Cucumber

Crop load management: From planting to the hottest period of the summer

Reach climate potential without ever exceeding it.

Tomato

▶ When to trim to 3 fruits/cluster. Mid-May in general.

Month	Fruit crop load Tomatoes					Density Tomatoes				
	T1	Т2	Т3	T4		T1	Т2	Т3	T4	
	Fr/m ²	Fr/m ²	Fr/m ²	Fr/m ²		Pl/m ²	Pl/m ²	Pl/m ²	Pl/m ²	
January	13	2				2.0				
February	35	18	3			2.0	2.8	2.4		
March	55	44	22	7		2.6	2.7	2.4	2.1	
April	65	61	46	28		3,2	2.7	2.4	2.1	
May	80	65	62	54		3,2	2,7	2,4	2,1	
June	70	59	50	45		3,2	2.7	2.4	2.1	
July	65	55	45	40		3,2	2.7	2.4	2.1	

Fruit load planning Cucumber (Umbrella system)

Month	Fruit crop load Cucumbers						nsity mbers	
	C1	C2	C3	C4	C1	C2	C3	C4
	Fr/m ²	Fr/m ²	Fr/m ²	Fr/m ²	Pl/m ²	Pl/m ²	Pl/m ²	Pl/m ²
January	1.00				1.5			
February	3.50	1.90	0.66		1.5	1.5	1.5	
March	5.50	4.50	4.00	2.90	1.5	1.5	1.5	1.5
April	6.00	5.90	5.50	4.50	1.5	1.5	1.5	1.5
May	8.00	6.60	6.20	5.20	1.5	1,5	1,5	1,5
June	8,50	7,00	6,75	5,50	1,5	1.5	1.5	1.5
July	7.00	6.40	6.12	5.25	1.5	1.5	1.5	1.5
August	6.75	5.30	4.90	4.00	1.5	1.5	1.5	1.5
September	4.90	3.75	3.25	2.75	1.5	1.5	1.5	1.5
October	3.50	1.88	1.70	1.50	1.5	1.5	1.5	1.5
November	2.00				1.5			
December								

Fruit load management: End of season

Tomatoes

Fruit load planning Radiation limits - end of season Monthly averages for light levels received X CO₂ 70,000 (joules/cm²/month) 60,000 50,000 40,000 End of harvest 30,000 Topping Cucumber tomatoes 20,000 Regional average Type 1 10,000 Type 2 Type 3 0 Feb. Mar. Oct. Nov. Jan. Apr. May June July Aug. Sep. Dec.

Topping date

Date	Time between topping and harvest	Date	Max. yield
End of harvest 1	Weeks	Topping	kg/m²
2021-12-29	12	2021-10-06	11
2021-12-22	12	2021-09-29	12
2021-12-15	11.5	2021-09-25	13
2021-12-08	11	2021-09-22	13
2021-12-01	11	2021-09-15	13
2021-11-24	10.5	2021-09-11	13
2021-11-17	10	2021-09-08	13
2021-11-10	10	2021-09-01	13
2021-11-03	9.5	2021-08-28	13
2021-10-27	9	2021-08-25	13
2021-10-20	9	2021-08-18	13
2021-10-13	8.5	2021-08-14	13
2021-10-06	8.5	2021-08-07	13

Fruit load management Fruit crop load

Month			op load atoes		Density Tomatoes				
	T1	Т2	Т3	T4	T1	Т2	Т3	T4	
	Fr/m ²	Fr/m ²	Fr/m ²	Fr/m ²	Pl/m ²	Pl/m ²	Pl/m ²	Pl/m ²	
July	65	55	45	40	3,2	2.7	2.4	2.1	
August	65	55	45	40	2.6	2.7	2.4	2.1	
September	60	51	35	30	2.6	2.7	0.0	0.0	
October	50	32	26	9	2,6	0.0	0.0	0.0	
November	30	12	5		0.0	0.0	0.0		
December	10				0.0				

Crop load management: End of season

Cucumbers

Fruit load management Fruit crop load

Month			crop load umbers				nsity mbers	
	C1	C2	C3	C4	C1	C2	C3	C4
	Fr/m ²	Fr/m ²	Fr/m ²	Fr/m ²	Pl/m ²	Pl/m ²	Pl/m ²	Pl/m ²
July	7.00	6.40	6.12	5.25	1.5	1.5	1.5	1.5
August	6.75	5.30	4.90	4.00	1.5	1.5	1.5	1.5
September	4.90	3.75	3.25	2.75	1.5	1.5	1.5	1.5
October	3.50	1.88	1.70	1.50	1.5	1.5	1.5	1.5
November	2.00				1,5			
December								

Thank you!

Jacques Thériault, M.Sc.(Agr.) Climax Conseils 418-802-4316 jacques.climaxconseils@gmail.com

Dany Boudreault, T.P.

Climax Conseils

819-350-9498

dany.climaxconseils@gmail.com

Experts en production maraîchère sous serre